APP下载

丛枝菌根真菌生态功能及其与共生植物互作机理

2022-11-22阮仕琴赵兴丽

中国土壤与肥料 2022年5期
关键词:根际球囊宿主

阮仕琴,陶 刚,娄 璇,赵兴丽

(1.贵州大学生命科学学院,贵州 贵阳 550025;2.贵州民族大学生态环境工程学院, 贵州 贵阳 550025;3.贵州师范大学生命科学学院,贵州 贵阳 550025;4.贵州省农业科学院 生物技术研究所,贵州 贵阳 550006;5.贵州省农业生物技术重点实验室,贵州 贵阳 550006)

丛枝菌根真菌(Arbuscular Mycorrhizal Fungi,AM真菌)是陆地生态系统的主要成员,在陆地的不同类型生态环境中均有存在,能够与80%~90%的陆生植物根系形成专性活体营养(obligate biotrophs)的互惠共生体[1-2]。丛枝菌根(Arbuscular Mycorrhiza)是一种内生菌根,能在植物根细胞内产生“泡囊”(vesicule)和“丛枝”(arbuscle)两大典型结构,又称泡囊丛枝菌根(Vesicular-arbuscular Mycorrhiza,VAM)。AM在 结构上分根外和根内两部分,由菌丝相通,形成菌丝网,扩大了植物根系与土壤的接触面积,可提高植物对水分、主要营养成分及微量元素等吸收[3],体现了很强的生态作用和功能。AM真菌属于球囊菌门(Glomeromycota),包 含1纲4目11科27属,约300个种[4]。AM真菌具有丰富的物种多样性、遗传多样性和功能多样性[5],AM真菌是地球生态系统中生物多样性的重要组分之一,在生态系统中发挥着重要的生态作用和功能,特别是在农业中的作用和应用,如对农作物促生、抗病和抗逆等作用和影响。

1 丛枝菌根真菌的生态作用和应用

AM真菌广泛存在于植物根际土壤环境中,通过侵染植物根系后,与其形成菌根共生体。AM真菌能够通过该共生体系发挥许多生态功能和作用,如增强植物抗逆能力、促进植物生长、提高宿主植物对病害抗性、改善土壤成分和肥力等方面,体现了生态功能的多样性。

1.1 增强宿主植物的非生物胁迫抗性

1.1.1 增强对宿主水和温度的胁迫抗性

水胁迫(如干旱、水涝等)和温度胁迫(如高温和低温等)等非生物胁迫对植物的生长发育、生理过程和地理分布等都产生影响,也成为重要的环境限制因素。

长期处于逆境环境下或者胁迫强度超过植物的承受范围,如水涝或干旱会使植物体内诸多生理过程受到抑制,影响植物的生长发育和养分吸收,严重时会造成植物死亡[6]。AM真菌的定殖可以改变宿主植株形态,增加其营养元素和水分吸收,在干旱 胁迫下更为显著,如促进根系发育并提高根冠比[7],促进氮、磷、钾等有益元素和水分的吸收[8],还可为宿主植物提供总吸水量的4%~20%水分[9]。研究发现,干旱胁迫下,野生大豆和栽培大豆接种根内球囊霉(Glomus intraradices)显著提高了野生大豆和栽培大豆植株中的脯氨酸含量[10];同时,在植物受水分胁迫时,接种AM真菌可以缓解水分胁迫对植物的损伤[11]。余洁[12]研究发现,水分胁迫降低了AM真菌菌根侵染率和荆条的生物量,增加了荆条的菌根依赖性,接种AM真菌显著增加了荆条株高、基径、叶面积和生物量。AM真菌与宿主植物(如黄瓜、梨和芦笋)的共生定殖能够提高它们在低温、冻害和高温胁迫下的生物量[13-14]。在低温胁迫下,接种摩西球囊霉(Glomus mosseae)的水稻植株,能够增强对氮的吸收,在低氮水平下尤其显著[15]。AM真菌的定殖也能有效提高温度胁迫下植物的叶绿素含量和光合效率[16-17]。

