APP下载

电子束辐照预处理对核桃青皮活性物提取及其抑菌活性的影响

2022-08-04喜梅花候妤婕沈荷玉蔡莹莹敖婧芳白俊青蔚江涛罗安伟

食品与发酵工业 2022年14期
关键词:青皮电子束黄酮

喜梅花,候妤婕,沈荷玉,蔡莹莹,敖婧芳,白俊青,蔚江涛,罗安伟*

1(西北农林科技大学 食品科学与工程学院,陕西 咸阳,712100)2(杨凌核盛辐照技术有限公司,陕西 咸阳,712100)

目前,我国核桃总产量位居世界第一,同时核桃品种多、资源丰富[1]。核桃青皮具有较强的抑菌和抗氧化活性,这归因于天然活性物质的存在,如多酚、黄酮、三萜等[2-3]。然而,核桃青皮经常被当作农业废料处理,造成极大的浪费。合理开发利用核桃青皮中天然产物资源极具前景和意义,既能减少环境污染,又能创造良好的社会经济效益。

近年来,电子束辐照预处理技术成为提高某些化合物含量和生物活性的有效手段。电子束辐照是一种电离能,可应用于提取前处理和材料改性,具有对环境影响小、渗透能力低、能量低等优点;另一方面,研究者们发现其可通过降解、破坏植物细胞壁化学结构,促进活性物质溶出,进而提高活性物质的提取效果和功能活性。具体来说,电子束辐照预处理可以通过降解木质纤维素中的木质素而破坏细胞壁内的化学结构,降低纤维素的聚合度[4-6]。如,电子束辐照预处理已成功应用于提高罗望子中多糖和藜麦中的多酚、类黄酮和脂肪酸的提取。何毅等[7]发现该技术可提高麦冬总皂苷含量,BAK等[8]证明当电子束辐照剂量为80 kGy时,水稻中纤维素酶活性显著提高。但是,电子束辐照预处理如何提高核桃青皮生物活性物质的含量及其抑菌活性鲜有报道。

因此,本文以核桃青皮为原料,经电子束辐照预处理后对其进行结构表征,采用超声波辅助提取法制备核桃青皮提取物。探究电子束辐照预处理对核桃青皮活性物含量的影响,为有效利用核桃青皮及拓宽电子束辐照技术在高效提取植物活性物质中的应用提供科学理论依据。此外,还考察了经电子束辐照预处理的核桃青皮提取物对大肠杆菌、金黄色葡萄球菌、蜡样芽孢杆菌和沙门氏菌的抑菌活性,为开发核桃青皮天然抑菌产品提供技术参考。

1 材料与方法

1.1 材料

1.1.1 原料与试剂

核桃青皮:新新2号核桃品种的成熟外果皮,于2020年8月购自西安雨润批发市场。

供试细菌:金黄色葡萄球菌(ATCC 29213)、蜡样芽孢杆菌(ATCC 14579)、大肠杆菌(ATCC 25922)、沙门氏菌(ATCC 14028),由西北农林科技大学食品科学与工程学院微生物实验室提供。

食子酸、芦丁、齐墩果酸标准品(纯度≥98%)、其他化学试剂(分析纯),上海源叶生物科技有限公司(中国上海);LB肉汤培养基,青岛高科技工业园海博生物技术有限公司;LB琼脂培养基,北京陆桥技术股份有限公司;pH=7.2 PBS缓冲溶液、无菌水。

1.1.2 仪器与设备

ESS-010-03电子直线加速器,杨凌核盛辐照有限公司;场发射扫描电子显微镜,美国FEI公司;KQ-700DE数控超声波清洗器,上海佑科仪器有限责任公司;RE-52AA旋转蒸发仪,上海亚荣生化仪器厂;Varioskan las荧光酶标仪,美国Thermo;高分辨离子淌度液质联用仪HRLCMS,美国应用生物系统公司;Philips X′ pert pro PW1730 X射线衍射仪,阿姆斯特丹(荷兰);SW-CJ-1D净化工作台,苏州净化设备有限公司;DHP9025电热恒温生化培养箱,上海一恒科技有限公司;WGL-230B电热鼓风干燥箱,北京科伟永兴仪器有限公司;TDL-5-A离心机,上海安亭科学仪器厂;Bioscreen C全自动微生物生长曲线分析仪,芬兰华莱公司。

