间充质干细胞外泌体的生物学功能及其治疗支气管肺发育不良研究进展
2022-11-23高倩茜
高倩茜,程 锐
南京医科大学附属儿童医院新生儿医疗中心,江苏 南京 210008
支气管肺发育不良(bronchopulmonary dyspla⁃sia,BPD)是极低出生体重儿常见的慢性肺病[1]。随着围产救治水平的提高,如产前糖皮质激素、产后肺表面活性物质的应用、通气技术的提升,明显改善了早产/低出生体重儿,尤其是极低、超低出生体重儿的预后,使其生存率大大提升,但是BPD 的发生率未见明显下降[2]。目前治疗BPD的方法主要是呼吸管理、营养支持以及药物治疗,但对于BPD 药物治疗的有效性及利弊仍然存在争议。因此,仍然需要探索BPD 的新的治疗方法。BPD 的主要病理特征为肺泡及肺微血管发育不良,可见肺泡数量减少、肺泡结构简单化及持续气道炎症反应[3]。研究发现间充质干细胞(mesenchymal stem cells,MSC)对肺部疾病具有抗炎、免疫调节、促进再生、促血管生成和抗纤维化等特性[4]。基于这些特性,MSC 为BPD 提供了一种新的治疗思路。研究发现,MSC 可以改善BPD动物模型的肺泡简化及血管发育不良[5],目前MSC 治疗BPD 也已进入Ⅱ期临床试验阶段[6]。但有研究指出,虽然MSC治疗后病肺的生理有了很大的改善,但在肺内没有明显的细胞植入[7],这表明MSC可能通过旁分泌方式发挥作用。最近,有研究指出使用间充质干细胞来源外泌体(mesenchymal stem cell⁃derived exosome,MSC⁃exo)可以使许多鼠肺疾病模型受益。MSC⁃exo是MSC分泌组中生理相关且功能强大的组成部分,有着与MSC相似的生物学功能,且MSC⁃exo 代替MSC 治疗还可以避免大多数与细胞治疗有关的安全问题[8],如无增殖、分化潜能,基本无免疫原性、无排斥作用等,是值得期待的治疗BPD的新方法。
1 MSC⁃exo
1.1 MSC⁃exo来源
MSC⁃exo是MSC分泌的胞外囊泡,包含蛋白质、mRNA、miRNA 和DNA 等物质[9],是MSC 分泌组(外泌体、微泡和凋亡小体)中生理相关且功能强大的组成部分[10]。MSC也称为间充质基质细胞,由Frie⁃denstein 等[11]于1968年首次发现。MSC可以从不同来源分离,如脐带、脐带血、脐带胶质、骨髓、脂肪组织等[12]。在这些不同来源的MSC中,人脐带间充质干细胞可能是一种理想的治疗方法[13],因为它们易于提取和扩增,成本低,收集过程无创,细胞含量高以及较低的免疫原性。根据MSC来源的不同(脐带、骨髓、脂肪等),其衍生的外泌体可进一步分成不同的亚类。
1.2 MSC⁃exo异质性
研究发现细胞分泌的外泌体具有极强的异质性,不同的微环境及不同的干预条件均会影响外泌体中包含的内容物[14]。Liu 等[15]研究发现相比常规的培养条件,低氧条件下(1%O2)培养的MSC可分泌更多的外泌体,且其内含的功能性物质的量也有一定的变化。Ban 等[16]通过比较不同pH 的培养基对外泌体分离的影响发现,酸性条件是外泌体生存的有利坏境,其分离出的外泌体蛋白及核酸浓度与其他pH环境相比显著增加。目前对于最佳的MSC培养条件仍需探索,使之可分泌出疗效更好的外泌体以确保临床疗效。
1.3 MSC⁃exo分离及储存