1.1.2 增强宿主盐碱胁迫抗性

盐碱是限制植株生长、减少作物产量、降低果实品质的主要非生物胁迫因素之一。与干旱胁迫相类似,在盐胁迫下,AM真菌可促进共生宿主植物的根系发育[18],提高宿主植物幼苗的根冠比[19],从而促进植物对营养元素和水分的吸收。叶林[20]研究发现,盐碱胁迫下接种AM真菌可以促进西瓜叶片的水分利用效率和植株的茎流,促进西瓜根系对矿质营养元素的吸收,并提高植株地上部的生物量。Jia等[21]研究表明,在盐胁迫条件下,AM真菌通过增加狭叶松果菊(Echinacea angustifolia)的次级代谢能力,提高宿主叶片中可溶性糖类和可溶性蛋白的含量,从而缓解盐胁迫对宿主植物的伤害并产生了一定的保护作用。马亚斌等[22]研究发现,在盐胁迫下,AM真菌能够显著影响宿主植物东方百合(Lilium brownii)植株的叶绿素含量、净光合速率、气孔导度和叶片蒸腾速率,显著促进宿主地上部和地下部的生长,提高了植株的抗盐性,但随着盐胁迫浓度的增加,宿主根系的菌根侵染率呈降低趋势。AM真菌对盐碱地的改造修复和盐生植物资源生产具有重要的意义和潜在的应用前 景[21,23]。

1.1.3 增强宿主重金属胁迫抗性

AM真菌具有增强宿主植物对重金属抗耐性和修复重金属污染的能力。在湿生环境下,AM 真菌与香蒲(Typha latifolia)能够建立稳定的共生关系,能增加香蒲生物量积累和促进其对重金属镉的吸收,具有增强湿生植物抗耐和修复环境重金属污染的潜力[24]。AM真菌与胡芦巴属(Trigonella)植物共生,在重金属镉胁迫下,能够促进宿主植物的生长发育,如提高光合色素含量和蛋白质含量等植物生理因子,该研究表明AM真菌能够增强宿主植物对重金属镉胁迫的耐受,是一种很有前景的重金属污染土壤修复思路和方法[25]。AM真菌能够与植物根际促生菌(Plant growth-promoting rhizobacteria,PGPR)协同作用,缓解重金属铬污染胁迫对宿主植物的毒性,提高耐受性,同时增强对矿质养分(主要是磷)的吸收,促进植株生长,为铬污染土壤生态修复方面提供了可行的思路[26]。AM真菌能够提高宿主景天三七(Sedum aizoon L.)铅胁迫抗性能力,显著降低植株中铅积累量,明显缓解铅胁迫伤害,增强其抗逆性[27]。AM真菌促进重金属镉和铅胁迫环境中的宿主玉米植物的生长,减少镉和铅在玉米植株中的积累,表明AM真菌是一种重金属污染土壤修复潜在的有效方法[28]。而且,AM真菌还能够减轻稀土元素铈对植物的毒害作用,在稀土污染土壤的植物修复中具有潜在的应用价 值[29]。

1.2 增强宿主植物抗病性

自从Safir[30]首次报道了AM真菌摩西球囊霉(G. mosseae)能减轻洋葱根系的红腐病(Pyrenochaeta terrestris)危害以来,很多研究表明,AM真菌能够有效地防治多种植物病害以及植食性昆虫对宿主植物造成的危害[31-34]。江龙等[35]通过盆栽试验,分别接种根内球囊霉(G. intraradices)和摩西球囊霉(G. mosseae)于烤烟(Nicotiana tabacum L.)幼苗根际,移栽后,AM真菌可在根系中进一步发育,侵染率不断升高,有效降低了青枯菌(Ralstonia solanacearum)的发病率。接种聚生球囊霉(Glomus fasciculatum),在沉香(Aquilaria agallocha Roxb.)根系位点形成菌根共生结构,抑制了瓜果腐霉菌(Pythium aphanidermatum)的侵染,降低了沉香的 发病率[36]。接种AM真菌的大豆能够抵抗大豆疫霉(Phytophthora sojae)的侵染[37]。AM真菌还能够增强宿主植物对辣椒疫病(Phytophthora capsici)[38]、 番茄枯萎病(Fusarium oxysporum)[39]等植物病害的胁迫抗性。

2 AM真菌与共生植物相互作用机理

2.1 增强宿主植物的非生物胁迫抗性机制

2.1.1 缓解水分和温度胁迫机制

水分是影响植物生长发育和养分吸收的重要因素。AM真菌共生可以提高宿主植物的水胁迫抗性,缓解水胁迫对植物的伤害[40]。研究表明,AM真菌 可提高宿主植物的横向根压,通过增强植物气孔导度和蒸腾速率来增大蒸腾拉力,从而促进水分自下而上的运输,维持植物较高的含水量和水分利用率以抵御水胁迫[41-43],如在干旱条件下,与甜瓜(Cucumis melo L.)幼苗共生的摩西球囊霉(G. mosseae)提高了甜瓜叶片气孔导度和蒸腾速率,促进生长和提高对干旱的耐受性[44];AM真菌通过刺激植物根系伸长,优化根系形态,来促进植物对水分的吸收[45],如将摩西管柄囊霉(Funneliformis mosseae)接种于鞍叶羊蹄甲(Bauhinia faberi var.microphylla)幼苗,显著影响了幼苗根系形态特征和伸长,从而缓解了干旱胁迫[46];AM真菌可以提高宿主植物的水力导度,促进植物对水分的利用率。如与大豆共生的根内球囊霉(G. intraradices)缓解了干旱胁迫的宿主植物水力导度的下降[47];AM真菌能够促进共生植物渗透调节物质的合成和积累,如脯氨酸、甜菜碱、松醇和甘露醇等,降低植物体内的水势,使植物能够正常吸收水分以缓解水分胁迫[48]。

