APP下载

石墨相氮化碳的结构与光催化性能

2022-11-26杨玉蓉王佳慧刘宇飞

关键词:光催化剂催化活性氮化

杨玉蓉,王佳慧,刘宇飞

(黑河学院 理学院,黑龙江 黑河 164300)

工业化的迅速发展导致全球对能源的需求急剧增加.日益增长的能源需求和逐渐恶化的环境问题成为全球可持续发展的巨大挑战.将太阳能转化为可再生能源成为解决能源和环境问题的有效策略.可见光诱导的半导体光催化技术被广泛研究.在众多光催化剂中,石墨相氮化碳因具有较高的物理化学稳定性和独特的电子能带结构等优点而备受关注.石墨相氮化碳稳定性高、成本低、绿色环保,在光催化产氢领域被广泛应用.然而,由于电导率低、载流子复合率高、光吸收效率低,石墨相氮化碳的光催化性能并不理想.本研究对石墨相氮化碳的结构、合成、在光催化领域中的应用、改性与形貌控制进行了分析,展望了光催化领域存在的机遇和挑战.

1 石墨相氮化碳的合成

石墨相氮化碳作为一种可见光催化剂,通常由含有氮的前驱体直接缩合来合成,可以采用对尿素、硫脲、三聚氰胺等富氮的前驱体进行热处理来制备.前驱体材料和制备条件是影响石墨相氮化碳物理化学性质的关键因素,这些因素严重影响了石墨相氮化碳的C/N比、比表面积、孔隙率、吸收边缘及其微观结构.

石墨相氮化碳的合成过程是加聚和缩聚的组合:单氰胺分子在约203 °C和234 °C温度下缩合为双氰胺和三聚氰胺,接着进入除去氨的冷凝阶段,大约335 °C时,合成三聚氰胺产物.进一步加热到约390 °C,3s-三嗪单元通过三聚氰胺的重排形成.520 °C,聚合的石墨相氮化碳通过单元进一步冷凝产生.在600 °C以上变得不稳定,超过700 °C,石墨相氮化碳会转化成氮和氰基碎片消失.

石墨相氮化碳的独特性质和化学结构受反应气氛的强烈影响.反应气氛能够诱导无序结构、缺陷以及碳和氮空位的产生.缺陷对于多相催化反应是必不可少的,它们可以作为反应物分子的活性位点,通过在价带和导带之间引入其他能级来改变电子能带结构,以增强可见光吸收.半导体中的缺陷和晶格无序可以形成中间态,通常称为带尾态,用于激发电子-空穴对和光催化剂的光学响应.[1-2]无序缺陷的另一个优点是存在更多的俘获位点以阻止光生载流子的复合.

具有介孔特征的石墨氮化碳是一种非常有希望的非金属催化剂,除了具有大的比表面积和结晶孔壁,还显示出独特的半导体特性.介孔的形成和比表面积的提高能够调整氮化碳的物理化学性质,从而提升材料的光催化性能.制备石墨相氮化碳的新方法包括超声分散技术、软模板法、化学功能化技术和酸性溶液浸渍法.使用软模板方法形成介孔阵列是通过协同构建两亲表面活性剂和客体物质来实现的.有机模板的成分及其性质对于产生介孔结构至关重要.因此,它们通常被认为是结构导向剂,该方法通常在水热环境中进行,可通过蒸发诱导自组装实现.

2 石墨相氮化碳在光催化领域中的应用

在众多的光催化剂中,石墨相氮化碳由于成本低、制备工艺简单受到了人们的广泛关注.[3-5]石墨相氮化碳具有独特的二维结构,层间的弱范德华力使其具有片状石墨特征,使得每层中的原子排列成具有强共价键的蜂窝状结构,从而形成具有π共轭的类石墨平面构型,进而能够迅速的传输光生载流子.[6-9]石墨相氮化碳的禁带宽度为2.7 eV,最大吸收边为460 nm,能够吸收太阳光谱的部分可见光,具有热稳定性、生物相容性、环保性和耐腐蚀的优点.[10]石墨相氮化碳的价带由N2p轨道构成,导带由N2p和C2p轨道杂化而成,它具有适当的价带和导带电位,满足光催化产氢、产氧的条件,在光催化领域中被广泛应用.已经开发了大量高效的光催化活性的石墨相氮化碳基纳米材料,其异质结具有出色的光解水制氢性能.

石墨相氮化碳作为一种非金属金属和可见光响应的催化剂,在污染物降解中有广阔的应用前景.石墨相氮化碳的光催化降解反应可分为两类:污染物的气相降解,有机污染物和有毒离子的液相去除.

二维石墨相氮化碳异质结作为光催化剂在CO2还原中受到广泛关注.石墨相氮化碳的导带底满足CO2还原半反应,能够实现光催化CO2还原.CO2光还原过程不仅仅是一步反应,它涉及质子参加的多电子反应过程,能够产生多种产物.从热力学角度看,CO2通过获得多个(二、四、六、八)电子和氢自由基,依次还原生成气态和液态烃,依次为HCOOH(液态)、CO(气态)、HCHO(液态)、CH3OH(液态)到CH4(气态).光催化消毒是另一个值得关注的方向.与传统的消毒方法(如臭氧法、氯化法和紫外线法)相比,光催化消毒具有高效、无毒和稳定的特点,是解决这一问题的新选择.