研究者一般选择状态好且增殖能力强的第3~5代MSC 的条件培养上清来分离外泌体。目前对于外泌体的富集和纯化方法主要有:超速离心法、聚合沉淀法、超滤法及抗体亲和捕获法等。超速离心法是收集外泌体最常见及最常规的方法,大多数研究者用此方法收集,在此基础上通过密度梯度的分离,可以获得高纯度的胞外囊泡[17]。但是,这种方法虽然纯度高,但费时费力,还可能破坏外泌体结构,导致囊泡内成分丢失。聚合沉淀法也是较为常用的方法,商品化试剂盒(ExQuick 试剂盒)即基于这种原理,其操作方便,耗时短,且无需使用昂贵的设备,但可能存在化学品污染,影响后续试验[18]。超滤法利用超滤膜通过压力或离心设备收集外泌体,其滤膜易堵塞,导致提取外泌体的纯度较低。抗体亲和捕获法成本高,产量低,不适合临床大规模的使用。对于提取出的外泌体还需要通过电镜、免疫印迹以及流式细胞术等技术进一步的鉴定。目前,外泌体的提取及纯化特别是如何大规模的提取出适用于临床的外泌体仍然具有一定挑战,还需要继续摸索有利于外泌体生存及分离的条件,提高外泌体的提取效率以更好地适用于临床。
分离出的外泌体在4 ℃的条件下可以储存长达1 周而不会发生严重降解,但如果需要长时间保存需要低温冻存。重悬于无菌PBS溶液中的外泌体可以在-20 ℃保存6个月,在-80 ℃保存1年,且其形态及生物学特性不发生改变[19]。
2 MSC⁃exo在肺部的生物学功能
2.1 免疫调节
越来越多的肺部疾病被发现伴有一定的免疫功能紊乱。研究发现,MSC⁃exo 具有一定的免疫调节功能,可以通过调节免疫细胞抑制炎症反应。研究发现MSC⁃exo可通过直接接触或者分泌可溶性因子抑制淋巴细胞等细胞的增殖,促进调节性T细胞的增殖以及调节M1型和M2型巨噬细胞的平衡[17,20-21],从而起到免疫调节的作用。
2.2 促再生
当肺部疾病出现肺损伤时,肺部细胞及其血管的再生对于损伤肺的肺部结构及功能的稳定具有重要作用。Zhu 等[22]发现MSC⁃exo 可以分泌可溶性因子如角质形成细胞生长因子,其可促进Ⅱ型肺泡上皮细胞(alveolar typeII epithelial cell,ATⅡ)增生,ATⅡ作为肺泡上皮的干细胞既可以分化为ATⅠ,也可以通过有丝分裂产生子代ATⅡ以维持自身的细胞群,因而MSC⁃exo通过对ATⅡ的再生修复发挥对肺损伤的保护作用。Braun 等[23]发现MSC⁃exo 还可以促进肺血管的生成,对肺血管的生长、发育有积极作用。
2.3 抗氧化应激
氧化损伤是许多肺部疾病发生发展过程中的重要组成部分,一些损伤因素如感染或者机械通气可使肺部因“呼吸爆发”产生大量氧自由基,加重肺部的损伤。MSC⁃exo可以减轻肺组织氧化应激造成的损伤。Li 等[24]发现MSC⁃exo 大量表达microRNA⁃124⁃3p,并能直接靶向急性肺损伤大鼠中高表达的嘌呤能受体P2X 配体门控离子通道7(P2X7),抑制P2X7的表达,改善氧化应激损伤。Lee等[25]用MSC⁃exo治疗缺氧诱导的肺动脉高压模型中发现,MSC⁃exo可以通过调节miR⁃17/miR⁃204平衡来调控STAT3信号通路,对肺部发挥多效保护作用并抑制肺动脉高压。
2.4 抗炎
许多肺部疾病在发生发展中都伴随着一定的炎症反应,失控的炎症反应会进一步加剧疾病的严重程度。研究发现,MSC⁃exo 可以降低一些肺部疾病的炎症水平,从而改善疾病的预后。Xu等[26]在急性肺损伤大鼠模型中发现,MSC衍生的外泌体可以降低支气管肺泡灌洗液和血浆中肿瘤坏死因子⁃α(tumor necrosis factor α,TNF⁃α),白介素(interleu⁃kin,IL)⁃1β和IL⁃6 等炎症因子水平。Liu 等[27]得到与之一致的结论,并且发现MSC⁃Exos 表达的mi⁃croRNA⁃451 通过TLR4/NF⁃κB 途径来发挥作用。Zhu 等[22]发现MSC⁃exo 还可以通过分泌可溶性因子如角质形成细胞生长因子发挥抗炎作用。
