APP下载

卷烟燃烧参数、灰分外观和烟气成分相互关系研究

2022-11-10王孝峰张劲曹芸郭东锋张亚平管明婧周顺张晓宇金宇李延岩王健

中国烟草学报 2022年5期
关键词:卷烟纸烟丝负相关

王孝峰,张劲*,曹芸,郭东锋,张亚平,管明婧,周顺,张晓宇,金宇,李延岩,王健

卷烟燃烧参数、灰分外观和烟气成分相互关系研究

王孝峰1,2,张劲1,2*,曹芸1,郭东锋1,张亚平1,2,管明婧1,周顺1,2,张晓宇1,金宇1,李延岩1,王健2

1 安徽中烟工业有限责任公司,烟草行业燃烧热解研究重点实验室,合肥市高新区天达路9号 230088;2 安徽中烟工业有限责任公司,烟草化学安徽省重点实验室,合肥市高新区天达路9号 230088

【目的】揭示卷烟燃烧三个维度之间相互关系。【方法】利用统计分析方法研究了卷烟燃烧参数(燃烧温度、耗氧量和燃烧速率)、灰分外观指标(灰色值、裂口率、缩灰率、炭线宽度、炭线整齐度和持灰力)和烟气成分(烟气常规成分和七种有害成分)之间的相关性。【结果】①烟丝静燃速率、卷烟吸燃速率和耗氧量之间呈极显著正相关,但均与燃烧温度和卷烟纸阴燃速率无显著相关性;卷烟静燃速率仅与耗氧量显著正相关,燃烧温度仅与卷烟纸阴燃速率呈极显著负相关。②燃烧速率参数不仅与多种烟气成分显著负相关,亦与灰分外观质量显著正相关,与燃烧温度和耗氧量相比,是调节卷烟烟气和灰分外观质量更为有效的燃烧参数。

卷烟;燃烧参数;灰分外观;烟气成分;相互关系

卷烟燃烧产生烟气并留下灰分,因此燃烧过程、烟气和灰分是卷烟燃烧的三个重要维度[1-2]。卷烟燃烧过程研究主要关注过程参数(如温度、压力、流场、燃烧速率等)的测定、影响因素及变化规律[3-8];烟气研究主要关注烟气气溶胶及化学成分释放规律、影响因素及调控技术[9-14];卷烟燃烧灰分的研究主要关注烟支灰分的物理状态,即灰分外观质量及调控技术[15-20]。烟气成分和灰分外观受卷烟设计参数和卷烟燃烧过程的影响,研究燃烧对烟气和灰分的影响,揭示两者形成的燃烧热解机制,为烟气减害和灰分外观质量提升的燃烧调控技术开发提供理论依据,同时研究烟气和灰分之间相互关系,可进一步促进卷烟综合质量精准燃烧调控技术开发。目前,有关燃烧过程对烟气释放的影响研究已较为深入[21-25],但对于燃烧过程与灰分的相互关系[26]及灰分与烟气的相互关系研究则很少涉及。因此,本研究利用统计分析方法研究了卷烟燃烧参数(燃烧温度、耗氧量和燃烧速率)、灰分外观指标(灰色值、裂口率、缩灰率、炭线宽度、炭线整齐度和持灰力)和烟气成分(烟气常规成分和七种有害成分)之间相互关系,旨在为卷烟燃烧综合质量提升提供理论依据。

1 材料与方法

1.1 材料与仪器

46种不同设计参数的卷烟样品由安徽中烟工业有限责任公司技术中心提供。其中单等级烟叶原料3种:2017年安徽皖南/云烟97/B23F;2017年福建龙岩/云烟87/C3FA;2018年贵州遵义/云烟87/C2FA。不同螺纹卷烟纸样品(横螺纹、竖螺纹和无螺纹):定量29 g/m2、透气度60 CU、助燃剂质量分数2%、钾钠质量比1:1、碳酸钙质量分数33%[中烟摩迪(江门)纸业有限公司]。6因素5水平正交设计卷烟纸样品(浙江华丰纸业科技有限公司)25种[26]。CO标准气体(浓度2%、4%、6%);NH4+标准水溶液(1000 μg/mL)和CN-标准水溶液(1000 μg/mL,中国计量科学研究院);烟碱(纯度≥99%,郑州烟草研究院);巴豆醛(纯度≥97%)、苯酚(纯度≥97%)、苯并芘(B[a]P,纯度≥99%)、苯并芘-d12(纯度≥99%)和NNK(N-戊基-(3-甲基吡啶基)亚硝胺)(纯度≥99%)均购于美国百灵威公司。