1.2 试验方法

1.2.1 核桃青皮电子束辐照预处理

将核桃青皮自然晾晒干燥(水分含量≤10%),粉碎过60目筛。核桃青皮粉末经药用PE自封袋封装,每袋0.5 kg,厚度1~2 cm,单层摆放于辐照托盘中,置于传送带上送入辐照室进行辐照处理。辐照装置为ESS-010-03电子直线加速器,额定能量10 MeV、功率10 kW,扫宽800 cm,束流2 mA。辐照剂量分别设计为0、10、20、30、40 kGy,每个剂量各2袋,辐照时放入剂量片以计算各样品辐照的实际吸收剂量。对应辐照剂量的实际吸收剂量分别为0、10.26、20.59、30.79、41.18 kGy,因辐照剂量和吸收剂量差异不显著,本文图、表中的剂量均以辐照剂量标注。

1.2.2 核桃青皮结构表征

通过X射线衍射、电镜扫描对1.2.1得到的样品进行结构观察[9],分析电子束辐照对核桃青皮组织结构和细胞壁的破坏效果。采用X射线衍射仪,在5°~60°(2θ),步长0.05°(2θ)范围内,得到核桃青皮的X射线衍射谱图。扫描电镜法分析电子束辐照前后核桃青皮表面物相结构,电镜工作电压为5 kV、放大1 600倍。

1.2.3 多酚、黄酮、三萜类活性物提取工艺

参照徐亚飞等[10]方法并稍作改进。按照1.2.1方法,称取样品1.00 g,以料液比1∶40(g∶mL)加入体积分数75%乙醇溶液,在温度50 ℃,超声功率490 W,超声提取120 min。8 000 r/min离心10 min,上清液于旋转蒸发仪上减压浓缩回收溶剂至近干,得到核桃青皮提取物。

1.2.4 多酚、黄酮、三萜含量测定

总多酚含量的测定采用改进的Folin-Ciocalteu法[11]。总黄酮含量的测定采用改进的硝酸铝-亚硝酸钠比色法[12]。总三萜含量测定采用改进的香草醛-冰醋酸比色法[13]。

1.2.5 核桃青皮活性物的组分分析

供试液:以30 kGy电子束辐照预处理的核桃青皮粉末为原料,参照1.2.3超声条件进行提取,色谱甲醇溶解。

色谱条件[14]:采用超高效液相系统[Shimadzu,LC-30A,(ultra high performance liquid chromatography,UHPLC)]进行组分分析,UHPLC色谱柱为Shim-pack Velox C18柱(150 mm× 2.1 mm,2.7 μm);流动相:A为0.1%甲酸水溶液,B为乙腈,洗脱梯度为0 min,5%B;0~5 min,5%~40%B;5~25 min,40%~85%B;25~45 min,85%~95%B;45~50 min,95%B;流速为0.6 mL/min,进样体积为10 μL,检测波长为254 nm,柱温为30 ℃。

质谱条件:采用超高效液相系统配备高分辨率质谱(HRMS,ABSCIEX,TripleTOF5600+),电喷雾离子源,正、负离子两种模式收集;离子扫描范围(m/z):100~1 000;N2为雾化气(压力6 Psi)和干燥气(流速为10 L/min),温度为550 ℃;喷雾电压为5 500 V。

1.2.6 抑菌活性测定

1.2.6.1 抑菌圈测定

样品液:分别称取50.00 g的0 kGy和30 kGy核桃青皮粉末,参照1.2.3方法得到核桃青皮提取物浸膏,75%乙醇溶解(质量浓度0.08 g/mL),备用。

