砷-重金属复合污染土壤稳定化材料研究进展
2022-07-07黄歆晶王刘炜侯德义
黄歆晶,王刘炜,侯德义
(清华大学环境学院,北京 100084)
伴随着城市化与工业化的进程,土壤污染已逐渐成为备受瞩目的世界性环境问题之一[1]。2014年4月17日环境保护部与国土资源部联合发布的《全国土壤污染状况调查公报》显示,全国土壤环境状况总体不容乐观,总污染点位超标率为16.1%,其中,耕地与工矿业废弃地土壤污染问题突出[2-3]。土壤污染可按照污染物属性分为无机型污染、有机型污染以及生物型污染等。土壤的无机污染主要为重金属(如镉、铬、铜、铅、汞等)或准金属(如砷)污染,根据调查,我国以重金属为主导的无机型土壤污染占82.2%[2-3]。近年来,世界发生许多与砷相关的类似流行病的健康事故,且世界卫生组织(WHO)和国际癌症研究机构(IARC)将砷标为致癌物,砷污染及其造成的严重后果不容忽视[4]。
土壤污染有着累积性、隐蔽性、自净能力弱等特征。土壤砷污染成因复杂,可分为自然源、人为源两大类。其中人为源污染主要包括采矿活动、工业排放、农业灌溉与化肥施用等[5](图1)。目前,世界的土壤砷-重金属的污染问题相当严重。波兰下西里西亚省、墨西哥拉古内拉地区、土耳其西马夫平原都是砷-重金属污染的典型地区[6]。采矿活动为土壤砷的最主要来源。根据统计,采矿和冶炼工程中“三废”的排放占全球砷年输入总量的42%[6]。
图1 砷-重金属复合污染主要来源
我国土壤砷-重金属复合污染分区明显,其中,西南地区的土壤污染多归因于地源,东部发达沿海地区的大面积污染多归因于人为活动[1]。“七五”调查结果表明,喀斯特石灰岩地区的母质和成岩过程导致砷与重金属的累积而形成高背景 值[3],贵州、云南、广西等省区土壤背景值显著高于全国平均水平。土壤母质与成岩作用导致土壤背景值高,水文、风力等环境过程促进砷与重金属在土壤中的积累是造成砷-重金属复合污染的主要驱动力[7]。
我国为农业大国,农田的质量和人民的健康与生活紧紧相扣。《全国土壤污染状况调查公报》显示,我国耕地土壤点位超标率高达19.4%,污染形势十分严峻[8]。农用化学物质如化肥、杀虫剂等的大量且长期投加等提高生产量的手段是造成砷与镉等重金属污染的罪魁祸首。无机磷肥含有较高浓度的砷、镉、铅、锌[9-10]、含三氧化二砷除草剂与有机含砷农药等化学药品的施用直接导致砷元素在土壤与植物体内的累积[11-12],据统计,我国化肥年施用总量占世界总量的22%[3],加重了土壤受重(准)金属污染的风险。另外,我国水资源缺乏,污水灌溉现象普遍存在。据调查,重金属污染占污水灌溉区总面积的64.8%,灌渠周边农田表层土中的砷、镉、汞等重金属高于土壤环境背景值[13]。在农业生产过程中污水污泥、工业废水的排放或者非法倾倒等通过水流进入农田也对土壤造成了一定的威胁[14]。
采矿与工业是国家发展的必需产业。我国砷矿资源储量丰富,约占全球储量的70%[15],其中共生、伴生砷矿占含砷矿产资源保有总储量的87.1%[16]。 由于采矿与冶炼过程缺乏监管,砷矿区附近存在大面积的污染问题,其中广西、云南和湖南等地尤为严重[17]。含砷金属矿产的开采与冶炼所产生的废水通过地表径流进入土壤环境,造成土壤的污染。另外,含砷金属矿产的采矿和冶炼过程中释放的粉尘和含砷重金属气溶胶通过大气沉积进入土壤环境,造成土壤受砷-重金属复合污染的风险随之增大。