7890A气相色谱仪和6890-5975气相色谱/质谱联用仪(美国Agilent公司);Acquity型高效液相色谱仪(美国Waters公司);4000 Q Trap质谱仪(美国AB公司);ICS-2100离子色谱仪(美国戴安公司);Milli-Q纯水仪(美国Millipore公司);XS204电子天平(感量:0.1 mg,瑞士梅特勒-托利多公司);BACST600卷烟包灰检测仪和FBS200多功能卷烟燃烧全自动测量系统(合肥众沃仪器技术有限公司);MC320红外热像仪(美国LumaSense公司);RM20H转盘型吸烟机(德国Borgwaldt KC 公司);OXYGEN-610B磁氧分析仪(中科院合肥物质研究院)。

1.2 方法

1.2.1 卷烟样品的制备

采用相同的接装纸和滤棒卷制46种样品卷烟,具体如下:①固定卷烟纸(定量29 g/m2,透气度60 CU,助燃剂含量2%、钾钠比1:1、碳酸钙含量33%),采用不同烟丝进行卷制,包括单料烟烟支3种(3种单料烟叶均采用薄板烘丝工艺制备)、不同宽度烟丝的烟支3种(0.8 mm、1.0 mm和1.2 mm)、不同重量的烟支3种(840 mg、900 mg和950 mg)以及不同三丝含量的正交设计烟支9种(正交设计方案见表1);②固定烟丝(2018年贵州遵义/云烟87/C2FA、薄板烘丝、烟丝宽度1.0 mm),采用25种正交设计卷烟纸样品(表1)和不同螺纹的卷烟纸进行卷烟,共得到28种卷烟样品。烟支长度84 mm,烟支圆周24.4 mm,滤嘴长度25 mm。按单支质量±10 mg的允差筛选卷烟。

表1 卷烟样品正交设计方案

Tab.1 Orthogonal design scheme of cigarette samples

1.2.2 卷烟燃烧包灰的测试方法

采用文献方法测试卷烟燃烧包灰指标,包括灰色值、裂口率、缩灰率、炭线宽度、炭线整齐度和持灰力[18,26],共测试3组,每组6支卷烟,取平均值。

1.2.3 卷烟燃烧参数的测试方法

卷烟燃烧参数包括燃烧速率、燃烧温度和耗氧量。参考标准ISO 3612[27]测定静燃和ISO吸燃条件下燃烧线推进速率,分别记为卷烟静燃速率和卷烟吸燃速率,共测试1组,每组10支卷烟,取平均值;采用质量法测定静燃条件下烟丝质量损失速率[28],记为烟丝静燃速率,共测试10支卷烟,取平均值。参考文献方法测试卷烟ISO抽吸条件下第4口燃烧锥最高温度[29],记为燃烧温度,发射率设定为0.88,共测试10支卷烟,取均值。采用文献方法测试ISO抽吸条件下卷烟燃烧逐口耗氧量均值[30],记为耗氧量,共测试10支卷烟,取平均值。按照标准测定卷烟纸阴燃速率[31],重复5次,取平均值。

1.2.4 烟气常规成分和7种有害成分测定

分别采用GB/T 19609—2004[32]和GB/T 23355—2009[33]测定主流烟气中TPM、焦油和烟碱。共测试2组,每组20支卷烟。

分别采用GB/T 23356—2009[34]、GB/T 21130—2007[35]、YC/T 403—2011[36]、YC/T 377—2010[37]、YC/T 255—2008[38]、YC/T 254—2008[39]和GB/T 23228—2008[40]测定主流烟气中CO、B[a]P、HCN、NH3、苯酚、巴豆醛和NNK。卷烟危害性指数(H)按照国烟科[2009]211号文件规定计算。共测试2组,每组20支卷烟。