菌悬液制备:分别将金黄色葡萄球菌、蜡样芽孢杆菌、大肠杆菌和沙门氏菌活化培养,制成1×106CFU/mL的菌悬液,待用。

抑菌圈的测定:根据刘思玉等[15]的方法稍作修改。取200 μL不同菌悬液分别均匀涂布于固体培养基上,将无菌牛津杯放入培养皿中,每皿等距放置3个,吸取200 μL样品液于牛津杯中,37 ℃恒温培养24 h,十字交叉法测量抑菌圈直径(d)。阴性对照为75%乙醇溶液,阳性对照为0.01 g/mL庆大霉素溶液,重复3次。

1.2.6.2 最小抑菌浓度的测定

根据KANATT等[16]的方法稍作修改,采用二倍稀释法测定最小抑菌浓度。样品液通过LB肉汤稀释,使其终质量浓度分别为0.256、0.128、0.064、0.032、0.016、0.008、0.004 g/mL。以含菌液的肉汤为阴性对照,0.01 g/mL庆大霉素溶液为阳性对照。37 ℃摇床培养24 h,以没有菌体生长所对应的提取物浓度为最小抑菌浓度。通过肉眼观察,细菌无菌落生长表现为培养液呈澄清色。

1.2.6.3 生长曲线的测定

根据STRANTZALI等[17]的方法,取培养至对数期的供试菌和样品液,加入LB肉汤中,使其终浓度为最小抑菌浓度。置于37 ℃、180 r/min 恒温摇床中培养,分别于0、2、4、6、8、10、12、14、16、18、20、22、24 h 取样,测定OD600nm值。以培养时间与OD600nm值的关系绘制生长曲线。

1.3 数据处理

采用Origin 2019、Mintab 18.0 for Windows软件进行方差分析,以P<0.05为具有统计学意义。

2 结果与分析

2.1 电子束辐照预处理对核桃青皮细胞壁结构的影响

核桃青皮细胞壁中富含果胶。果胶的结晶度通常由X射线衍射图中尖锐和宽泛的衍射峰进行确定,这些峰代表了果胶中大量羧基性多半乳糖醛酸结构。X射线通过晶体时,结晶物质通常有属于自己的衍射图谱,若结构发生变化,对应的结晶峰也会发生改变。由X衍射光谱(图1)可见,经过10、20、30、40 kGy剂量辐照预处理的X射线衍射图形与未辐照处理的核桃青皮(0 kGy)基本一致,均在2θ为30°、38°附近有弱吸收峰,在24°附近有中等强峰,在15°附近有强吸收峰,说明电子束辐照预处理对核桃青皮细胞壁中的果胶结晶结构影响较小,这与ASGARI等[18]报道电子束辐照对核桃青皮预处理后的结果相似。

图1 不同剂量辐照处理的核桃青皮X衍射光谱Fig.1 X-ray diffraction spectra of green walnut husk irradiated with different doses

由扫描电镜(图2)分析核桃青皮表面物相结构变化可知,未经辐照处理的核桃青皮粉末(即0 kGy)组织结构较为完整致密,几乎无空隙,孔洞数量较少,而经过不同剂量辐照处理后的核桃青皮粉末表面受到一定程度的破坏,组织结构疏松、空隙明显增大,出现众多孔洞。随着辐照剂量升高(10~40 kGy),组织结构疏松程度、孔洞数量呈增加趋势,说明电子束辐照预处理对植物组织的疏松程度有影响,新增的不规则空隙可减少超声提取作用下的天然产物溶出阻力,进而提高其溶剂浸出量[19]。

2.2 电子束辐照预处理对核桃青皮活性物含量的影响

由表1可看出电子束辐照预处理对总多酚、总黄酮、总三萜含量的影响。不同辐照剂量下,不同活性物质的含量都呈显著差异(P<0.05)。随着辐照剂量增加,总多酚、总黄酮、总三萜含量均显著升高,且均在30 kGy时达到最大值,故30 kGy是提高核桃青皮活性物质含量的适宜辐照剂量。辐照剂量升高到40 kGy时,可能由于辐照剂量过高,在改变核桃青皮组织结构的同时,也对活性物结构产生破坏,导致含量下降。辐照剂量为30 kGy时,总多酚、总黄酮和总三萜含量分别为(20.89±0.18)、(38.01±0.63)、(14.73±0.26) mg/g,与未辐照的样品相比,含量分别提高了14.78%、43.0%、13.69%,表明电子束辐照预处理有效地提高了核桃青皮中多酚、黄酮、三萜类化合物的提取效果,特别是黄酮类化合物。

