育成期高能饲喂下开产与未开产蛋鸡肝脏miRNA表达谱差异分析
2022-05-26王星果王克华卢建马猛窦套存郭军胡玉萍曲亮
王星果 王克华 卢建 马猛 窦套存 郭军 胡玉萍 曲亮
王星果(1984-),博士,副研究员,入选江苏省第六期“333高层次人才培养工程”第三层次培养对象、扬州市第五期“英才培育计划”优秀乡村振兴人才培育对象,主要从事蛋鸡遗传育种及脂质代谢研究工作。先后主持国家自然科学基金项目、江苏省自然科学基金项目及扬州市科技计划项目各1项,作为主要成员参与国家自然科学基金、国家蛋鸡产业技术体系、江苏省自然科学基金、江苏省重点研发、江苏省农业重大新品种创制等科研项目20余项。获神农中华农业科技奖二等奖1项,申请或授权发明专利10余件,培育国家级畜禽新品种(配套系)1个,制订行业标准及地方标准各1项;在《Poultry Science》《Animal》《PLoS One》《中国农业科学》《南方农业学报》《中国家禽》等期刊上发表学术论文30余篇。
摘要:【目的】对育成期高能饲喂下开产与未开产蛋鸡的肝脏进行miRNA高通量测序分析,探明高能饮食状态下蛋鸡肝脏中影响其开产的miRNA,为提高产蛋性能打下基础。【方法】以代谢能水平为12.14 MJ/kg的高能饲粮饲喂育成期蛋鸡,通过Illumina NextSeq500高通量测序平台对开产与未开产蛋鸡肝脏进行small RNA测序,使用DESeq分析miRNA表达量,并以实时荧光定量PCR进行验证;采用miRanda对差异表达miRNA进行靶基因和靶位点预测,同时以超几何分布对差异表达的靶基因进行GO功能注释分析和KEGG信号通路富集分析。【结果】6个样本(3个开产蛋鸡样本,3个未开产蛋鸡样本)能注释到的miRNA均超过300个,约占miRBase中已鉴定鸡miRNA的30.00%,且前体鉴定结果显示各样本注释到的miRNA有部分定位在同一前体上。与未开产组样本相比,开产组样本有9个miRNA表达上调、3个miRNA表达下调。其中,gga-miR-132c-5p、gga-miR-132b-5p、gga-miR-2184a-5p、gga-miR-132c-3p、gga-miR-132b-3p及gga-miR-2184a-3p属于同一miRNA基因簇,且gga-miR-1682、gga-miR-132b-3p和gga-miR-2184a-3p等3个上调miRNA在未开产蛋鸡样本中不表达。通过miRanda共预测得到129个差异表达潜在靶基因,以miR-203a预测得到的靶基因最多,为32个;其次是gga-miR-2184a-5p、gga-miR-148a-5p和gga-miR-12211-5p,分别预测到30、25和23个靶基因;而miR-132c-5p预测得到的靶基因最少,仅为9个。129个靶基因显著注释到8条GO功能条目上,生物学过程(Biological process)主要注释到脂质代谢过程、细胞脂质代谢过程、脂质生物合成过程、磷脂生物合成过程、磷脂代谢过程、甘油磷脂生物合成过程和解剖学结构发育,分子功能(Molecular funcion)仅注释到1条GO功能条目,即利钠肽受体活性,未发现涉及细胞组分(Cellular component)的GO功能条目;在注释到的8条GO功能条目中有6条与脂质代谢相关,涉及的靶基因有22个,占总潜在靶基因的17.10%。KEGG信号通路富集分析结果显示共显著富集到7条KEGG信号通路,其中脂肪酸降解、脂肪酸生物合成、酮体合成与降解及PPAR信号通路等4条信号通路与脂质代谢相关。【结论】育成期高能饲喂下开产与未开产蛋鸡中共存在12个差异表达miRNA,涉及129个差异表达潜在靶基因,且主要富集在肝脏脂质代谢相关过程和信号通路,说明miRNA是通过调控脂质代谢及其相关基因表达而影响蛋鸡开产。
关键词: 蛋鸡;肝脏;miRNA;育成期;高能饲粮;开产
中图分类号: S831.1 文獻标志码: A 文章编号:2095-1191(2022)02-0277-10
Liver miRNA profiles of laying hens before and after reaching sexual maturity with a high energy feed during
the maturation period
WANG Xing-guo, WANG Ke-hua, LU Jian, MA Meng, DOU Tao-cun,
GUO Jun, HU Yu-ping, QU Liang
(Jiangsu Institute of Poultry Science, Yangzhou, Jiangsu 225125, China)
Abstract:【Objective】In the current study, the liver miRNA profiles of sexually immature and sexually mature la-ying hens fed with a high energy feed during the maturation period were compared to clarify which liver miRNAs in liver influenced sexual maturity with high energy feed. The study laid a foundation for improving egg production. 【Method】High-energy feed with 12.14 MJ/kg metabolic energy was used to feed laying hens during the maturation period. Liver miRNAs were detected by small RNA sequencing with the Illumina NextSeq500 platform in sexually mature(R) and sexual-ly immature (N) laying hens. miRNA expression was analyzed using the bioinformatics software DESeq and validated using qRT-PCR. Target genes and target sites of differentially expressed miRNAs were predicted by miRanda and the differentially targeted genes were analyzed for GO and KEGG enrichment using a hypergeometric distribution. 