2.5 抗纤维化
一些间质性肺疾病在终末期可出现纤维化,通常呈慢性进行性,严重影响疾病的预后。研究表明,MSC⁃exo 具有抗肺部纤维化的作用。Shentu等[28]研究人骨髓MSC衍生的胞外囊泡,发现其含有miR⁃630可以靶向特发性肺纤维化模型中成纤维细胞上调的促纤维化基因,具有抗纤维化的作用。
3 MSC⁃exo治疗BPD研究现状
3.1 可能作用机制
3.1.1 调节巨噬细胞表型
肺部炎症是BPD 发病机制的关键特征。暴露在高氧或宫内感染、机械通气中并发展成BPD的早产儿,其肺部可见明显的炎症细胞及炎症因子的浸润。这些炎症细胞及炎症因子影响肺泡细胞完整性和诱导细胞凋亡,对肺部结构直接有害[29]。
肺巨噬细胞是肺免疫反应的关键介质,在炎症反应中起重要调节作用[30]。巨噬细胞属于免疫细胞,在体内分布广泛。巨噬细胞从功能特征上主要被分为经典活化的巨噬细胞(又称M1型巨噬细胞)和替代性活化的巨噬细胞(又称M2 型巨噬细胞)。M1型巨噬细胞可以分泌促炎性细胞因子,有促进炎症的作用;M2 型巨噬细胞分泌抑制性细胞因子,具有抗炎、促修复的作用。Willis 等[17]用来自人脐带胶质及人骨髓的间充质干细胞外泌体治疗BPD 模型小鼠,发现MSC⁃exo很容易被肺泡巨噬细胞吸收,并抑制巨噬细胞促炎性“M1”状态同时增强抗炎性“M2样”状态,在体内外实验中得到了一致结果,且反应是剂量依赖性的。
3.1.2 促血管生成
肺微血管发育不良是新型BPD 病理改变的主要特征之一。肺血管的发育受部分血管生成相关因子调控。血管形成是促血管形成因子和抑制因子协调作用的,一旦平衡破坏将导致异常的血管生成。血管内皮生长因子(vascular endothelial growth factor,VEGF)作为血管发生方面的核心因子,其表达水平对肺血管的生长、发育、功能的维持均发挥重要作用。血清中VEGF 的降低可影响肺血管的发育[31]。
Braun 等[23]在间充质干细胞的条件培养基中检测到VEGF 蛋白,而在外泌体耗尽的培养基中则没有检测到,说明间充质干细胞外泌体可以生成VEGF。而后Braun 等[23]在体外细胞实验中发现MSC 衍生的外泌体可以刺激人脐静脉内皮细胞中广泛的毛细血管网形成,用MSC衍生的外泌体治疗BPD 大鼠,可防止肺泡生长中断并增加小血管数量。由此,间充质干细胞外泌体可以通过促血管生成机制发挥作用。
3.1.3 分泌外泌体相关因子TSG⁃6
肿瘤坏死因子α刺激基因⁃6(tumor necrosis fac⁃tor α stimulated gene 6,TSG⁃6)是Lee 等[32]在筛选TNF⁃α诱导的人成纤维细胞cDNA表达文库中发现的一个新基因,其编码的分泌性蛋白是一种保护性的炎症反应因子,可响应TNF⁃α和IL⁃1β等炎性介质[33]。