2.3 核桃青皮活性物组分分析

利用UHPLC-MS/MS对样品分别在正、负离子模式下进行组分分析(图3和图4)。共检测到106个化合物,与本地自建化合物库进行对比,并结合文献分析,结果见表2。结果表明,在鉴定的63个化合物中,包括24个黄酮及黄酮苷类化合物、16个多酚类化合物、14个三萜酸及其皂苷类化合物、5个醌类化合物和4个其他化合物。其中,保留时间为7.25 min,分子离子峰[M-H]+为m/z353.088 1(误差为-0.5 ppm),这与绿原酸的分子质量相吻合,结合文献分析,推测该物质极有可能是绿原酸[20];ABU-REIDAH等[21]利用RP-UHPL和ESI-QTOF-MS分析了莴苣代谢产物的化合物组成,其中,咖啡酸质谱信息与本研究基本一致;VERDU等[22]比较UHPLC-UV和UHPLC-MS/MS两种方法对苹果汁中多酚组成进行了分析,发现,保留时间为16.21 min,离子峰[M-H]+为m/z463.088 5可能是金丝桃苷;62号和63号物质[M-H]-为455.354 1,保留时间为39.34 min,结合文献信息[23]分析,推断该化合物可能是熊果酸或齐墩果酸。此外,鉴定出的活性物种类以黄酮类最多,多酚类次之,三萜类最少,这与核桃青皮活性物含量的试验结果一致,说明电子束辐照预处理对核桃青皮中黄酮类化合物的提取具有更明显的促进作用。

a-0 kGy;b-10 kGy;c-20 kGy;d-30 kGy;e-40 kGy图2 不同剂量辐照处理的核桃青皮扫描电镜图Fig.2 Scanning electron microscopy images of green walnut husk irradiated with different doses

表1 不同辐照剂量对核桃青皮多酚、黄酮、三萜含量的影响Table 1 Effect of different radiation dose on the contents of polyphenols, flavonoids and triterpenoids

图3 30 kGy辐照预处理的核桃青皮提取物的UHPLC-MS/MS负离子流图Fig.3 Total ion chromatogram of extract of green walnut husk irradiated with 30 kGy by UHPLC-MS/MS in negative ion mode

图4 30 kGy辐照预处理的核桃青皮提取物的UHPLC-MS/MS正离子流图Fig.4 Total ion chromatogram of extract of green walnut husk irradiated with 30 kGy by UHPLC-MS/MS in positive ion mode

2.4 核桃青皮提取物抑菌活性试验结果分析

2.4.1 核桃青皮提取物抑菌圈直径结果分析

核桃青皮提取物对4种细菌均具有一定抑菌作用(图5)。据报道,木犀草素是一种具有抗菌和抗氧化活性的黄酮类化合物,可抑制化脓隐秘杆菌、大肠埃希菌、沙门菌和链球菌的生长[24]。核桃青皮中还含有没食子酸、齐墩果酸、熊果酸、槲皮素、山奈酚、绿原酸等化合物,这些化合物的存在可能是核桃青皮具有良好抑菌作用的主要原因。由表3可知,经30 kGy

表2 30 kGy辐照预处理的核桃青皮提取物化学成分鉴定Table 2 Identification of chemical composition in green walnut husk extract pretreated by 30 kGy

处理的核桃青皮提取物的抑菌圈直径均显著高于未辐照组(P<0.05),且30 kGy处理的核桃青皮提取物对金黄色葡萄球菌和蜡样芽孢杆菌的抑菌活性更加强烈,抑菌圈直径分别达到(22.88±0.45)、(23.98±0.16) mm。这可能是核桃青皮经电子束辐照处理后,黄酮、多酚、三萜等活性物质溶出率增加,提高了核桃青皮提取物4种细菌的抑菌效果,进一步证明电子束辐照预处理有利于核桃青皮活性物的溶出。