由于砷渣的无害化处理和综合利用率低,大量尾矿的堆放加快了砷释放到土壤中的速度[6]。工 业“三废”排放进入土壤,导致土壤中的重金属浓度比背景值高。根据调查,2014年工业废水占全国废水排放年总量的30%,排放量约为205.3亿t[3]。 废水中的有毒有害元素通过地表径流进入土壤环境中,导致土壤重金属浓度超标。制革厂曾选用亚砷酸钠的杀虫剂作为处理动物皮毛的药剂,据统计,其废液排放导致表层土的砷浓度高达435 mg/kg[18]。另外,工业活动如化石燃料的燃烧、工业加工所排放的废气,会通过大气沉降进入土壤环境,从而造成土壤重金属积累。基于煤炭中各重金属的平均浓度与排放因子,2010年,我国煤炭总年消耗量约为33.8亿t,砷与重金属的排放量可达9000 t,导致工业密集的地区砷与重金属污染的问题日渐凸显[7]。
随着土壤砷与重金属复合污染形势的日益严峻,国内外相继开展对土壤砷与重金属复合污染的调查及修复工作。其中常用的修复技术包括固化/稳定化、土壤淋洗、电化学修复、微生物修复、植物修复、生态恢复等[6,19-20]。固化/稳定化(Solidification/Stabilization)是我国应用最为广泛的重金属修复技术,其采用率高达48.5%[21],其中原位投加稳定化材料实现风险阻抗的方式,由于其对土壤具有较低的扰动,受到了较为广泛的关注。固化/稳定化技术是一种通过添加固化剂(如硅酸盐水泥等)或化学稳定化药剂(如生物炭、粘土矿物、石灰等)将土壤中的有毒有害物质通过物理作用进行包封,或者将污染物转化为难以浸出、不活泼的沉淀、络合物等,阻止其在环境中的迁移和扩散过程,从而降低其迁移风险的修复技术[19,22]。固化/稳定化技术发展历史悠久,属于成熟的土壤修复技术,且该技术的成本相对较低、对不同污染物的适应性强,因而被广泛采用。
砷与典型重金属的化学性质与稳定化机理不同,砷-重金属复合污染土壤的修复面临巨大的挑战。大量的实验室研究与大田试验结果表明,通过投加石灰、生物炭、堆肥等碱性物质提高土壤pH,能够显著稳定镉、铅等阳离子型重金属,却会导致砷含氧酸根阴离子的活化[23-24];投加磷酸盐能够使铅有效沉淀,但由于磷酸盐与砷的化学行为相似,存在竞争吸附现象,无法使土壤的砷酸根稳 定[25]。我国砷-重金属阴阳离子复合型污染现状十分严峻[2,26],有针对性地研究该复合类型的新兴稳定化材料是非常有必要的。本文分析了适用于砷-重金属复合污染土壤的新兴稳定化材料的稳定化作用机制,为复合污染土壤的可持续风险管控提供相应依据和技术支持。需要强调的是,今后相关研究除了需要关注固化/稳定化材料的短期修复效果外,还需合理评价其长期的有效性和可持 续性。
1 土壤砷-重金属协同稳定化机理
重金属污染土壤的稳定化修复是通过加入一种或多种稳定化修复剂至土壤中,使重金属转化成难以浸出或不活泼的地球化学形态,从而降低其在土壤中的迁移性与生物有效性(如植物有效性),实现风险管控的过程[27]。钝化修复剂可分为无机稳定化修复剂(包括氧化物/氢氧化物、粘土矿物、石灰等)和有机稳定化修复剂(包括生物炭、堆肥、腐殖质、市政污泥等)。土壤中砷与重金属的可迁移性取决于土壤性质与环境因素,如pH与土壤中磷酸盐的浓度等[19,28-29]。砷-重金属的钝化机制包括沉淀与共沉淀作用、表面络合、氧化还原作用、甲基化与去甲基化等。