【Result】More than 300 miRNAs could be annotated in each of the 6 samples (3 R and 3 N), accounting for about 30.00% of the identified chicken miRNAs in miRBase. The results from precursor identification showed that some annotated miRNAs in each sample were located on the same precursor. Compared with the N group, the expression levels of 9 miRNAs in the R group were up-regulated and 3 miRNAs were down-regulated, among which gga-miR-132c-5p, gga-miR-132b-5p,gga-miR-2184a-5p, gga-miR-132c-3p, gga-miR-132b-3p and gga-miR-2184a-3p were in a miRNA cluster. In addition, 3 upregulated miRNAs in the R group, including gga-miR-1682, gga-miR-132b-3p and gga-miR-2184a-3p, were not expressed in the N group. A total of 129 target genes of the differentially expressed genes were predicted by miRanda. The number of target genes predicted for gga-miR-203a was the highest(32),gga-miR-2184a-5p, gga-miR-148a-5p and gga-miR-12211-5p showed a smaller number(30, 25 and 23, respectively) and miR-132c-5p the lowest(only 9). GO analysis of the 129 differentially targeted genes showed that there were 8 significantly enriched GO terms, including 7 biological processes: lipid metabolism, cellular lipid metabolism, lipid biosynthesis, phospholipid biosynthesis, phospholipid metabolism, glycerophospholipid biosynthesis and anatomical structure development. No cellular component terms were found and only 1 molecular function term was detected: natriuretic peptide receptor activity. In the 8 enriched GO items, 6 were related to lipid metabolism, and 22 target genes were involved, accounting for 17.10% of the 129 genes. KEGG analysis showed that there were 7 significant enriched KEGG terms, of which fatty acid degradation, fatty acid biosynthesis, synthesis and degradation of ketone bodies and PPAR signaling pathway were related to lipid metabolism. 【Conclusion】A total of 12 miRNAs are differentially expressed between sexually immature and sexually mature laying hens under a high energy feeding regime during the maturation period, involving 129 potential differentially expressed genes, which are mainly enriched in processes and pathways related to lipid metabolism in the liver. The data suggests that miRNAs affect sexual maturity of laying hens by regulating lipid metabolism and related genes.
Key words: laying hen; liver; miRNA; growing period; high energy feed; reaching sexual maturity