1.2.5 数据处理与分析

数据在Excel中整理,所有统计均在R软件中进行。

2 结果与讨论

2.1 卷烟燃烧参数之间Pearson相关分析

根据表2,卷烟燃烧温度仅与卷烟纸阴燃速率在0.01水平呈显著负相关,与其他燃烧指标无显著相关性,可能是由于卷烟纸阴燃速率快,增加了抽吸时从燃烧锥后端流入烟支的空气比例,降低了卷烟燃烧剧烈程度,从而降低了温度。氧消耗与烟丝静燃速率、卷烟燃吸速率、卷烟静然速率分别在0.001、0.01和0.05水平显著正相关,说明卷烟燃烧速率加快,倾向于消耗更多氧气,也反映了烟丝具有更好的燃烧性。卷烟吸燃速率还与烟丝静燃速率在0.001水平显著正相关,与卷烟静燃速率和卷烟纸阴燃速率都无显著相关性,说明卷烟吸燃速率主要受控于烟丝燃烧速率的快慢。

表2 卷烟燃烧参数之间相关分析结果

Tab.2 Correlation analysis among cigarette combustion parameters

注:***为0.001水平呈显著相关;**为0.01水平呈显著相关;*为0.05水平呈显著相关。下同。

Note: *** indicates significant correlation at 0.001 level; ** indicates significant correlation at 0.01 level; * indicates significant correlation at the level of 0.05. The same below.

2.2 卷烟燃烧参数与烟气成分之间Pearson相关分析

根据表3,燃烧速率(卷烟吸燃速率、烟丝静燃速率和卷烟静燃速率)与多种烟气成分呈显著相关性:与TPM、烟碱、水分、焦油、抽吸口数、HCN、苯酚和H值在0.001水平或者0.01水平显著负相关,与CO和B[α]P在0.05或者0.01水平显著负相关(烟丝静燃速率除外),与NH3在0.01水平或者0.05水平显著正相关(卷烟静燃速率除外),与NNK和巴豆醛无显著相关性,说明通过调节卷烟燃烧速率,会改变多种烟气成分释放。耗氧量亦与多种烟气成分显著相关:与烟碱和抽吸口数在0.01水平显著负相关,与TPM、焦油、HCN、苯酚和H值在0.05水平显著负相关,与其他成分无显著相关性。但燃烧温度仅与CO和B[α]P在0.01水平显著正相关,与其他烟气成分之间无显著相关性;卷烟纸阴燃速率仅与HCN和NH3在0.01水平显著负相关,与其他烟气指标无显著相关性。

表3 卷烟燃烧参数与烟气成分之间相关分析结果

Tab.3 Correlation analysis between cigarette combustion parameters and smoke components

2.3 卷烟燃烧参数与灰分外观指标之间Pearson相关分析

根据表4,燃烧温度、耗氧量与包灰指标无显著相关性,而燃烧速率与多项灰分指标之间存在显著相关性:卷烟吸燃速率与灰色在0.01水平显著正相关,与裂口率、缩灰率和炭线宽度分别在0.01、0.001和0.05水平显著负相关;烟丝静然速率与裂口率和缩灰率在0.01水平显著负相关,与持灰力在0.05水平显著正相关;卷烟静然速率与裂口率在0.01水平显著负相关,与持灰力在0.01水平显著正相关;卷烟纸阴燃速率与炭线整齐度在0.05水平显著负相关。烟丝与卷烟纸燃烧匹配是提升卷烟燃烧灰分质量的重要手段,而适度增加卷烟吸燃速率有利于提升燃烧匹配性,从而赋予卷烟燃烧灰分较好的外观质量[26]。但卷烟吸燃速率只与灰色值、裂口率、缩灰率和炭线宽度有显著相关性,对于炭线整齐度和持灰力的改善则需要通过调节烟丝静燃速率、卷烟静燃速率和卷烟纸阴燃速率来实现。

表4 卷烟燃烧灰分外观指标与燃烧参数之间相关分析结果

Tab.4 Correlation analysis between cigarette combustion ash appearance index and combustion parameters