氧化物,尤其是铁基材料与砷-重金属的共沉淀作用是稳定砷与重金属的机制之一[19,29]。研究表明,砷-重金属与二价铁离子或三价铁离子形成难溶的Fe(Ⅱ)/Fe(Ⅲ)-As化合物,如FeAsO4·H2O、FeAsO4·2H2O和Fe3(AsO4)2能有效地稳定土壤中的砷重金属[29]。土壤中的砷能够通过形成内层络合物(inner-sphere complex)的形式,实现在铁基材料表面的络合固定[30]。除此之外,大量的研究表明,与羟基、羧基、羰基等含氧官能团之间的表面络合作用能够实现铜、锌、铅、镉、汞等阳离子型重金属的长效稳定化[15,22,31]。重金属的价态是决定其在土壤中可迁移性和生物有效性的重要指标。在还原性条件下,As(Ⅲ)在土壤中占主导地位。As(Ⅲ)迁移性、活性与毒性都强于As(Ⅴ)[28],因此使土壤氧化还原电位升高,即将As(Ⅲ)氧化为As(Ⅴ)是稳定砷的途径之一。甲基化是通过生物或化学机制(一般以生物机制为主导)将有毒重金属转化为甲基衍生物,通过挥发作用去除有毒重金属的过程[29]。有机物为土壤和沉积物中的甲基供体来源,而微生物是土壤中生物甲基化的主导者,起着生物活性甲基化剂的作 用[29]。砷与重金属可通过生物甲基化转化为毒性较小的有机砷,通过挥发释放到大气中[29]。砷能够被底栖微生物甲基化为通式为(CH3)nAs(O)(OH)3-n的甲基砷化合物[29]。值得注意的是,对于砷-汞复合污染土壤,由于甲基汞具有极高的毒性,不适用于该种修复机理[32]。
2 砷-重金属稳定化新材料
2.1 功能化生物质复合材料
生物炭是一种动植物生物质热解或水热碳化产生的,具有良好孔隙发育结构与多种官能团的绿色修复材料[32-33]。生物炭对重金属的吸附一般机制包括[34-35]:(1)重金属与-COOH和-OH等官能团之间形成表面络合物;(2)重金属与π电子之间的C-π相互作用;(3)重金属与诸如SiO32-和PO42-等灰分矿物质形成沉淀;(4)重金属与生物炭中的可交换离子(如Ca2+、Mg2+)之间的离子交换;(5)静电相互作用。
然而,大量的实验室与田间试验结果表明,生物炭处理后的土壤镉、汞等阳离子能够被成功稳定,但砷的可迁移性会增加。该现象发生的可能原因包括[36-38]:(1)土壤的pH和可溶性有机碳含量因生物炭的加入而增加。在投加生物炭的土壤中,土壤胶体的负电性增加,因此对砷含氧酸根的吸附会被限制,以至于无法吸附,甚至提高了土壤中的砷重金属还原或释放[24];而可溶性有机碳能够作为重金属与砷迁移的载体,提升其可迁移性;(2)砷与生物炭中的可溶性磷直接竞争吸附 位点。
为了促进生物炭对砷与阳离子型重金属的同步稳定化,许多研究提出了负载铁、钙、水钠锰矿等生物炭改性策略,在保证重金属阳离子高效稳定化的同时,提升生物炭对于砷的稳定化能力。改性生物炭对砷与重金属的稳定化效果有所提升的主要原因包括(图2):
图2 改性生物炭稳定重金属与砷的机理
(1)铁氧化物与砷进行沉淀或表面络合[33,39-42]。 有研究表明,加入铁基生物炭后,铁离子或铁(氢)氧化物从生物炭释放到土壤中,形成了FeAsO4·H2O和FeAsO4·2H2O等络合物或沉淀物[40]。氧化铁、针铁矿等对砷具有很强的络合能力[33]。研究表明,AsO4四面体与铁氧化物FeO6八面体进行氧原子的共用,形成稳定的内层络合物[30]。