Foundation items: Agricultural Major New Breed Creation of Jiangsu Province (PZCZ201729); Recruit of Seed Industry Revitalization of Jiangsu Province (JBGS〔2021〕104); Special Construction of China Agriculture Research System (CARS-40-K01); Science and Technology Project of Yangzhou (YZ2021030)
0 引言
【研究意义】我国蛋鸡业正在从数量增长模式向质量提升模式转变,亟待对蛋鸡的生产性能进一步改善,而开展育成期蛋鸡高能饲喂是提高其生产性能的有效措施(李永峰,2017;李娜等,2019)。肝脏是重要的能量代谢器官,且与产蛋性能有密切关系(李红,2016)。miRNA作为新发现的一种小分子调控物质,长度18~24 nt,无蛋白编码潜能,但可通过靶向调控功能基因的表达进而调控各种生物过程(李崇奇等,2014;谢冬微和孙健,2020;闫尊强等,2020),包括肌肉细胞的增殖与分化、骨骼肌发育阶段肌纤维增殖及转换等(孙瑞萍等,2020)。因此,对育成期高能饲喂的开产与未开产蛋鸡肝脏进行miRNA及其靶基因分析,可为了解影响蛋鸡开产的miRNA及通过调控开产相关miRNA靶向调节产蛋相关功能基因的表达打下基础。【前人研究进展】在影响蛋鸡生产性能的因素中以营养水平最重要,直接与养殖效益挂钩(李飞翔等,2017),可从蛋白(Schutte and van Weerden,1978)、维生素(赵振福和曲长海,2009)、能量水平(费强,2013)及矿物质(姚俊峰等,2016)等方面进行营养调控,其中能量水平调控越来越受到人们的重视(张利敏等,2012;张晓怡等,2019;方书宝等,2020;于小飞,2020)。育成期蛋鸡能量调控是进行产蛋性能研究的主要方向,但基本都是对调控后蛋鸡的表观特征进行阐述,在使用不同能量饲料饲喂育成蛋鸡的研究中发现高能饲喂能显著提高其体重、体尺、产蛋率和屠宰性能(张李俊等,2005;袁超等,2013;郑瑞等,2017)。肝脏在鸡、鸭等家禽中是物质代谢特别是脂质代谢的主要器官,对育成期的能量调控起关键作用(刘振,2016);此外,由于鸡蛋中30%的卵黄由脂质构成,而这些脂质均来源于肝脏(张金伟,2009),因此肝脏脂质代谢的快慢直接影响鸡蛋卵黄形成的速度,进而影响产蛋率,即产蛋性能与肝脏存在十分密切的关系。miRNA是一类广泛的生物调控分子,有关鸡肝脏miRNA表达谱已有较多研究报道,包括生长激素处理鸡肝脏miRNA表达谱(Wang et al.,2014)、鸡产蛋高峰前后肝脏miRNA表达谱(Li et al.,2016)、育成期高能饲喂蛋鸡肝脏miRNA表达谱(王星果等,2021)等,且这些研究均发现部分差異表达miRNA参与代谢过程,可能具有重要的生物功能。至今,关于鸡肝脏miRNA的生物功能也有部分研究报道,如miR-122、miR-33、miR-223等对肝脏脂质代谢起调控作用,且均通过对FABP5、P4HA1、FTO和DAGLA等靶基因表达的调控来实现(Wang et al.,2015,2019,2021;Shao et al.,2019)。【本研究切入点】在育成期高能饲喂蛋鸡肝脏miRNA表达谱研究中已发现几个参与能量调控的miRNA,结合转录组信息联合分析,证实这些miRNA是通过调控免疫和脂质代谢过程而影响蛋鸡后期产蛋性能(王星果等,2020,2021)。然而,在高能饲喂情况下蛋鸡只仍然有开产早晚之分,因此有必要对其肝脏miRNA进行全面比较分析,进一步挖掘影响蛋鸡开产的miRNA。【拟解决的关键问题】选取高能饲喂育成期蛋鸡,并对开产与未开产蛋鸡的肝脏进行miRNA高通量测序分析,旨在探明高能饮食状态下蛋鸡肝脏中影响其开产的miRNA,为提高产蛋性能打下基础。
1 材料与方法
1. 1 试验动物饲养
选取江苏省家禽科学研究所选育的C3蛋鸡品系,1~8周龄常规饲养,于56日龄时挑选体重相近的母鸡80羽,分成8个重复,每个重复10羽;9~18周龄定量饲喂代谢能水平为12.14 MJ/kg的高能饲粮,18周龄后自由采食常规营养水平的饲粮。整个饲养过程均参照NRC标准配制试验日粮,分9~18周龄和19周龄后2个阶段配制,粉料饲喂。9~16周龄在育成鸡舍四层阶梯笼内饲养(5羽/笼),17周龄起在产蛋鸡舍三层阶梯笼内饲养(1羽/笼)。试验期间所有蛋鸡均自由饮水,并执行常规光照和免疫等管理程序。
1. 2 small RNA高通量测序
至140日龄每个重复随机选取开产蛋鸡和未开产蛋鸡各1羽,称重后分别选取最接近平均值的3羽蛋鸡,屠宰后取其肝脏,放入液氮中保存。TRIzol法提取肝脏总RNA,以Agilent 2100毛细管电泳检测RNA质量;采用Illumina的TruSeq小RNA样品准备试剂盒构建small RNA文库,PCR扩增富集,加上测序接头和Index部分;经凝胶电泳纯化后使用Quant-iT PicoGreen dsDNA Assay Kit对构建的small RNA文库进行定量,然后使用Illumina NextSeq500高通量测序平台上机测序。
1. 3 miRNA序列分析
将测序获得的原始数据进行接头去除和质量过滤,得到Clean reads,对序列长度在18 nt以上的Clean reads进行去重处理后得到Unique reads,使用Bowtie程序将Clean reads和Unique reads与鸡参考基因组进行比对,比对上的Reads进一步分析。将上一步能比对上的Reads与miRBase中的已知miRNA成熟序列和前体序列进行比对,再次比对上的Reads则进行注释,以注释miRNA为单位统计表达量。剩余的Reads与鸡参考基因组中其余的ncRNA(rRNA、tRNA、snRNA和snoRNA)进行比对及注释。