2.4 卷烟灰分指标与烟气成分之间Pearson相关分析

根据表5,灰色值和持灰力与多种烟气成分显著负相关:灰色值与TPM、烟碱、焦油、HCN和苯酚在0.05或0.01水平显著负相关,持灰力与TPM、水分、焦油、CO、B[α]P在0.05或0.01水平显著负相关。裂口率、缩灰率和炭线宽度与多种烟气成分显著正相关:裂口率与TPM、烟碱、水分、焦油、HCN、B[α]P和苯酚在0.05、0.01或0.001水平显著正相关,缩灰率与TPM、烟碱、水分、焦油、HCN和苯酚在0.05、0.01或0.001水平显著正相关,炭线宽度仅与HCN在0.05水平显著正相关。炭线整齐度与烟气成分之间无显著相关性。由于卷烟燃烧灰分质量正向指标(灰色值、持灰力)和负向指标(裂口率、缩灰率和炭线宽度)分别与多种烟气成分显著负相关和显著正相关,结合燃烧参数与烟气成分和灰分指标之间相关性分析结果,可以推测,卷烟燃烧速率快,对于降焦减害和灰分外观质量改善均有一定的促进作用。

表5 卷烟燃烧灰分指标与烟气成分之间相关分析结果

Tab.5 Correlation analysis between cigarette combustion ash indexes and smoke components

3 结论

(1)烟丝静燃速率、卷烟吸燃速率和耗氧量三者之间在0.01水平或0.001水平显著正相关,但三者与燃烧温度和卷烟纸阴燃速率之间无显著相关性;卷烟静燃速率仅与耗氧量在0.05水平显著正相关;燃烧温度与卷烟纸阴燃速率在0.01水平显著负相关。

(2)卷烟燃烧速率参数与多种烟气有害成分显著负相关,与灰分外观质量正向指标和负向指标分别显著正相关和显著负相关,说明与燃烧温度和耗氧量相比,燃烧速率是改变卷烟烟气和灰分外观更为有效的参数,为基于燃烧速率调控的卷烟综合质量提升关键技术开发提供一定的理论依据。

[1] 周顺,王孝峰,何庆,等. 烟草及烟草制品燃烧&热解检测分析技术研究进展[J]. 中国烟草学报,2017, 23(2): 130-142.

ZHOU Shun, WANG Xiaofeng, HE Qing, et al. Recent advances in detection and analysis technologies relating to combustion and pyrolysis of tobacco and tobacco products[J]. ActaTabacariaSinica, 2017, 23(2): 130-142.

[2] 周顺,宁敏. 卷烟燃烧热解分析技术及应用[M]. 合肥:中国科学技术大学出版社,2017.

ZHOU Shun, NING Min. Analysis technology and application of cigarette combustion pyrolysis[M]. Hefei: University of Science and Technology of China Press, 2017.

[3] Baker R R Temperature distribution inside a burning cigarette[J]. Nature, 1974, 247: 405-406

[4] Baker R R Gas velocities inside a burning cigarette[J]. Nature, 1976, 264: 167-169.

[5] Li B, Pang H R, Zhao L C, et al. Quantifying gas-phase temperature inside a burning cigarette[J]. Industrial & Engineering Chemistry Research, 2014, 53: 7810-7820.

[6] Li B, Zhao L C, Yu C F, et al. Effect of Machine Smoking Intensity and Filter Ventilation Level on Gas-Phase Temperature Distribution Inside a Burning Cigarette[J]. BeiträgezurTabakforschung International. 2014 26(4): 191-203.

[7] Li B, Zhao L C, Wang L, et al. Gas-phase pressure and flow velocity fields inside a burning cigarette during a puff[J]. ThermochimicaActa. 2016, 623: 22-28.

[8] Nagao A, Yamada Y, Miura K, et al. A Profile of the Heat Generation Inside a Cigarette During Puffing[J]. Beiträge Zur Tabakforschung, 2014, 21(5):294-302.

[9] Baker RR, da Silva JRP, Smith G. The effect of tobacco ingredients on smoke chemistry. Part I: Flavourings and additives[J]. Food and Chemical Toxicology. 2004, 42: S3-S37.

