APP下载

针对机车低频晃车问题的频变阻尼减振器仿真分析研究*

2022-07-19程俊李广闫红卫姚远陈康魏灵

动力学与控制学报 2022年2期
关键词:减振器车体转向架

程俊 李广 闫红卫 姚远† 陈康 魏灵

(1.西南交通大学 牵引动力国家重点实验室, 成都 610036)(2.埃梯梯精密机械制造(无锡)有限公司, 无锡 214000)

引言

某型高速机车在实际运行中,在轮轨接触等效锥度较低状态下容易发生车体横向低频晃动,横向平稳性也因此恶化.车体低频横向晃动即一次蛇行,主要由车体滚摆与转向架蛇行之间的耦合运动(车体蛇行)引起[1].王开云等[2]仿真分析了某型机车在实际线路上出现的横向异常振动现象,提出两种修改二系悬挂参数的解决方案;黄彩虹等[1]通过模型分析得出二系纵向刚度和阻尼、二系横向刚度、一系纵向定位刚度、等效锥度、车体质量、二系横向阻尼匹配不合理就会导致车体出现低频横向晃动.陈迪来等[3]通过分析不同速度下各刚体模态的频率和阻尼比的变化规律,分析车体横向晃动可能是由转向架蛇行、上心滚摆和车体摇头三种模态相互耦合的结果.提出通过悬挂参数优化的方法降低车体和构架振型的耦合程度,增大车体横向振型的阻尼比,从而消除车体的横向异常晃动现象.张志超等[4]建立动力集中型动车组整车动力学模型,针对晃车问题进行分析.提出引起车体晃车的主要是车体二阶蛇行模态,分析发现随着轮轨等效锥度逐渐增大,动力车直线运行晃车现象会趋于改善. 轮轨车辆通过抗蛇行减振器提高其蛇行稳定性,但是传统固定参数减振器并不能很好地兼顾较宽轮轨接触状态车辆的横向稳定性,因而变参数减振器在解决该问题上具有较好的应用前景.

目前变阻尼减振器主要通过磁流变液、电流变液、电磁阀等新型智能材料或电控结构来实现[5],变阻尼减振器在汽车、铁道车辆、土木、航空等领域广泛应用[5-8].金天贺等[9]将可变阻尼减振器引入车辆系统,在高速下采用可变阻尼式抗蛇行减振器增大其阻尼系数,可降低车体加速度,提高运行平稳性,曲线时抗蛇行减振器阻尼随车辆运行速度的提高而降低,从而提高列车的曲线通过性能.杨业海、保罗·德科克先后发明了可以随激励频率改变阻尼系数的汽车减振器[10,11],换用该减振器能克服传统减振器仅能针对一项指标进行优化的问题,实现车身加速度、悬架动挠度和轮胎动载荷三个指标的同时优化.本文主要研究被动频变阻尼减振器对于车辆低频晃动的影响,被动变阻尼动作通常由阻尼阀在设定区间的开闭来实现.频变阻尼阀结构在液压自由活塞发动机中被广泛使用,Peter等[12]在发动机设计过程中考虑频变结构,通过活塞频率调整燃料的输入流量,一定程度上降低了排放和能耗.吴维等[13]给出一种频率阀结构,并将其应用于液压自由活塞发动机,试验证明频率阀能满足液压自由活塞发动机在不同频率下对流量的要求.

现有变阻尼减振器的研究大多基于半主动减振器,而半主动减振器目前仍存在安全性与控制实时性的问题.被动减振器通过引入特殊结构,在设定条件下也能达到变阻尼的效果.本文同时针对机车车辆横向低频晃动和稳定性问题引入一种频变阻尼减振器(FSD, Frequency Selective Damper),结合某型机车模型进行仿真分析,验证FSD减振器对车体低频晃动的抑制和稳定性提升效果.

1 车辆动力学模型

1.1 Simpack整车模型

本文基于某型160km/h高速机车,建立Simpack仿真模型,模型包含1个车体,2个转向架,4个电机和4个轮对.车体与转向架之间通过二系悬挂装置连接.轮轨关系采用JM3踏面匹配标准60kg/m钢轨,为了体现较低等效锥度的轮轨接触状态,设置轨底坡为1∶20.

图1 机车动力学模型Fig.1 Locomotive dynamics model

1.2 整车横移振动特性分析

通过Simpack软件时域仿真对车辆振动特性进行分析.轨道不平顺采用武广线路谱,设置运行速度160km/h,轨道设置为直线工况,得到车体和转向架构架的横移加速度,经过频谱分析得到图2.