温度胁迫如低温状态对植物在酶活性、膜系统和细胞失水等方面的影响而导致细胞代谢紊乱,甚至细胞死亡。AM真菌与植物的共生可以通过大量积累和提高可溶性蛋白、抗氧化酶和抗坏血酸的含量,降低膜脂过氧化水平,从而有效地减缓低温对宿主植物的伤害,来提高抗寒性和对低温胁迫的适应性[49-51],还可以提高植物的叶绿素含量、光合效率和对营养元素的吸收[17,52],有效增强植物的温度胁迫抗性。

2.1.2 增强盐碱和重金属胁迫作用机制

AM真菌与宿主植物共生增强了植物的盐碱和重金属胁迫抗性,相关作用机制主要体现在以下几个方面。(1)AM真菌通过调节植物激素的平衡,进而参与植物的生长进程,增强了宿主植物的耐盐和耐重金属等不利环境胁迫抗性[53]。如与枸杞(Lycium barbarum L.)共生的地表球囊霉菌 (G. versiforme)显著缓解由盐胁迫导致的叶和根系的生长激素吲哚-3-乙酸(IAA)和脱落酸(ABA)含量的下降[54];接种根内根孢囊霉(Rhizophagus intraradices)调节了由重金属镉胁迫导致的美洲黑杨(Populus deltoides)植株生长激素IAA下降和ABA增高,恢复激素的平衡,增强了重金属的胁迫抗性[53]。AM真菌还能够增加乙烯、玉米素核苷、茉莉酸、水杨酸等植物激素以及其他信号物质来增强宿主的抗逆性[55-56]。(2)AM真菌能通过促进宿主植物养分的吸收,提高宿主的盐碱和重金属等的胁迫抗性。摩西球囊霉(G. mosseae)促进于红花(Carthamus tinctorius)磷的吸收,提高了宿主植物的耐盐性[55];AM真菌通过促进磷的吸收,增加宿主植物体内磷酸根离子的含量,从而增加重金属离子的螯合,降低重金属毒害[57-58]。(3)AM真菌充当生物过滤器,调节重金属(镉、铬、镍、铅)的直接转运[59]。如AM真菌影响宿主植物对重金属物质的吸收,并对重金属进行抑制和转化[60];AM真菌通过分泌球囊霉素相关土壤蛋白(Glomalin-related soil protein,GRSP)将重金属离子固定于土壤中[61-62],或通过竞争性结合转运体来降低植物对重金属离子的吸 收[63-64]。(4)AM真菌调节和增强宿主植物的抗氧化能力,增强抗高盐和重金属等非生物胁迫的能力。如AM真菌调节共生植物因环境有害胁迫产生的抗氧化物酶类活性,如超氧化物歧化酶、过氧化氢酶、抗坏血酸过氧化物酶和过氧化物酶等[65],减少细胞内由于高盐[66]、重金属[67]等引起对细胞有害的活性氧(Reactive oxygen species,ROS)积 累,降低其对植物的损伤。(5)AM真菌提高宿主植物光合作用效率和水分利用效率,来增强植物的环境胁迫抗性[68]。接种根内球囊霉(G. intraradices)提高了盐胁迫下青杨(Populus cathayana Rehd.)叶绿素含量和叶绿素荧光效率,缓解盐胁迫对植物光合作用的抑制[69];AM真菌通过提高光合作用关键酶(二磷酸核酮糖羧化酶,RuBisCO)的活性和调节植物体内的激素平衡,来保障盐胁迫下植物的光合效率[70];接种根内球囊霉(G. intraradices)能够减轻镉胁迫对花生叶片叶绿体结构及光合酶造成的损伤,提高宿主植株净光合速率和促进植株生长[71]。