[10] Baker RR, da Silva JRP, Smith G. The effect of tobacco ingredients on smoke chemistry. Part II: Casing ingredients[J]. Food and Chemical Toxicology. 2004, 42: S39-S52.

[11] Baker R R, Massey E D, Smith G. An overview of the effects of tobacco ingredients on smoke chemistry and toxicity[J]. Food and Chemical Toxicology. 2004, 42: S53-S83.

[12] Joseph L, Banyasz, San L, Jim LH, Kenneth HS. Gas evolution and the mechanism of cellulose pyrolysis[J]. Fuel, 2001, 80:1757-1763.

[13] Sharma RS, Wooten JB, Baliga VL, Hajaligol MR. Characterization of chars from biomass-derived materials: pectin chars[J]. Fuel. 2001, 80:1825-1836.

[14] Ji-Wen F, Shaokuan Z, Maciel GE. EPR Investigations of Charring and Char/Air Interaction of Cellulose, Pectin, and Tobacco[J]. Energy & Fuels, 2004, 18:560-568

[15] 郑晗,詹建波,王浩,等. 卷烟包灰性能的研究现状分析[J]. 新型工业化,2018, 8(11): 92-96.

ZHENG Han, ZHAN Jianbo, WANG Hao, et al. Analysis on research of cigarette ash condensation preperties[J]. The Journal of New Industrialization, 2018, 8(11): 92-96.

[16] 冯亚婕,王建民,梁淼,等. 基于ImageJ的卷烟包灰值定量测定方法优化[J]. 食品与机械,2018, 34(3): 216–219.

FENG Yajie, WANG Jianmin, LIANG Miao, et al. Optimization of the quantitative determination method of the burning cigarette ash integration based on ImageJ[J]. Food & Machinery, 2018, 34(3): 216-219.

[17] 穆林,惠建权,冯亚婕,等. 卷烟烟灰灰度值测定方法的建立及应用[J]. 烟草科技,2018, 51(7): 67–72.

MU Lin, HUI Jianquan, FENG Yajie, et al. A method to determine the grayness value of cigarette ash[J]. Tobacco Science & Technology, 2018, 51(7): 67-72.

[18] 郑丰,肖翠翠,王小平,等. 卷烟纸特性对卷烟静态包灰性能的影响[J]. 烟草科技,2020(3):82-88.

ZHENG Feng, XIAO Cuicui, WANG Xiaoping, et al. Effects of cigarette paper property on ash cohesion of statically burning cigarette[J]. Tobacco Science & Technology, 2020, 53(3): 82-88.

[19] 许艳冉,王建民,惠建全,等. 卷烟包灰及燃烧性能间的关系[J]. 云南化工,2020, 47(03): 45-49.

XU Yanran, WANG Jianmin, HUI Jianquan, et al. Relationship between Cigarette Ash Performance and Combustion Performance[J]. Yunnan Chemical Technology, 2020, 47(03): 45-49.

[20] 马胜楠,冯亚婕,赵怡凡,等. 卷烟烟灰燃烧完全性与白度的关系[J]. 云南化工,2019, 46(01): 15-18.

MA Shengnan, FENG Yajie, ZHAO Yifan, et al. The relationship between combustion completion and whiteness of cigarette ash[J]. Yunnan Chemical Technology, 2019, 46(01): 15-18.

[21] Baker R R Smoke generation inside a burning cigarette: modifying combustion to develop cigarettes that may be less hazardous to health[J]. Prog. Energy Combust. Sci., 2006, 32 (4): 373-385.

[22] Torikai K, Yoshida S, Takahashi H. Effects of temperature, atmosphere and pH on the generation of smoke compounds during tobacco pyrolysis[J]. Food and Chem. Toxicol. 2004, 42: 1409-1417.

[23] 谢国勇,李斌,银董红,等. 卷烟燃吸温度分布与主流烟气中7种有害成分释放量的关系[J]. 烟草科技,2013(11): 67-72.

XIE Guoyong, LI Bin, YIN Donghong, et al. Correlation of temperature distribution in burning cone of cigarette with deliveries of seven harmful components in mainstream cigarette smoke[J]. Tobacco Science & Technology,2013(11): 67-72.