对注释到已知miRNA的Reads进行表达量标准化处理,采用DESeq分析差异表达miRNA,按照表达量倍数差异Fold Change>2.0或Fold Change<0.5及表达差异显著性P<0.05筛选出差异表达miRNA。基于本课题组前期鉴定高能饲喂状态下开产与未开产蛋鸡肝脏差异表达基因,以开产组上調miRNA对应下调基因、下调miRNA对应上调基因,以基因mRNA的3'非编码区(3'-UTR)为目标序列,采用miRanda对差异表达miRNA进行靶基因和靶位点预测,同时以超几何分布对差异表达miRNA的靶基因进行GO功能注释分析和KEGG信号通路富集分析。
1. 4 miRNA表达量验证
采用实时荧光定量PCR验证miRNA表达量。选取上调miRNA和下调miRNA各2个,设计特异性反转录引物和实时荧光定量PCR正向引物(表1),实时荧光定量PCR反向引物为通用引物。取500 ng肝脏总RNA用特异性反转录引物反转录合成cDNA,再通过荧光定量PCR仪进行实时荧光定量PCR扩增,并进行熔解曲线分析。以U6 rRNA为内参序列,经随机引物反转录后使用U6 rRNA特异性引物进行实时荧光定量PCR扩增,并绘制熔解曲线。
2 结果与分析
2. 1 small RNA测序质量分析结果
各样本经small RNA测序得到的Raw reads见表2。由表2可知,6个样本(3个开产蛋鸡样本,3个未开产蛋鸡样本)测得的Raw reads均在千万级别,且Clean reads/Raw reads比值较高,均在80.00%以上,说明测序效果较好,序列质量较高。开产蛋鸡组与未开产蛋鸡组相比,二者的Raw reads和Clean reads数量均相当,说明两组测序质量相近。
2. 2 miRNA鉴定结果
各样本的Clean reads和Unique reads与鸡参考基因组及miRBase中的miRNA和前体比对后,进行注释,得到每个样本注释到的miRNA及其前体(表3)。6个样本能注释到的miRNA均超过300个,约占miRBase中已鉴定鸡miRNA的30.00%,且前体鉴定结果显示各样本注释到的miRNA有部分定位在同一前体上。各样本注释到的Clean reads占所有Reads的比例均在50.00%左右。注释到各非编码RNA的Clean reads见表4,发现miRNA比其他几种主要的非编码RNA多1~3个数量级。可见,RNA质量较高,且所测序列以miRNA为主。
2. 3 差异表达miRNA分析结果
对开产组样本与未开产组样本鉴定获得的miRNA进行表达量比较分析,旨在筛选出差异表达miRNA,结果(表5)发现,与未开产组样本相比,开产组样本有9个miRNA表达上调、3个miRNA表达下调。其中,gga-miR-132c-5p、gga-miR-132b-5p、gga-miR-2184a-5p、gga-miR-132c-3p、gga-miR-132b-3p及gga-miR-2184a-3p属于同一miRNA基因簇;gga-miR-132c-5p的表达差异最明显,相差近57倍;且gga-miR-1682、gga-miR-132b-3p和gga-miR-2184a-3p在未开产组未检测出,究其原因可能是在开产蛋鸡中具有特殊作用。挑选部分差异表达miRNA(gga-miR-132c-5p、gga-miR-2184a-5p、gga-miR-155和gga-miR-203a)进行实时荧光定量PCR验证,结果(图1)发现这4个miRNA表达量的实时荧光定量PCR检测结果与small RNA高通量测序结果基本一致,说明差异表达miRNA分析结果较可靠。
2. 4 差异表达miRNA靶基因预测结果
本课题组前期鉴定出开产组样本与未开产组样本的差异表达基因494个,其中开产组样本有上调基因285个、下调基因209个。运用miRanda对开产组样本与未开产组样本的12个差异表达miRNA进行靶基因预测,结果共预测得到129个潜在靶基因(表6)。其中,以miR-203a预测得到的靶基因最多,为32个;其次是gga-miR-2184a-5p、gga-miR-148a-5p和gga-miR-12211-5p,分别预测到30、25和23个靶基因;而miR-132c-5p预测得到的靶基因最少,仅为9个。
2. 5 差异表达miRNA靶基因功能分析结果
2. 5. 1 GO功能注释分析 对预测得到的129个差异表达miRNA靶基因进行GO功能注释分析,结果发现这129个靶基因显著注释到8条GO功能条目上。其中,生物学过程(Biological process)主要注释到脂质代谢过程(Lipid metabolic process)、细胞脂质代谢过程(Cellular lipid metabolic process)、脂质生物合成过程(Lipid biosynthetic process)、磷脂生物合成过程(Phospholipid biosynthetic process)、磷脂代谢过程(Phospholipid metabolic process)、甘油磷脂生物合成过程(Glycerophospholipid biosynthetic process)和解剖学结构发育(Anatomical structure development);分子功能(Molecular function)仅注释到1条GO功能条目,即利钠肽受体活性(Natriuretic peptide receptor activity);未发现涉及细胞组分(Cellular component)的GO功能条目(图2)。从表7可看出,在注释到的8条GO功能条目中有6条与脂质代谢相关,涉及的靶基因有22个,占总潜在靶基因的17.10%,其中11个靶基因(PEMT、FAR1、FADS2、MSMO1、ANGPTL3、KDSR,ENPP7、MBOAT2、FDFT1、FGF19和PTDSS1)表达上调、11个靶基因(SLC16A1、BRCA1、INPPL1、BCMO1、ACAA1、APOA1、BPNT1、ACSL1、CYP2AC1、LCAT和KIT)表达下调,说明脂质代谢是较重要的GO功能。