(2)土壤微生态的调控[43-46]。避免土壤pH大幅度升高,在砷阳离子稳定化之间取得平 衡[33,39-41],改性生物炭的加入使土壤pH迅速增加,但相比于未改性的生物炭的增加幅度较小(低扰动),有利于砷与阳离子的稳定化。譬如FeCl3的浸渍改性导致的水解作用产生HCl,使改性后生物炭的pH降低[40]。因此,改性生物炭的添加,对土壤的pH增加幅度较小,使其对于砷的稳定化能力高于原始生物炭。为了弥补对于阳离子型重金属稳定化效果的降低,铁改性生物炭能够增强表面的络合作用。生物炭表面含氧官能团如羧基、羟基、羰基等的增加,使生物炭对于砷和多金属阳离子的协同稳定化效率随之提高。如水钠锰矿改性生物炭表面的羧基基团较多,促使砷、镉与羟基形成表面络合物,提升对砷与镉的同步稳 定化[41]。
(3)物理性质的改变[33,38]。一些改性生物炭的物理性质如比表面积、孔隙体积会随之增大,吸附位点随之增多,物理吸附更强。但值得注意的是,物理吸附是一种基于范德华力较弱的稳定化 作用。
(4)生物介导稳定化[33,40]。有研究表明,铁改性生物炭的施加增加了As(Ⅴ)/Fe(Ⅲ)还原菌的相对丰度,还原菌诱导生物成矿形成更多结晶性铁矿物质,从而实现砷与镉的同步表面络合稳定 化[40]。钙-磁铁矿改性生物炭通过调控细菌的丰度,增加了土壤细菌的α多样性,并改变了分类单元的相对丰度,在砷、镉同步钝化的同时提升土壤健康[33]。
尽管改性生物炭能够提高对重金属阳离子的稳定效率,但改性材料的选择应慎重,避免砷的活化。有研究表明,富含磷的生物炭引入的磷酸盐具有与砷酸盐相似的物理化学行为,因此与砷离子在土壤颗粒上的吸附位点有直接竞争的关系,从而导致砷迁移率的提高。磷改性生物炭对砷-重金属的稳定化效果差于原始生物炭[38],因此不应选用磷酸盐作为砷-阳离子型复合污染土壤的改性材料。还有研究表明,在环境老化要素的作用下,高可溶性有机质含量的生物炭(或改性生物炭)对重金属或准金属的长期有效性较差,有机质的溶出能够加速重金属与砷的迁移[39]。
2.2 工业固废基材料
工业固体废物是工业生产活动中产生的固体废物。近年来,工业固体废物作为稳定剂的应用引起了广泛关注。钙、铝、硅、铁和其他金属的氧化物是工业固废的主要成分,也是实现砷与重金属阳离子同步稳定化的关键组分[17,46-50]。工业固废基材料具有低成本、环境友好等特征,因此备受关 注[46-50]。
赤泥也称红泥,是铝土矿经强碱浸出氧化铝后产生的残渣。由于具有孔隙度高、比表面积大、一般含有较大量的金属氧化物等特征,赤泥可作为稳定土壤中砷与重金属的稳定化剂[46,49,51],其主要以表面络合(赤泥中富含的铁氧化物)、与沉淀作用稳定土壤中的重金属为主[47,50,52]。赤泥具有较高的比表面积且含有大量的金属氧化物,能够通过一系列物理-化学吸附作用,去除水中或者稳定土壤中的重金属离子,降低其生物有效性[47]。研究表明,使用赤泥作为修复材料投入污染土壤,砷、镉、铅、锌的浸出率均会降低。这是因为赤泥中富含的三价铁与砷、阳离子型重金属均能形成内层络合物,降低其在土壤中的迁移风险[47]。除此之外,赤泥富含铁、钙等成分会促进沉淀作用的发生,形成Ca-As、Fe-As沉淀物[47,50]。值得注意的是,赤泥具有较高的碱性(pH通常大于12)[53]。在修复砷-阳离子型重金属复合污染土壤时,对砷的修复效果是高碱性起到的砷活化作用与铁氧化物起到的稳定化作用平衡的结果。当针对酸性土壤进行稳定化处理时,投入碱性的土壤稳定化材料不会引起砷的显著活化。譬如有研究将赤泥投加到砷、铅复合污染的采矿污染土中,发现尽管土壤pH从3升高至6,砷仍能够通过表面络合机理实现有效稳定化[52]。类似地,富含铁元素的高炉渣同样能够实现砷、锌、铅、镉等阴阳离子复合污染土壤的同步稳定化[47]。