[24] 连芬燕,李斌,黄朝章. 滤嘴通风对卷烟燃烧温度及主流烟气中七种有害成分的影响[J]. 湖北农业科学,2014, 53(17): 4074-4078.

LIAN Fenyan,LI Bin,HUANG Chaozhang. Effects of filter ventilation on burning temperature and 7 kinds of harmful components of mainstream smoke[J]. Hubei Agricultural Sciences, 2014, 53(17): 4074-4078.

[25] 尹升福,谭蓉,银董红,等. 金属盐对卷烟纸裂解致孔及主流烟气中CO释放量的影响[J]. 烟草科技,2016, 49(8): 35-43.

YIN Shengfu,TAN Rong,YIN Donghong,et al. Pyrolysis of cigarette paper: effects of metal salts on pore formation and carbon monoxide release in mainstream smoke[J]. Tobacco Science & Technology,2016,49(8):35-43.

[26] 王孝峰,张劲,李延岩,等. 卷烟燃烧速率与其包灰性能关系分析[J]. 烟草科技,2021,54(10): 70-76.

WANG Xiaofeng, ZHANG Jin, LI Yanyan, et al. Correlation between burning rate and ash integrity of lit cigarettes[J]. Tobacco Science & Technology, 2021,54(10):70-76.

[27] ISO 3612烟草和烟草制品─卷烟─自由燃烧速度的测定[S].

ISO 3612:1977 Tobacco and tobacco products - Cigarettes - Determination of rate of free combustion.

[28] 窦玉青,张忠锋,付秋娟,等. 一种卷烟燃烧速率的检测方法[P]. ZL201310335749.7.

DOU Yuqing, ZHANG Zhongfeng, FU Qiujuan, et al. A detection method of cigarette combustion rate[P]. ZL201310335749.7.

[29] 郑赛晶,顾文博,张建平,等. 利用红外测温技术测定卷烟的燃烧温度[J]. 烟草科技,2006,7:5-10.

ZHENG Saijing, GU Wenbo, ZHANG Jianping, et al. Solid-phase temperature measuring of burning cigarette with infrared camera[J]. Tobacco Science & Technology, 2006, 7:5-10.

[30] 葛少林,王健,王孝峰,等. 一种测定卷烟燃吸过程中燃烧热的装置[P]. ZL 2021201550019.

GE Shaolin, WANG Jian, WANG Xiaofeng, et al. A device for measuring combustion heat in the actively puffed process of cigarette[P]. ZL 2021201550019.

[31] GB/T 12655—2017卷烟纸基本性能要求[S].

GB/T 12655—2017 The basic performance requirements of cigarette paper[S].

[32] GB/T 19609—2004卷烟用 常规分析用吸烟机测定总粒物相和焦油[S].

GB/T 19609—2004 Cigarette—Determination of total and nicotine-free dry particular matter using a routine analytical smoking machine[S].

[33] GB/T 23355—2009卷烟 总粒相物中烟碱的测定 气相色谱法[S].

GB/T 23355—2009 Cigarette—Determination of nicotine in smoke condensates—Gas-chromatographic method[S].

[34] GB/T 23356—2009卷烟 烟气气相中一氧化碳的测定 非散射红外法[S].

GB/T 23356—2009 Cigarette—Determination of carbon monoxide in the vapour phase of cigarette smoke—NDIR method[S].

[35] GB/T 21130—2007卷烟 烟气总粒相物中苯并[α]芘的测定[S].

GB/T 21130—2007 Cigarette—Determination of Benzo[α]pyrene in total particular matter[S].

[36] YC/T 403—2011卷烟 主流烟气中氰化氢的测定 离子色谱法[S].

YC/T 403—2011 Cigarette—Determination of hydrogen cyanide in cigarette mainstream smoke—Ion chromatography method[S].

[37] YC/T 377—2010卷烟 主流烟气中氨的测定 离子色谱法[S].

YC/T 377—2010 Cigarettes—Determination of ammonia in mainstream cigarette smoke—Ion chromatography method[S].

[38] YC/T 255—2008卷烟 主流烟气中主要酚类化合物的测定 高效液相色谱法[S].