2. 5. 2 KEGG信号通路富集分析 对预测得到的129个差异表达miRNA靶基因进行KEGG信号通路富集分析,结果显示显著富集得到7条KEGG信号通路(图3)。由表8可看出,在7条显著富集的KEGG信号通路及其涉及靶基因中,脂肪酸降解(Fatty acid degradation)、脂肪酸生物合成(Fatty acid biosynthesis)及酮體合成与降解(Synthesis and degradation of ketone bodies)等3条信号通路与脂质代谢相关;PPAR信号通路(PPAR signaling pathway)与内分泌系统相关,同时与脂肪组织分化和脂肪代谢相关(Siersbaek et al.,2010;王璟等,2016);视黄醇代谢(Retinol metabolism)信号通路和维生素代谢相关;过氧化物酶体(Peroxisome)信号通路与分解代谢相关;缬氨酸、亮氨酸与异亮氨酸降解(Valine,leucine and isoleucine degradation)信号通路与氨基酸代谢相关,提示差异表达miRNA可能主要影响这7条KEGG信号通路,特别是脂质代谢相关通路。
3 讨论
随着高通量测序技术的不断进步,其应用领域逐渐广泛,且测序结果的容量和质量得到有效提高。本研究中small RNA测序获得的Raw reads在10000000以上,与目前常用的small RNA测序数据量相当(孙瑞萍等,2020;Chen et al.,2021)。从Clean reads数据及其能注释到的miRNA数据可看出,本研究的small RNA测序数据质量及置信度均较高,可用于后续的进一步分析;其他非编码RNA(rRNA、tRNA、snRNA和snoRNA)的所占比例也证明所测序列确实以miRNA为主。6个样本(3个开产蛋鸡样本,3个未开产蛋鸡样本)能注释到的miRNA均超过300个,约占miRBase中已鉴定鸡miRNA的30.00%,则进一步证实miRNA在鸡肝脏中的数量及含量均较多,也提示其发挥着重要作用。差异表达miRNA的实时荧光定量PCR检测结果与small RNA高通量测序结果基本一致,说明转录组测序结果较可靠。对差异表达miRNA进行分析发现,gga-miR-1682、gga-miR-132b-3p和gga-miR-2184a-3p等3个上调miRNA在未开产蛋鸡样本中不表达,提示其在高能饲喂蛋鸡的肝脏中对蛋鸡开产影响发挥着重要作用,但至今鲜见针对这3个miRNA的功能研究报道。此外,本研究发现gga-miR-132c-5p、gga-miR-132b-5p、gga-miR-2184a-5p、gga-miR-132c-3p、gga-miR-132b-3p及gga-miR-2184a-3p属于同一miRNA基因簇,推测它们在表达和功能上具有相关性,但具体原理有待进一步探究。
以本课题组前期鉴定获得高能饲喂下开产组与未开产组蛋鸡肝脏的差异表达基因作为候选基因,进行差异表达miRNA靶基因预测,可有效缩小靶基因的预测范围,同时提高预测阳性率,并已取得较理想的研究成果(Li et al.,2019;Yu et al.,2019;Nersisyan et al.,2020;Song et al.,2021),对gga-miR-132c-132b-2184a基因簇的靶基因预测同样值得深入研究。在差异表达miRNA靶基因的GO功能注释分析中,注释到最多的是与脂质代谢相关的GO功能条目,说明miRNA通过调控脂质代谢相关基因进而调控这些生物学过程。本课题组前期分析育成期高能饲喂下开产与未开产蛋鸡肝脏中差异表达基因的GO功能注释情况,也发现大部分注释到的GO功能条目都是与脂质代谢相关,提示蛋鸡的脂质代谢相关过程受miRNA调控更多,与李红(2016)的研究结果相似,即产蛋高峰期与产蛋前期蛋鸡肝脏中差异表达miRNA的预测靶基因大部分与脂质代谢相关,表明脂质代谢与产蛋有直接或间接的联系。
在KEGG信号通路富集分析中,显著富集的KEGG信号通路均与代谢途径相关,且以脂质代谢相关通路为主,涉及的差异表达靶基因包括ACSBG2、FADS2、HMGCLL1、ACAA1、ACSL1、APOA1和BDH1B,且这些基因涉及脂质代谢的多个方面。ACSBG2是一种乙酰辅酶A合成酶,参与鸡的脂肪沉积(Guo et al.,2018);FADS2是一种脂肪酸脱氢酶,参与多种多不饱和脂肪酸的合成(陈兴勇等,2017);HMGCLL1是类HMG辅酶A裂解酶,抑制其表达可升高胆固醇和甘油三酯水平(Perveen et al.,2020);ACAA1是乙酰辅酶A酰基转移酶1,催化β-氧化途径的关键酶,参与脂肪酸的延伸和降解(王延莉等,2019);ACSL1是一种长链乙酰辅酶A合成酶,可提高甘油三酯水平(Li et al.,2020);APOA1是载脂蛋白A1,调节高密度脂蛋白及胆固醇含量(Flores et al.,2019);BDH1B是一种羟丁酸脱氢酶,是脂肪酸降解过程中酮体降解的关键酶,有报道称敲除其同源物BDH1后会导致脂肪肝形成(Otsuka et al.,2020)。除脂质代谢相关通路,还存在与氨基酸代谢相关的KEGG信号通路,与李慧峰等(2017)对蛋鸡产蛋前后肝脏差异表达基因的KEGG信号通路注释分析结果一致。可见,miRNA主要影响脂质代谢相关信号通路,进而影响蛋鸡开产。
4 结论
育成期高能饲喂下开产与未开产蛋鸡中共存在12个差异表达miRNA,涉及129个差异表达潜在靶基因,且主要为肝脏脂质代谢相关过程和信号通路,说明miRNA是通过调控脂质代谢及其相关基因表达而影响蛋鸡开产。
参考文献:
陈兴勇,赵宁,张燕,耿照玉. 2017. 皖西白鹅育肥期肌肉脂肪酸组成及肝PPARα、FADS2和ME1基因表达规律的研究[J]. 畜牧兽医学报,48(10):1912-1919. [Chen X Y,Zhao N,Zhang Y,Geng Z Y. 2017. The fatty acid profile in muscles and expression of PPARa,FADS2 and ME1 genes in liver of Chinese Wanxi white geese in fattening period[J]. Acta Veterinaria et Zootechnica Sinica,48(10):1912-1919.] doi:10.11843/j.issn.0366-6964.2017. 10.014.