2.4.2 最小抑菌浓度试验结果分析

表4为未辐照与30 kGy辐照后的不同质量浓度核桃青皮提取物对金黄色葡萄球菌、蜡样芽孢杆菌、大肠杆菌和沙门氏菌的最小抑菌浓度试验结果。与未辐照核桃青皮提取物相比,除沙门氏菌外,最小抑菌浓度均有所下降,金黄色葡萄球菌、蜡样芽孢杆菌、大肠杆菌和沙门氏菌的最小抑菌浓度分别为0.008、0.008、0.016、0.032 g/mL。抑菌能力不同与细菌种类和提取物浓度有关。两种类型细菌菌体细胞壁结构不同[25],革兰氏阴性菌具有脂多糖的双层膜结构,革兰氏阳性菌具有外膜和独特的胞质间隙,提取物中的黄酮、多酚、萜类化合物更容易破坏单层细胞壁,从而抑制菌体的生长[26]。此外,经辐照预处理后,最小抑菌浓度的降低也表明电子束辐照预处理可以提高核桃青皮活性物质的含量,从而提高了抑菌活性。

a-大肠杆菌;b-金黄色葡萄球菌;c-蜡样芽孢杆菌;d-沙门氏菌图5 核桃青皮提取物对大肠杆菌、金黄色葡萄球菌、蜡样芽孢杆菌和沙门氏菌的抑制作用Fig.5 Inhibition of green walnut husk extracts on Escherichia coli,Staphylococcus aureus, Bacillus cereus and Salmonella注:a~d图中各组样品从左至右处理依次为0 kGy,30 kGy、阳性对照组

表3 抑菌活性试验结果Table 3 Antibacterial activity test results

表4 最小抑菌浓度测定结果Table 4 The results of minimum inhibitory concentration determination

2.4.3 生长曲线试验结果分析

图6分别测定了浓度为最小抑菌浓度下的对照组(不含核桃青皮提取物),0 kGy(未辐照核桃青皮提取物)与30 kGy辐照预处理的提取物对细菌生长的影响。与对照组相比,4种致病菌在未辐照青皮提取物溶液中的生长对数期均发生了一定的滞后,这与汪涛等[27]的研究结论相似,说明核桃青皮在天然抑菌剂的开发方面有较好的潜在价值。4种致病菌在未辐照和辐照的核桃青皮提取物溶液中的生长曲线差异明显,说明电子束辐照预处理后的提取物对细菌生长抑制作用更强烈。因此,电子束辐照预处理技术可为拓宽植物废弃物的利用方面提供参考。

a-大肠杆菌;b-金黄色葡萄球菌;c-蜡样芽孢杆菌;d-沙门氏菌图6 辐照前后核桃青皮提取物对细菌生长曲线的影响Fig.6 Effect of electron beam irradiation on bacterial growth curve of green walnut husk extracts pretreated and untreated

3 结论

研究表明,电子束辐照预处理技术提高了核桃青皮活性物质含量,在10~30 kGy剂量内,活性物含量与辐照剂量呈效应-剂量关系,这与结构表征研究结果一致。抑菌试验表明,电子束辐照增强了核桃青皮对金黄色葡萄球菌、蜡样芽孢杆菌、大肠杆菌和沙门氏菌的抑菌效果。因此,电子束辐照技术在天然产物活性物提取方面具有潜在的工业应用前景,辐照预处理后的核桃青皮提取物具有良好的抑菌潜力,可用于天然抑菌剂的开发。

猜你喜欢

青皮电子束黄酮
铝合金电子束填丝焊接的送丝参数优化研究
枇杷糖中总黄酮检测前处理条件的研究
不同桑品种黄酮含量测定
桑黄黄酮的研究进展
藤三七茎总黄酮微波提取工艺优化
直播销售 青皮她园火龙果供不应求
电子束焊接技术发展趋势
年少不信邪
年少不信邪
年少不信邪