YC/T 255—2008 Cigarette—Determination of major phenolic compounds in cigarette mainstream smoke—High performance liquid chromatographic method[S].

[39] YC/T 254—2008卷烟 主流烟气中主要羰基化合物的测定 高效液相色谱法[S].

YC/T 254—2008 Cigarette—Determination of major carbonyls in cigarette mainstream smoke—High performance liquid chromatographic method[S].

[40] GB/T 23228—2008卷烟 主流烟气总粒相物中烟草特有N-亚硝胺的测定 气相色谱-热能分析联用法[S].

GB/T 23228—2008 Cigarette—Determination of tobacco specific N-Nitrosamines in total particulate matter of mainstream cigarette smoke—GC-TEA method[S].

Study on the relationship among cigarette combustion parameters, ash appearance and smoke components

WANG Xiaofeng1,2, ZHANG Jin1,2*, CAO Yun1, GUO Dongfeng1, ZHANG Yaping1,2, GUAN Mingjing1, ZHOU Shun1,2, ZHANG Xiaoyu1, JIN Yu1, LI Yanyan1, WANG Jian2

1 Key Laboratory of Combustion & Pyrolysis Study of CNTC, Anhui Tobacco Industrial Co., Ltd., Hefei 230088, China;2 Key Laboratory for Tobacco Chemistry of Anhui Province, Anhui Tobacco Industrial Co., Ltd., Hefei 230088, China

This study aims to reveal the relationship among cigarette combustion parameters (combustion temperature, oxygen consumption and combustion rate), ash appearance indexes (grey value, crack rate, ash shrinking rate, burning line width, burning line uniformity and ash holding capacity) and smoke components (conventional components and seven harmful components) . The results showed that: (1)There was a very significant positive correlation among static burning rate of cut tobacco, cigarette smoking burning rate and oxygen consumption, but they had no significant correlations with combustion temperature and cigarette paper smoldering rate; cigarette static burning rate was only significantly positively correlated with oxygen consumption, and there was a very significant negative correlation between combustion temperature and cigarette paper smoldering rate. (2)The cigarette combustion rate, which had a significantly negative correlation with various smoke components and a significantly positive correlation with ash appearance quality, is a more effective combustion parameter to adjust the smoke components and ash appearance quality in comparison with combustion temperature and oxygen consumption.

cigarette; combustion parameter; ash appearance; smoke components; relationship

. Email:zhangjin_tobacco@163.com

王孝峰,张劲,曹芸,等. 卷烟燃烧参数、灰分外观和烟气成分相互关系研究[J]. 中国烟草学报,2022,28(5).

WANG Xiaofeng, ZHANG Jin, CAO Yun, et al. Study on the relationship among cigarette combustion parameters, ash appearance and smoke components[J]. Acta Tabacaria Sinica, 2022,28(5).

10.16472/j.chinatobacco.2021.065

中国烟草总公司重点实验室项目“卷烟包灰的燃烧热解基础及应用技术研究”(110201903002);安徽中烟工业有限公司科技项目“卷烟燃烧匹配评价方法构建及应用研究”(2020148);安徽中烟工业有限责任公司科技项目“加热不燃烧烟草制品用特种复合滤棒开发及应用研究”(2020130);中国科协青年人才托举工程项目(2016QNRC001)

王孝峰(1984—),博士,副研究员,主要从事新型烟草制品和烟草燃烧化学研究,Email:343003075@qq.com

张劲(1971—),Email: zhangjin_tobacco@163.com

2021-03-31;

2022-08-18

猜你喜欢

卷烟纸烟丝负相关
不同因素对烟丝填充值的影响研究
N-末端脑钠肽前体与糖尿病及糖尿病相关并发症呈负相关
对ZJ17卷烟机卷烟纸搭接消耗的分析与研究
膨胀烟丝回潮系统的改进
基于相似性原理的烟丝结构分布稳定性评价
结存烟丝返掺方式的选择
更 正
不同气体氛围对卷烟纸热裂解产物的影响
翻译心理与文本质量的相关性探析
技术应用型本科院校非英语专业本科生英语学习焦虑的调查与研究