方书宝,彭箫,王梦霖,赵晓钰,王俊花,吴盈萍,段玉青,李海英. 2020. 饲粮能量水平对京红蛋鸡产蛋后期生产性能、蛋品质及脂代谢的影响[J]. 饲料工业,41(7):44-49. [Fang S B,Peng X,Wang M L,Zhao X Y,Wang J H,Wu Y P,Duan Y Q,Li H Y. 2020. Effects of dietary energy level on production performance,egg quality and lipid metabolism of Jinghong layers in late laying period[J]. Feed Industry,41(7):44-49.] doi:10.13302/j.cnki.fi.2020.07.008.
费强. 2013. 蛋鸡产蛋性能下降的原因及对策[J]. 家禽科学,(2):32-33. [Fei Q. 2013. Reasons and strategies of performance decrease of laying hens[J]. Poultry Science,(2):32-33.] doi:10.3969/j.issn.1673-1085.2013.02.010.
李崇奇,沈文涛,言普,黎小瑛,周鹏. 2014. 巨桉miRNA及其靶基因生物信息学预测[J]. 南方农业学报,45(9):1532-1538. [Li C Q,Shen W T,Yan P,Li X Y,Zhou P. 2014. Bioinformatic analysis of microRNA and their target genes in Eucalyptus grandis[J]. Journal of Southern Agri-culture,45(9):1532-1538.] doi:10.3969/j.issn.2095-1191. 2014.9.1532.
李飛翔,王文建,卞红星,蒋辉胜. 2017. 蛋鸡饲养管理及营养方面存在的误区[J]. 中国禽业导刊,34(13):65. [Li F X,Wang W J,Bian H X,Jiang H S. 2017. Errors in ma-nagement and nutrition of laying hens[J]. Guide to Chinese Poultry,34(13):65.]
李红. 2016. 转录组分析揭示鸡产蛋期肝脏脂质代谢调控的分子机制[D]. 郑州:河南农业大学. [Li H. 2016. Tanscriptome analysis reveals the molecular mechanism of hepatic lipid metabolism regulation in egg-laying hen[D]. Zhengzhou:Henan Agricultural University.]
李慧锋,张臻,朱文进,张同玉,郭文婕,蔡永强,朱芷葳,张利环. 2017. 白来航蛋鸡产蛋前后肝转录组功能分析[J]. 畜牧兽医学报,48(9):1624-1634. [Li H F,Zhang Z,Zhu W J,Zhang T Y,Guo W J,Cai Y Q,Zhu Z W,Zhang L H. 2017. Functional analysis of liver transcriptome before and after White Leghorn hen begin laying eggs[J]. Acta Veterinaria et Zootechnica Sinica,48(9):1624-1634.] doi:10.11843/j.issn.0366-6964.2017.09.007.
李娜,徐廷生,雷雪芹,刘宁,文凤云,吴秋珏,高灵照. 2019. 卢氏绿壳蛋鸡育成期适宜能量水平的研究[J]. 中国农学通报,35(5):154-159. [Li N,Xu T S,Lei X Q,Liu N,Wen F Y,Wu Q J,Gao L Z. 2019. Appropriate energy level for Lushi green-shell egg laying pullets during growing period[J]. Chinese Agricultural Science Bulletin,35(5):154-159.] doi:10.11924/j.issn.1000-6850.casb18 010034.
李永峰. 2017. 育成期能量摄入量对苏禽绿壳蛋鸡母本早期蛋用性能的影响[D]. 北京:中国农业科学院. [Li Y F. 2017. The impact of energy intake during growing period on early laying performance of Suqin green eggshell layer female parent[D]. Beijing:Chinese Academy of Agricultural Sciences.]
刘振. 2016. 饲粮类型对鸡脂肪肝形成的影响及表观调控机制[D]. 北京:中国农业科学院. [Liu Z. 2016. Study of the effect of diets type on fatty liver syndrome in chicken and the underlying epigenetic mechanisms in chicken[D]. Beijing:Chinese Academy of Agricultural Sciences.]
孙瑞萍,王峰,晁哲,刘海隆,郑心力,刘圈炜,黄丽丽,邢漫萍,魏立民. 2020. 1月龄五指山猪与长白猪骨骼肌mi-RNA转录组比较[J]. 江苏农业学报,36(3):620-625. [Sun R P,Wang F,Chao Z,Liu H L,Zheng X L,Liu Q W,Huang L L,Xing M P,Wei L M. 2020. Comparative analysis on miRNA transcriptomes of skeletal muscle between one-month-old Wuzhishan pig and Landrace[J]. Jiangsu Journal of Agricultural Sciences,36(3):620-625.] doi:10.3969/j.issn.10000-4440.2020.03.013.
王璟,白献晓,张家庆,高彬文,陈俊峰,高原,任巧玲,马强,郭红霞,梁永红,邢宝松. 2016. 去势对淮南猪皮下脂肪PPAR信号通路基因表达量的影响[J]. 华北农学报,31(2):92-97. [Wang J,Bai X X,Zhang J Q,Gao B W,Chen J F,Gao Y,Ren Q L,Ma Q,Guo H X,Liang Y H,Xing B S. 2016. Effect of castration on PPAR signal pathway expression in Huainan pig subcutaneous fat tissue[J]. Acta Agriculturae Boreali-Sinica,31(2):92-97.] doi:10.7668/hbnxb.2016.02.016.