电石渣是一种主要以氢氧化钙[Ca(OH)2]组成的工业废料,是在工业生产乙炔、聚氯乙烯和其他化学品期间通过电石的水解而形成的。研究表明,电石渣的投加能够促进植物根部铁-锰膜(Fe-Mn plaque)的形成,从而实现砷、镉的同步稳定 化[48]。
钢渣是在钢水与炉中杂质分离过程中产生的。其稳定土壤中重金属与砷的主要机制为沉淀作用。有研究通过扫描电子显微镜与能量色散X-射线谱分析(SEM-EDX),发现砷的稳定化与钙、铁和 氧等元素密切相关,主要以Ca-As或Fe-As的形式进行沉淀,从而降低砷-重金属的迁移率[49];而铅、铜的稳定化则与钢渣通过波索来反应(pozzolanic reaction)形成的水化硅酸钙(CSH)与水化铝酸钙(CAH)有关[49]。
粉煤灰是燃煤电厂产生的大宗工业固体废物。粉煤灰颗粒呈多孔型蜂窝状结构,比表面积大、且存在大量的铁、钙氧化物。粉煤灰可通过表面络合、共沉淀等机理,降低砷与重金属在土壤中的迁移率。实验结果表明,在酸性溶液连续浸提下,粉煤灰对于砷、铜的长效稳定性优于石灰石和膨润土[51]。 另外,粉煤灰同样可通过碱激发形成水化硅酸钙(CSH),通过包埋作用,实现砷与铜的协同稳定化[51]。粉煤灰中较高的铁含量促进表面络合物的形成,而较高的钙含量则能促进砷酸钙沉淀的生成(Ksp=10-40.1~10-21.1)。类似地,有研究发现富含钙的废弃泡沫混凝土能够通过同样的机理实现砷、铅、镉的同步稳定化[54]。
值得注意的是,土壤条件,譬如pH、氧化还原电位、阳离子交换容量、电导率和土壤中微生物活性等是影响工业固废基材料选用的因 素[54]。另外,土壤中溶解有机碳(DOC)的含量也是另一因素。根据实验表明,在不同DOC浓度的土壤中施加同一种工业废物改良剂,其效果具有很大差异。土壤中的DOC能够作为砷、铜、铅等阴阳离子的载体,导致其迁移性增加[50]。另外,现有研究成果主要来自实验室探究,大田试验野外验证的数据欠缺,今后在这一方面亟须加强 研究。
2.3 天然矿物基材料
重金属的稳定化可通过天然的稳定剂来实现,天然矿物具有低成本、环境友好、易于大规模应用等优势[40,55-58],因此被视为一类重要的重金属稳定剂。各种天然矿物基稳定剂,如沸石、白云石、水滑石、粘土等在砷与重金属复合污染的土壤修复过程中引起了广泛的关注。
沸石是一种铝硅酸盐。沸石含有碱土金属离子,主要由铝、硅和氧四面体组成,形成三维骨架结构。沸石具有较高的阳离子交换能力,因此常用于阳离子型重金属污染土壤的稳定化修复。除此之外,沸石具有较高的铁元素含量,可通过表面络合与沉淀作用,降低砷、镉等污染物的迁移率[59]。表面活性剂改性为阴离子金属的稳定化效果提升提供了可能的途径。研究发现,十六烷基三甲基铵(HDTMA)改性后的丝光沸石和斜发沸石对砷的吸附量增大4至5倍左右[60]。HDTMA改性沸石可以改变材料表面的电荷特性,从而降低对砷的静电排斥作用[60]。
白云石是一种无水碳酸盐矿物,主要由钙镁碳酸盐组成。砷与重金属主要通过沉淀作用,与白云石中的钙与镁形成沉淀物,从而降低在土壤中的迁移率。有研究通过EDX元素分布图对样品进行观察,发现镁、钙、砷的分布重叠(overlapped),在一定程度上表明富含钙/镁的矿物的稳定化效果。还有研究显示,白云石的添加对土壤pH的影响小,因此,在稳定多金属阳离子的同时不会使砷明显活化[55]。