(a)构架横移振动频谱图(a) Spectrum diagram of bogie frame lateral displacement

(b)车体横移振动频谱图(b) Spectrum diagram of car body lateral displacement

转向架构架横向振动加速度主频为20 Hz左右,为其横向固有振动频率;车体横向加速度主要振动频率为1.22Hz,符合现场测试结果.为该速度下机车蛇行频率和车体悬挂摇头固有振动频率,当二者接近或相同时,机车一次蛇行稳定性降低甚至丧失稳定性.表现为外部激扰作用下,车体横向振动收敛困难,甚至出现持续的等幅振荡现象,严重影响乘坐舒适性.

2 频变阻尼减振器模型

2.1 频变阻尼减振器

本文针对荷兰KONI公司生产的FSD减振器是在传统液压减振器基础上进行改进,其阻尼力主要来自活塞上所布置的8组阀系(4组拉伸,4组压缩).将其中的2组阀系引入频率阀,1组拉伸,1组压缩,在设定频率附近实现开通和关闭.当流体作用频率高时,这两组阀系处于关闭状态.当作用频率较低时,这两组阀系打开,从而降低减振器的阻尼力输出.

图3 FSD减振器剖视图Fig.3 Cross-sectional view of FSD damper

2.2 频率阀

频率阀可通过弹簧-活塞-阀片组合实现或通过在原阻尼阀增加阻容结构来实现[14,15].

在弹簧-活塞-阀片组合式频率单元阀中,壳体通过四个锥形高圆簧连接自由活塞,自由活塞在弹簧与液压油的作用下可以在壳体内上下运动,副阀安装在壳体的下部,自由活塞两边各设一个阀片,通过弹簧与自由活塞连接.当活塞杆的频率处于高频区域时,连接自由活塞与壳体的弹簧力大于活塞阀弹簧的力,阀片关闭,油液通过上排油口流出;当活塞杆的频率处于低频区域时,连接自由活塞与壳体的弹簧力小于活塞阀弹簧的力,活塞阀打开,油液通过活塞阀到达下腔,再由底阀和两个排油孔排出.

1-活塞杆,2-自由活塞及活塞阀系,3-排油孔,4-壳体,5-副阀1-piston rod, 2-free piston and piston valve system, 3-oil drain hole, 4-housing, 5-auxiliary valve图4 机械结构滤波系统Fig.4 Mechanical structure filtering system

不同于上述机械滤波结构,本文所引入的FSD减振器是在传统减振器阻尼阀前增加阻容结构来实现滤波效果,使其阻尼孔实现在高频时低开度、低频时高开度的效果.参考电路系统,定义液容元件液容值为:

(1)

其中,qv为液体体积流量,Δp为高压端压力变化量,p0为气体开始状态压力,V0为气体开始状态容积,p1为正常工作状态压力,V1为正常工作容积,k为气体绝热指数.定义液阻值R为:

(2)

在仿真软件AMEsim中搭建液压阻容滤波模型,如图5所示.模型包含一个液容元件(蓄能器)以及一个液阻元件(节流孔).节流孔与油箱连接管路中油液流量与输入系统流量间的放大系数随输入流量频率变化而变化.

图5 液压阻容滤波结构Fig.5 Hydraulic resistance-capacitance filter structure

对模型进行频域分析,论证该系统针对流量变化具有一定程度的低通滤波效果.

图6 液压阻容滤波结构频谱分析图Fig.6 Spectrum diagram of hydraulic resistance-capacitance filter structure

2.3 减振器阻尼力

当活塞杆截面积等于压力缸截面积的一半时,油液单向流动减振器的拉压阻力可表示为[16]:

(3)

其中,Ω表示活塞杆截面积,γ表示液体密度,μ2表示孔口流量系数,f表示节流孔面积,v表示活塞运动速度.

在节流阀前引入阻容滤波结构,原理上可等效于上式中f随激励频率变化.当激励频率小于阻容滤波结构截止频率时,油液能顺利通过,相当于f增大,此时等效阻尼系数变小;当激励频率大于阻容滤波结构的截止频率时,油液通过会受到阻碍,相当于f减小,此时等效阻尼系数变大.利用这一效应,可达到频变阻尼的目的.

3 频变阻尼减振器等效数值模型

3.1 FSD等效数值模型

根据2.3节分析,激励频率大小仅对等效阻尼系数有影响,因此,考虑仿真复杂程度,可以在Maxwell模型[16]基础上引入频变阻尼来等效减振器CFD仿真计算模型.减振器动态特性可由以下方程表示:

图7 FSD简化模型Fig.7 Simplified FSD model

(4)

其中,m为减振器等效质量,cfreq为频变阻尼系数,k为等效刚度.减振器输出力可表示为:

(5)

根据2.2节分析,频率阀的开闭存在最大30°相位差,将相位差及液压管路对频率阀开闭的影响等效为频率阀开关时滞tdelay,同时在模型中考虑时滞对于FSD阻尼力的影响.等效模型参数如表1:

表1 FSD减振器等效模型参数表Table 1 Equivalent model parameter of FSD damper

3.2 FSD减振器动态特性

利用Matlab/Simulink平台搭建FSD模型,施加不同频率、幅值,得到动态特性图线如图8所示:

(a) 阻尼力-速度曲线(a) Damping force-velocity curve

(b) 定速度幅值不同频率激励下的示功图(b) Hysteretic curves under different frequency and constant velocity excitation

(c) 1Hz不同位移幅值激励下的示功图(c) Hysteretic curves under variable displacement amplitudes excitation and frequency of 1 Hz

(d) 4Hz不同位移幅值激励下的示功图(d) Hysteretic curves under variable displacement amplitudes excitation and frequency of 4 Hz图8 FSD减振器特性曲线Fig.8 Characteristic curve of FSD damper

图8(a)为FSD在高频与低频激励下的阻尼特性,设置高频下阻尼系数chigh为800kN·s/m,低频下阻尼系数clow为200kN·s/m,考虑减振器卸荷特性,两种工况下减振器均在阻尼力达到16kN时卸荷,卸荷后阻尼系数明显减小.减振器耗能效果随频率变化见图8(b),设定截止频率为1.5Hz,低频激励下示功图面积明显小于高频激励下的示功图面积.低频和高频不同位移幅值激励下的示功图见图8(c)(低频),图8(d)(高频).

4 整车动力学仿真

建立Simpack-Simulink联合仿真模型,将原有的四个抗蛇行减振器力元替换成FSD减振器模型,如图9所示.FSD减振器子模型输入为车体和转向架之间的纵向相对位移,输出为减振器的力.设置仿真时间为9秒,采样间隔为0.001s,仿真速度为160km/h.

图9 Simpack-Simulink联合仿真模型Fig.9 Simpack-Simulink co-simulation model

提取模型中车体和构架的横移、摇头加速度,减振器阻尼力,并进行频谱分析,如图10-图12所示.

(a) 车体横移加速度频谱(a) Spectrum of car body lateral acceleration

(b) 车体摇头加速度频谱(b) Spectrum of car body yaw angle acceleration

(a) 构架横移频谱分析 (a) Spectrum of bogie frame lateral acceleration

(b) 构架摇头频谱分析(b) Spectrum of bogie frame yaw angle acceleration图11 构架横移加速度、摇头角加速度频谱图Fig.11 Spectrum diagram of lateral displacement acceleration and yaw angle acceleration of bogie frame

(a) 车体右前位置减振器 (a) Damper at right front position of car body

(b) 车体左后位置减振器(b) Damper at left rear position of car body图12 抗蛇行减振器阻尼力频谱图Fig.12 Spectrum of damper force of yaw damper

如图10,采用FSD减振器替换传统抗蛇行减振器,能有效削减车体横移加速度和摇头角加速度在共振频率附近的幅值,横移加速度幅值由0.35m/s2降低到0.21m/s2,摇头角加速度幅值由0.032rad/s2降低到0.020rad/s2.

考虑FSD减振器引入了小阻尼成分,可能会对转向架蛇行稳定性造成影响,提取转向架横移加速度和摇头角加速度,并进行频谱分析,如图11.从图中可以看出,将传统减振器换作FSD减振器后,转向架横移摇头振动响应频域曲线基本重合,FSD减振器小阻尼状态对构架振动影响较小.

为验证FSD减振器在仿真过程中的频变阻尼效果,提取减振器力元作用力并作频谱分析,如图12所示.FSD减振器在低频激励下力响应明显小于传统抗蛇行减振器,在频率阀截断频率(2Hz)之后力响应与传统抗蛇行减振器类似,符合预设FSD减振器效果.

5 结论

(1) 类比电路系统,在节流孔前设置蓄能器,调节参数匹配可以实现针对流量变化频率的滤波,滤波效果可等效为节流阀的开度随输入流量的变化频率而变化.将此滤波结构应用于传统液压减振器,能够实现随激励频率来改变阻尼的目的.

(2)建立FSD抗蛇行减振器数值模型,设计其在低频激励下表现为小阻尼特性,在高频激励下表现为大阻尼特性.将传统减振器替换为FSD减振器并进行仿真分析.与采用传统抗蛇行减振器的车辆相比,采用FSD减振器能削减车体横移加速度和摇头角加速度在共振频率附近的振动幅值,横移加速度幅值降低了40%,摇头角加速度幅值降低了37.5%,有效地改善了该机车低频晃车现象.

猜你喜欢

减振器车体转向架
轨道交通整体承载式铝合金车辆车体挠度的预制方法及试验研究
浅析地铁车辆车体材料选择
箭载电子产品减振器结构失效机理及可靠性分析
对地铁列车转向架轮对偏磨故障处置思路探究
地铁转向架组装工艺浅析
转向架结构形式发展与展望
基于载荷谱和CAE的减振器支架优化设计
新型减振器的研究现状及发展趋势*
地铁车辆转向架中的故障处置论述
农用汽车减振器使用与维护保养