王星果,卢建,关树勇,曲亮,孙平江,郭军,胡玉萍,窦套存,马猛,李永峰,王克华. 2021. 高能饲粮对育成期蛋鸡肝脏miRNA表达谱的影响[J]. 动物营养学报,33(2):1081-1090. [Wang X G,Lu J,Guan S Y,Qu L,Sun P J,Guo J,Hu Y P,Dou T C,Ma M,Li Y F,Wang K H. 2021. Effect of high energy diet on liver miRNAs of la-ying hens during growing period[J]. Chinese Journal of Animal Nutrition,33(2):1081-1090.] doi:10.3969/j.issn. 1006-267x.2021.02.048.
王星果,曲亮,窦套存,郭军,胡玉萍,马猛,李永峰,王克华. 2020. 育成期高能饮食对蛋鸡肝脏转录组的影响[J]. 南方农业学报,51(8):1864-1871. [Wang X G,Qu L,Dou T C,Guo J,Hu Y P,Ma M,Li Y F,Wang K H. 2020. Effects of high energy diet on liver transcriptome of laying hens during growing period[J]. Journal of Southern Agriculture,51(8):1864-1871.] doi:10.3969/j.issn.2095-1191. 2020.08.010.
王延莉,曹阳,梁祎凡,肖成,金花子,金海国. 2019. 乙酰辅酶A酰基转移酶1基因研究进展[J]. 中国畜牧杂志,55(10):42-46. [Wang Y L,Cao Y,Liang Y F,Xiao C,Jin H Z,Jin H G. 2019. Advance in acetyl-CoA acyltransfe-rase 1 gene[J]. Chinese Journal of Animal Science,55(10):42-46.] doi:10.19556/j.0258-7033.20190115-05.
谢冬微,孙健. 2020. 不同发育时期亚麻茎秆中木质素积累相关miRNA及其靶基因的挖掘分析[J]. 南方农业学报,51(10):2321-2330. [Xie D W,Sun J. 2020. Mining and analysis of miRNAs and target genes related to lignin accumulation in flax stalks at different developmental stages[J]. Journal of Southern Agriculture,51(10):2321-2330.] doi:10.3969/j.issn.2095-1191.2020.10.002.
闫尊强,姜天团,孙文阳,王鹏飞,黄晓宇,杨巧丽,胡慧艳,李守湖,滚双宝. 2020. 环状RNA及其在猪上的研究进展[J]. 甘肃农业大学学报,55(6):1-9. [Yan Z Q,Jiang T T,Sun W Y,Wang P F,Huang X Y,Yang Q L,Hu H Y,Li S H,Gun S B. 2020. Circular RNA and its research progress in pig[J]. Journal of Gansu Agricultural University,55(6):1-9.] doi:10.13432/j.cnki.jgsau.2020.06.001.
姚俊峰,王曉亮,黄红梅,张飞,涂盈盈,杨长锁. 2016. 复合矿物质添加剂对蛋鸡生产性能及蛋品质的影响[J]. 中国家禽,38(24):58-59. [Yao J F,Wang X L,Huang H M,Zhang F,Tu Y Y,Yang C S. 2016. Effects of compound mineral additives on production performance and egg quality of laying hens[J]. China Poultry,38(24):58-59.] doi:10.16372/j.issn.1004-6364.2016.24.013.
于小飞. 2020. 蛋鸡自配饲料的能量调控[J]. 当代畜禽养殖业,(5):8-9. [Yu X F. 2020. Energy regulation of laying hens by self mixed feed[J]. Modern Livestock and Poultry Breeding Industry,(5):8-9.] doi:10.3969/j.issn.1005-5959.2020.05.003.
袁超,徐志刚,蒋媛婧,严华祥,马婷,邹晓庭. 2013. 新杨绿壳蛋鸡育成期能量和蛋白质的需要量[J]. 动物营养学报,25(4):735-742. [Yuan C,Xu Z G,Jiang Y J,Yan H X,Ma T,Zou X T. 2013. Energy and protein requirements of growing Xinyang green shell hens[J]. Chinese Journal of Animal Nutrition,25(4):735-742.] doi:10.3969/j.issn.1006-67x.2013.04.010.
張金伟. 2009. 能量来源对产蛋鸡肝脏脂肪代谢的影响及其机制研究[D]. 雅安:四川农业大学. [Zhang J W. 2009. Effects of dietary energy sources on lipid metabolism and deposition in the liver of laying hens[D]. Yaan:Sichuan Agricultural University.]
张李俊,魏清宇,叶红心,李温. 2005. 育成期白壳蛋鸡不同能量饲料的试验[J]. 养禽与禽病防治,(11):4-5. [Zhang L J,Wei Q Y,Ye H X,Li W. 2005. Experiment on white shell layer fed by different energy feed during growing period[J]. Poultry Husbandry and Disease Control,(11):4-5.]
张利敏,姚军虎,董延. 2012. 产蛋鸡粗蛋白质与代谢能需要量研究进展与应用[J]. 饲料工业,33(3):13-16. [Zhang L M,Yao J H,Dong Y. 2012. Research progress and application on crude protein and metabolic energy requirement in laying hens[J]. Feed Industry,33(3):13-16.] doi:10.3969/j.issn.1001-991X.2012.03.004.