2.2 AM真菌增强宿主植物病害抗性机理

AM真菌增强宿主植物病害胁迫抗性机制主要体现在以下几个方面。(1)AM真菌与共生植物互作通过释放过氧化氢和产生茉莉酸等代谢产物来阻止病害病原菌的侵染,如接种AM真菌根内球囊霉(G. intraradices)能够产生上述代谢产物使得大豆植株抵抗大豆疫霉(Phytophthora sojae)的侵害[72]。(2)AM真菌与宿主植物病原体通过空间竞争侵染位点,从而减少病害侵染[73]。如聚生球囊霉(G. fasciculatum)共生定殖的沉香(Aquilaria agallocha Roxb.)根系位点,抑制瓜果腐霉菌(Pythium aphanidermatum)的侵染[74]。(3)AM真菌与植物病原物竞争和首先利用宿主植物的光合产物,促进自身生长,影响了病原物对光合产物的利用,从而限制病原物的生长和繁殖[75]。(4)AM真菌能够诱导激活共生植物的防御系统,如产生和释放防御酶和病程相关蛋白(pathogenesis-related proteins,PR蛋白)抵抗病原菌的侵害。如过氧化物酶[76]、多酚氧化酶[77]、超氧化物歧化酶、β-1,3-葡聚糖酶和几丁质酶等[78-79],以及诱发叶片中病程相关蛋白基因的快速表达[80]。

2.3 AM真菌改变宿主植物根际微生态

AM真菌作为一类植物共生真菌,通过与宿主植物互相作用影响植物根际微生态,平衡根际土壤微生物区系的变化,发挥其重要的生态作用。 (1)AM真菌改变共生植物根系结构与根际微生物区。AM真菌能够增加宿主根系长度和茎粗,增加侧根的形成,增强植物对水和营养物的获取能力及对逆境的耐受力[81]。AM真菌可以改变宿主植物根系分泌物(如酚酸、氨基酸、有机酸、糖和其他次生代谢物)的数量和组分,引起根际微生物区系的变化,改变根际微生物平衡[82]。AM真菌能够选择性调控有益微生物数量或对病原菌有拮抗作用的微生物数量[83],减轻病害胁迫,而且不同的AM真菌对根际微生物的影响不同[84]。(2)AM真菌可以稳定土壤结构和改变土壤理化性质。AM真菌通过分泌有机酸或释放质子改变根周围土壤的理化性质,有效增加土壤有机碳含量,改善土壤质量,并扩展土壤微生物区系的多样性[85-86]。(3)AM真菌与根际促生菌(PGPR)的相互作用。AM真菌与PGPR能够相互促进定殖,协同促进植物生长发 育[87]、土壤污染修复[88]、植物病虫害拮抗[32]和宿主植物抗逆性[89]。

3 展望

AM真菌类群广泛存在于植物根际中,其多样性丰富,具有多样化的生态作用和功能,特别是在生态环境和农业方面的应用实践,是未来研究和应用的重要生物资源。在最新分类系统中,中国已报道了145个AM真菌种类[4]。规范、正确和一致描述AM真菌菌种,对促进AM真菌分类、资源多样性和群落结构研究发挥重要作用,也对AM真菌功能种类资源的发掘和实践应用有重要意义。

近年来,AM真菌的纯培养研究取得了突破性进展。首先发现了植物源脂肪酸是AM真菌共生的关键营养物质[90-92],比如,Jiang等[90]首次揭示了脂肪酸是植物传递给AM真菌的主要碳源形式;另一个开创性的研究表明,AM真菌可以把豆蔻酸盐(Myristate)作为碳源,在无宿主植物共生条件下完成其生命周期[93]。上述研究将对AM真菌与宿主植物互作的生态学研究产生重要的推动作用。例如AM真菌群落如何独立响应环境变化?AM真菌与其它土壤微生物之间有怎样的相互作用关系?AM真菌多样性与功能的关系?

在AM真菌类群中,有些种类的细胞质中存在专性的内生细菌,并通过垂直传播途径进行遗传和感染宿主真菌[94],这些细菌种类因不同AM真菌宿主具有丰富的多样性[95]。AM真菌与内生细菌的共生关系具有特殊意义[1]。有研究表明,内生细菌能够增强宿主AM真菌的生态适应性并提高它的环境抗逆能力[96]。目前,关于内生细菌与宿主AM真菌互作研究还不多,它们之间的协同作用及参与改善植物抗胁迫潜力和生物学特性机理等研究将是未来研究的热点。

猜你喜欢

根际球囊宿主
药物涂层球囊与药物洗脱支架治疗冠状动脉分叉病变的Meta分析
黑土根际土壤有机碳及结构对长期施肥的响应
媒介取食偏好和宿主群落组成对多宿主-媒介系统疾病风险的影响
子宫颈扩张双球囊与欣普贝生在孕晚期促宫颈成熟中的应用
不同相思树种根际与非根际土壤细菌群落结构及多样性特征
缺氮胁迫对小麦根际土壤微生物群落结构特征的影响*
药物球囊 冠心病治疗新方法
切割球囊用于冠状动脉疾病治疗的现状及应用前景
鸟界“神偷”——大杜鹃公审案
抓住自然宿主