水滑石又称层状双金属氢氧化物(Layered Double Hydroxides,LDHs)。双金属氢氧化物作为骨架带正电,层间有可交换的Cl-、NO3-等阴离子用于电荷平衡,因此该类材料具有良好的阴离子交换能力,可以实现砷的离子交换吸附[60]。除此之外,LDHs表面富含羟基,可通过表面络合与沉淀作用来稳定土壤中的铅、锌等阳离子型重金属[54]。譬如将镁-铁水滑石投加到砷、锌人工污染的土壤中,能够使土壤孔隙水中的砷、锌浓度分别降低50%、99%[54]。
铁水石膏主要由水铁矿和石膏组成,能够实现土壤砷、铅的同步稳定化。其主要成分水铁矿是一种富含羟基的铁氢氧化物,对砷具有极强的吸附能力,而石膏主要起到中和土壤酸碱度的作用[61]。 此外,石膏中的钙还可与砷进行沉淀,形成CaAsO4沉淀物稳定土壤中的砷[61]。有研究对投加铁水石膏的土壤进行754 d的持续监测,发现水溶交换态铅、砷的浓度持续降低[61]。另外,该材料不会使土壤中的pH大幅改变,因此,对受污染土壤不需要添加任何pH调节剂,避免稳定后的砷与重金属因pH的改变而重新释放到环境中[61]。
粘土矿物具有较高的比表面积与1∶1或2∶1的层状结构,骨架由于同晶置换而带有负电,层间用于电荷平衡的阳离子能够与土壤中的阳离子型重金属进行离子交换,骨架中的羟基能够通过沉淀与表面络合实现阳离子的稳定化[56-57,62-63]。天然粘土矿物成本较低,储量丰富且环境友好,是一类被广泛用于重金属污染土壤修复的绿色材料。用于土壤重金属稳定化的粘土矿物主要包括坡缕石、膨润土(主要成分为蒙脱石)、高岭土、海泡石等,通过物理吸附、离子交换、表面络合和沉淀等多种机理实现阳离子型重金属的稳定化[64]。针对砷-阳离子型重金属复合污染情形,部分研究通过改性实现粘土矿物针对砷含氧酸根的稳定化能力提升。
坡缕石(凹凸棒土)是一种由层链状镁硅酸盐组成的纤维状粘土矿物,其纤维状的结构、纳米孔隙通道决定了其较好的吸附性能。坡缕石对重金属的吸附效率取决于土壤条件。有研究将坡缕石与生物质通过共热解(co-pyrolysis)方式制备生物炭-粘土复合体,用于砷-镉复合污染底泥的稳定化处理。该复合材料较高的比表面积与丰富的羟基集团是实现阴阳离子协同稳定化的关键(TCLP淋滤试验结果显示,砷浸出率降低82%,镉浸出率降低44%)[65]。蒙脱石是一种常见的2∶1层状水合钠钙铝镁硅酸盐矿物,具有较高的阳离子交换能力和吸水膨胀能力。目前尚无纯蒙脱石用于砷-阳离子型重金属复合污染土壤稳定化的报道,但有研究显示,铁柱撑蒙脱石能够快速吸附水相中的三价砷(30 s内吸附率达到55%)。相比于未改性的蒙脱石,铁柱撑改性能够使其吸附容量提升5倍[56]。膨润土的主要成分是蒙脱石,有机改性能够通过改变矿物本身的电性,提升对于含氧酸根阴离子的亲和力。譬如有研究将三甲基胺(TMA)与十二烷基三甲基铵(DTMA)改性膨润土投加到多种重金属阳离子(铜、锌、镉、汞等)与含氧酸根(铬、砷)人工污染的土壤中。离子交换是阳离子稳定化的主导机理,而羟基、硅氧键与含氧酸根阴离子的表面络合以及静电吸附作用可能是铬、砷稳定化的原因[62]。
尽管矿物是一类绿色的修复材料,然而值得注意的是,矿物本身的稳定化效果往往在很大程度上是基于离子的交换作用。由于离子交换的可逆性,被矿物吸附固定的砷与重金属元素在降雨、冻融等环境老化要素作用下可被交换溶出,使长期稳定化效果下降。合成矿物,如水滑石能够通过强化表面络合作用克服这一缺点,但其成本高于常用的土壤稳定化材料,目前尚无将水滑石用于污染地块与农田土壤大面积稳定化修复的实例。