Chaubey 等[34]在间充质干细胞外泌体中检测到TSG⁃6,含TSG⁃6的外泌体给予BPD小鼠减弱了BPD及其相关病理,在外泌体中通过NAb 或siRNA 敲除TSG⁃6 消除了其治疗作用,表明TSG⁃6 是重要的治疗分子。他们还发现,在BPD小鼠模型的肺中TSG⁃6 水平高度升高,这表明BPD 与TSG⁃6 升高水平相关。据此,Chaubey等[34]认为外泌体中的TSG⁃6主要通过两种途径发挥作用:①对抗TNF⁃α和IL⁃1 的炎症效应;②MSC⁃exo 治疗后炎症增强达到治疗水平的阈值。一旦达到这个水平,TSG⁃6 水平就会因负反馈反应而降低,认为TSG⁃6 是炎症反应中负反馈回路的一部分。
3.2 移植方式
3.2.1 移植途径
研究发现静脉内、气管内、腹膜内给予MSC⁃exo均有一定的治疗效果。由于肺是BPD 治疗的目标器官,且呼吸树是一个狭窄的环境,极低出生体重儿往往出生后需要气管插管,因此气道局部滴注MSC⁃exos是易行、便捷、有效的给药途径[35],且经气管内给药可以直接到达肺间隔,避开了全身应用时要跨越的多层屏障。Chaubey 等[34]经腹膜内给BPD小鼠MSC⁃exo以达到全身运用,发现外泌体对肺、脑及心脏的病理变化均有改善作用,因此当机体出现肺外器官的病理改变时,全身给药是更好的选择。
3.2.2 移植时机
小鼠肺的发育阶段与人类早产儿的妊娠期在24~28周之间重叠,小鼠的肺泡化从出生后第5天开始[36]。Willis 等[17]给BPD 模型小鼠于生后第4 天外泌体治疗,当暴露于高氧的小鼠已经回到室内空气1周后,与对照组相比,大多数由高氧引起的肺基因表达失调已恢复正常,这表明早期干预对于维持适当的肺部发育至关重要。Willis 等[37]在后续研究中继续研究合适的给药时机,在BPD模型小鼠于生后第18 天单次给予MSC⁃exos 及生后18~39 d 接受连续治疗,并与先前的生后4 d外泌体治疗比较,发现早期和晚期干预均有效,不仅可以预防BPD 的发生,还可以在一定程度上逆转已BPD小鼠的心肺并发症。
3.2.3 移植剂量
Willis等[17]静脉给予小鼠在24 h内由0.7×106个MSC 产生的外泌体,并取得一定的治疗效果,但目前缺少不同剂量治疗效果之间的比较,因此对于移植的最佳剂量仍未确定。且目前尚无基于外泌体的治疗药物的定量方法。大多数已发表的研究仅依靠蛋白质测量来进行定量,但受分离程序的影响,该方法不够精确[38]。因此,对于外泌体施用的最佳剂量仍需进一步探索。
4 总结与展望
BPD 是一种常见于早产儿的慢性肺部疾病,由于发病原因和发病机制的复杂性,至今仍未发现有效治疗方法。相关研究显示,MSC⁃exo 具有免疫调节、抗炎、促进再生及抗纤维化等特性,显示出其有希望成为治疗BPD 的有效手段。根据目前已有研究发现,MSC⁃exo 可有效缓解BPD 动物模型的肺泡简化、肺纤维化以及肺血管重塑,肺功能和肺动脉高压也有所好转。目前已有MSC⁃exo应用于临床试验中(https://www.clinicaltrials.gov/),MSC⁃exo 治疗BPD 的临床试验尚在招募中。本文根据现有研究总结了MSC⁃exo治疗BPD可能的作用机制。但由于目前对MSC⁃exo 的认知有限,MSC⁃exo 仍然存在未知成分,因此MSC⁃exo 对BPD 的治疗作用可能存在其他作用机制,需要更多的实验去深入研究,同时对于如何大规模生产出可供临床使用的MSC⁃exo,以及其最佳治疗方式如移植时机、移植方式、移植剂量等问题也是应用于临床前需要解决的问题,距离其真正用于临床仍有一定挑战。随着生物工程和细胞修饰技术的飞速发展,外泌体领域的下一步将是对外泌体表面和内容物进行工程改造或修饰,这可能会带来更高的特异性,将其应用扩展到更复杂的医学领域[39]。