3 石墨相氮化碳光催化剂的改性与形貌控制

由于N2p和C2p轨道的杂化,石墨相氮化碳表现出严重的光生载流子复合.此外,它的光吸收效率低,这些因素极大地限制了其光催化活性的提高.为了提高石墨相氮化碳的光催化活性,研究人员采用了多种策略来提高石墨相氮化碳的光催化活性,如元素和分子掺杂、缺陷引入、界面调控、贵金属负载、有机物复合、与光敏材料和导电材料形成异质结以及合成石墨相氮化碳基同质结.[11]

非金属或阴离子的掺杂导致石墨相氮化碳的带隙变窄,从而增强光捕获能力.这是由于杂质的引入,形成了局域态,并将价带顶的位置提高,由此缩小了带隙,增加了光吸收.此外,非金属的掺杂也会导致π电子的离域效应,能够增强材料的电导率、光生载流子的迁移率和电子-空穴对分离率.从动力学和热力学的角度来看,价带宽度对空穴的迁移率起着重要作用,因为宽度越大,空穴的迁移率越高,从而导致更好的氧化效果.价带宽度的增加,需要阴离子或非金属掺杂剂在材料中均匀分布.共掺杂或多个原子的掺杂也是一种很有前途的方法,它可以更有效地调节石墨相氮化碳的带隙.多原子共掺杂能够显著提高石墨相氮化碳的光催化活性.空位也会提高石墨相氮化碳的光吸收,影响它的光催化能力,充当发生反应物吸附、活化以及电子捕获的特定位点,有效地调控材料的能带结构.[12-13]在石墨相氮化碳内引入氮空位能够减小带隙,在石墨相氮化碳中引入碳空位为光生电荷载流子的快速转移提供了活性位点和扩散通道,提高石墨相氮化碳的光吸收,降低光生载流子的复合.

将石墨相氮化碳与其他非金属材料、碳基材料、聚合物和分子聚合也是提高其光催化活性的有效方法.石墨相氮化碳和氧化石墨烯复合的纳米材料是通过浸渍和化学还原的组合工艺制备的,石墨烯起到了导电通道的作用,从而有效地分离光生载流子.将MOF材料与石墨相氮化碳复合能够有效提高石墨相氮化碳的光催化活性.石墨相氮化碳与有机分子结合能够有效提高光催化性能,用低负电性分子掺杂剂取代氮原子有利于电子转移,从而提高电导率并抑制光生载流子的复合.增强的电子共轭体系显著地降低了石墨相氮化碳的带隙,导致吸收峰发生红移.由于石墨相氮化碳的电子结构很大程度上由其富电子共轭骨架决定,有机化合物(包括有机分子、有机聚合物和MOFs)与石墨相氮化碳的结合为扩展芳香族聚醚共轭体系提供了可能,实现了对其固有结构特性的调整,例如缩小其带隙以促进光吸收和电荷传输.[14-15]

构建异质结或同质结也是增强电荷分离的有效策略.将石墨相氮化碳和其他半导体复合会产生能带偏移,从而在界面处感应出内置电场,实现光生电荷载流子的反向传输.同型异质结已被广泛用于非金属光催化剂.目前,研究人员已经采用了多种策略来制备石墨相氮化碳同质结光催化剂,这些石墨相氮化碳同质结光催化剂显示了良好的光催化活性.

控制纳米结构也会导致石墨相氮化碳的化学、物理和光学性质发生改变,调整氧化还原位点的数量、电子和空穴到达活性位点的扩散距离,对提高石墨相氮化碳的性能至关重要.近年来,许多学者深入研究了光催化产氢与石墨相氮化碳形态之间的关系,开发了量子点、一维纳米线、纳米棒、纳米纤维、纳米管、二维纳米片.[16-17]

合成石墨相氮化碳的过程中添加造孔剂,通过热缩聚成功制备了多孔石墨相氮化碳,这些多孔石墨相氮化碳的光催化活性和稳定性均得到很大提高.研究人员通过在NH3气氛下对块状石墨相氮化碳进行热处理,开发了具有大量平面内孔和大量碳空位的多孔石墨相氮化碳纳米片,平面内孔赋予石墨相氮化碳具有许多边界,减少了范德华相互作用以减轻严重的聚集,但也暴露了额外的活性边缘和扩散路径,极大地加速了光生电子-空穴的传输和扩散.[18]由于面内孔丰富,石墨相氮化碳的合理改性可以同时实现载流子的有效传输、分离、转移和利用,以及高效的光吸收,这是开发新一代性能优异光催化剂的基础.

总之,作为研究最广泛的光催化剂之一,石墨相氮化碳具有可调谐的电子能带结构、化学稳定性、低成本等优异的特性.然而,氮原子的高电负性增加了共轭体系的缺陷,导致石墨相氮化碳的电子利用率和电导率下降,从而对其光催化活性产生不利影响.尽管迄今为止已经取得了一些令人振奋的成果,但石墨相氮化碳杂化复合材料的效率和稳定性仍远未达到大规模应用的要求.在未来的研究中需要深入挖掘光催化反应机理,更好地设计石墨相氮化碳基有机光催化剂,进一步提高材料的稳定性.开发剥离石墨相氮化碳,探索均匀的单层或多层纳米片的新方法,实现更高的太阳能转化效率.开发价格低廉、绿色环保、具有较高的化学稳定性的石墨相氮化碳基光催化剂,并应用到工业领域中,仍然是一个挑战.

猜你喜欢

光催化剂催化活性氮化
过渡金属硫化物基复合光催化剂制备及其性能研究*
团簇Co3FeP催化活性位点的研究
Fe3O4@SiO2@TiO2@Ag粒子的表面增强拉曼光谱监测有机染料分子的光催化降解过程
中国科学技术大学研制出新型高效硫化物光催化剂
倍思氮化镓快充支持多口多协议
光催化剂能用可见光分解水
基于对铂纳米粒子过氧化物模拟酶活性的抑制检测碘离子
银耳状FeNC复合催化剂的制备及催化氧还原性能研究
一种氮化镁 碳纳米管颗粒增强镁基合金材料的制备方法
30CrMn力学性能及气体氮化工艺性能研究