2.4 纳米材料
纳米材料具有高反应性、高稳定性、较大的比表面积等特征,近年来逐渐被用于重金属污染土壤的修复[66-68]。如前文所述,铁元素对砷与阳离子的协同稳定化起到关键作用,因此铁基纳米材料是目前应用最为广泛的稳定化纳米材料[66-67]。除此之外,复配/改性纳米磷酸盐与硅基、钙基纳米材料也被应用于砷-重金属复合污染土壤的稳定化修复中。
铁(氢)氧化物,如氧化铁、针铁矿等是最具代表性的铁基材料[19]。尽管微米级别的(氢)氧化铁能够实现砷与重金属阳离子的稳定化,纳米氧化铁由于具有更大的比表面积和高反应性,稳定化效果更优[66,69-70]。多项研究结果表明,赤铁矿、磁铁矿、针铁矿基纳米材料对于砷-阳离子型重金属都有良好同步稳定化效果,稳定率在46%至99%之间[66,69-70]。
投加到土壤中的纳米零价铁(nZVI)能够生成次生铁(氢)氧化物,通过共沉淀与表面络合实现阴、阳离子型重金属的同步稳定化[71]。大田试验结果显示,纳米零价铁对砷汞复合污染土壤具有良好的稳定化效果[72]。然而由于其具有高反应性,投加到土壤中的纳米零价铁往往由于氧化而变构,其长期有效性值得探究。有研究比较了纳米零价铁与普通还原铁粉的短期与长期稳定化结果,发现尽管纳米零价铁能够在短期内实现砷与铜的高效稳定化,但还原铁粉具有更好的长期有效性[73]。通过负载改性的形式,能够提升纳米零价铁修复的长效性。纳米零价铁-沸石复合体能够将土壤重金属与沸石-铁氧化物骨架形成共价键,即使经过180 d的自然老化过程,该材料对砷、铅仍具有良好的稳定化效果[15]:
磷酸盐对阳离子型重金属,尤其是镉、铅的稳定化有良好的效果[66]。然而,研究表明,磷和砷之间具有相似的化学特性(如离子大小、对称性、酸解离常数等),二者的竞争吸附往往使砷活 化[74-76]。通过将纳米磷酸钙与纳米氧化铁复配投加,能够显著降低砷、铜等阴阳离子型重金属的可迁移性[68]。有研究研制了一种黑曲霉负载纳米羟基磷酸铁-羟基硫酸铁的复合材料,由于具有羟基、铁氧化物、磷酸根等多种基团,能够实现砷、镉、铅在水相中的高效吸附,但其在土壤中的稳定化效果仍待研究[77]。
Cao等[78]将富含铁-硫键的基团负载到纳米二氧化硅材料表面,并将其投加到砷、镉、铅复合污染土壤中,仅3%投加量即可使浸出液中浓度分别降低80.1%、85.0%、97.1%。镉、铅与硫形成共价键(-S-Cd-S-,-S-Pb-S-),而砷与铁形成砷酸铁沉淀:
Mallampati等[79]通过球磨法制备得到钙-氧化钙复配纳米材料,该材料能够促进土壤团聚体的形成,并在团聚体表面形成一层碳酸钙-强氧化钙硬壳,起到固化包封的作用,实现砷、镉、铅的同步稳定化。据估算,该材料修复1 t土壤的成本约为40美元,与常用的水泥固化法相当。
尽管纳米材料具有较高的反应活性,短期稳定化效果较好,但这一特性对其稳定化的长效性有一定的负面影响。如前文所述,纳米零价铁的长效性差于微米级别的零价铁。此外,纳米材料投加造成的潜在环境风险尚不明确。
2.5 其它
有研究使用以针铁矿(约为61%)、碳酸钙(约为16%)为主要成分的煤矿排水污泥(Coal Mine Drainage Sludge,CMDS)稳定土壤中的铜、砷、铅,稳定化率均可达到90%以上[80]。富含铁、铝的水处理残余物(Water Treatment Residuals,WTR)能够通过共沉淀实现砷与阳离子型重金属的同步稳定化[49]。
氧化锰对砷的吸附机制和氧化铁相似(图3),主要包括(1)三价砷的氧化;(2)共沉淀;(3)表面络合作用。比表面积大且富含羟基基团的铁锰双金属材料(Fe-Mn Binary Oxides,FMBO)能够通过络合、沉淀等多种机理实现砷、镉、铅的同步稳定化[81]。FMBO稳定剂对砷、铅的稳定效率很高,但却相对铬、锌、铜的稳定化效率低,甚至会引起其它土壤中的金属活化。因此,采用FMBO处理多金属复合污染土壤需要谨慎。蛋壳、牡蛎壳、贻贝壳和牛骨或海星等被多项研究中作为稳定土壤中砷等重金属的稳定剂[80,82-84]。由于该类材料钙元素对降低砷与重金属的迁移率有很大的作用,通过形成稳定的砷酸氢钙(CaHAsO4)和砷酸钙 [Ca3(AsO4)2]沉淀,从而降低砷在土壤中的可迁移性[80,82-84]。
图3 氧化铁/氧化锰对砷的稳定化过程
3 展望
多金属复合污染土壤的长效稳定化是目前土壤修复领域研究的难点与热点,本文梳理了协同稳定化作用机理,分析了各类砷-重金属同步稳定化新材料的作用机制、稳定化效果与局限性。砷与阳离子型重金属的稳定化作用主要通过表面络合、沉淀等形式实现。铁、钙元素对材料稳定化能力的提升起关键作用。值得注意的是,土壤条件,如pH、氧化还原电位、粘粒含量、盐含量等均会影响砷(pH、Eh敏感)与阳离子型重金属的地球化学形态,土壤中DOC能够作为重金属与砷迁移的载体,导致稳定化失效。然而目前研究往往仅关注材料本身的性质,却忽略了土壤性质对稳定化过程的影响。目前国内外研究通常的做法是任意选取一种污染土壤,然后以“多次试错”的形式研发新型材料,这种做法虽然能研选出具有优良性能的材料,但其针对不同类型土壤的可推广性值得商榷。因此,今后的材料研发需要更多地关注土壤性质对材料稳定化效果的影响。
目前,砷-重金属同步稳定化材料的研发往往局限于短期稳定化效果的实验室小试,而鲜有研究通过实验室模拟老化或大田试验对其长期有效性进行验证。自然界的降雨、冻融、日光照射、生物降解等过程往往会导致材料的溶解、氧化、碳化,使其对重金属的稳定化效果降低[39];自然界中动态变化的氧化还原电位与土壤酸碱度会导致砷与重金属阳离子化学形态的转变,使长期的稳定化效果增加不确定性[85]。今后的研究亟须关注砷-重金属稳定化的长效性。
除此之外,现有研究经常忽略材料本身的潜在风险。工业固废、污泥基生物炭等材料通常富集较多的重金属元素。若将其投加到土壤中,材料本身重金属的溶出可能会导致稳定化的失效。大量的试验结果表明,环境纳米颗粒具有潜在的生态毒性。将纳米材料投加到土壤中的安全性亟待验证。
另外,目前相关稳定化新型材料的研究多采用单一稳定剂对砷-重金属复合污染进行稳定化处理。由于特定稳定化药剂对污染物具有选择性,因此,采用单一稳定剂为修复手段,对重金属的稳定效率和长期有效性往往不能取得较好的效果。在这种情况下,可通过多元复配的形式提升对不同重金属(准金属)的稳定化效果
值得注意的是,尽管有很多新型稳定化材料的研究,但这些材料的经济性却往往被忽视。生物炭、水滑石等研究领域非常热门的稳定化材料鲜有工程实施的案例。今后的稳定化材料研究应致力于研制高效、长效、经济、低碳的材料,使其真正能够被用到污染地块与农用地的修复实践中。