张晓怡,马秋刚,计成,赵丽红,张建云. 2019. 日粮代谢能水平对“京粉1号”蛋鸡产蛋高峰期生产性能的影响[J]. 中国畜牧杂志,55(7):128-131. [Zhang X Y,Ma Q G,Ji C,Zhao L H,Zhang J Y. 2019. Effects of dietary metabolizable energy level on production performance of Jingfen No.1 laying hens during peak laying period[J]. Chinese Journal of Animal Science,55(7):128-131.] doi:10.19556/j.0258-7033.2019-07-128.
赵振福,曲长海. 2009. 维生素在蛋鸡生产中的应用[J]. 养殖技术顾问,(4):42. [Zhao Z F,Qu C H. 2009. Application of vitamin in laying hen production[J]. Technical Advisor for Animal Husbandry,(4):42.] doi:10.3969/j.issn.1673-1921.2009.04.041.
郑瑞,王馨悦,马秋刚,赵丽红,计成,张建云. 2017. 日粮代谢能水平对“京红1号”商品代蛋鸡育成期(10~16周龄)生长性能的影响[J]. 饲料研究,(23):24-27. [Zheng R,Wang X Y,Ma Q G,Zhao L H,Ji C,Zhang J Y. 2017. Effects of dietary metabolizable energy level on growth performance of Jinghong No.1 laying hens during gro-wing period (10-16 Weeks)[J]. Feed Research,(23):24-27.] doi:10.13557/j.cnki.issn1002-2813.2017.23.006.
Chen Y L,Wan S M,Li Q,Dong X R,Diao J,Liao Q,Wang G Y,Gao Z X. 2021. Genome-wide integrated analysis revealed functions of incRNA-miRNA-mRNA interaction in growth of intermuscular bones in Megalobrama amblycephala[J]. Frontiers in Cell and Developmental Biology,8:603815. doi:10.3389/fcell.2020.603815.
Flores R,Jin X T,Chang J,Zhang C,Cogan D G,Schaefer E J,Kruth H S. 2019. LCAT,ApoD,and ApoA1 expression and review of cholesterol deposition in the cornea[J]. Biomolecules,9(12):785. doi:10.3390/biom9120785.
Guo L P,Cui H X,Zhao G P,Liu R R,Li Q H,Zheng M Q,Guo Y M,Jie W. 2018. Intramuscular preadipocytes impede differentiation and promote lipid deposition of muscle satellite cells in chickens[J]. BMC Genomics,19(1):838. doi:10.1186/s12864-018-5209-5.
Li H,Ma Z,Jia L J,Li Y M,Xu C L,Wang T A,Han R L,Jiang R R,Li Z J,Sun G R,Kang X T,Liu X J. 2016. Systematic analysis of the regulatory functions of micro-RNAs in chicken hepatic lipid metabolism[J]. Scientific Reports,6:31766. doi:10.1038/srep31766.
Li T T,Li X D,Meng H Y,Chen L L,Meng F B. 2020. ACSL1 affects triglyceride levels through the PPAR? pathway[J]. International Journal of Medical Sciences,17(6):720-727. doi:10.7150/ijms.42248.
Li Y F,Chen Y,Jin W J,Fu S Y,Li D H,Zhang Y H,Sun G R,Jiang R R,Han R L,Li Z J,Kang X T,Li G X. 2019. Analyses of microRNA and mRNA expression profiles reveal the crucial interaction networks and pathways for regulation of chicken breast muscle development[J]. Frontiers in Genetics,10:197. doi:10.3389/fgene.2019.00197.
Nersisyan S,Shkurnikov M,Turchinovich A,Knyazev E,To-nevitsky A. 2020. Integrative analysis of miRNA and mRNA sequencing data reveals potential regulatory me-chanisms of ACE2 and TMPRSS2[J]. PLoS One,15(7):e0235987. doi:10.1371/journal.pone.0235987.
Otsuka H,Kimura T,Ago Y,Nakama M,Aoyama Y,Abdelkreem E,Matsumoto H,Ohnoshi H,Sasai H,Osawa M,Yamaguchi S,Mitchell G A,Fukao T. 2020. Deficiency of 3-hydroxybutyrate dehydrogenase (BDH1) in mice causes low ketone body levels and fatty liver during fas-ting[J]. Journal of Inherited Metabolic Disease,43(5):960-968. doi:10.1002/jimd.12243.
Perveen S,Ashfaq H,Shahjahan M,Manzoor A,Tayyeb A. 2020. Citrullus colocynthis regulates de novo lipid biosynthesis in human breast cancer cells[J]. Journal of Cancer Research and Therapeutics,16(6):1294-1301. doi:10. 4103/jcrt.JCRT_206_20.
Schutte J B,van Weerden E J. 1978. Requirement of the hen for sulphur-containing amino acids[J]. British Poultry Science,19(5):573-581. doi:10.1080/0007166780841 6516.
Shao F,Wang X,Yu J,Shen K,Qi C,Gu Z. 2019. Expression of miR-33 from an SREBP2 intron inhibits the expression of the fatty acid oxidation-regulatory genes CROT and HADHB in chicken liver[J]. British Poultry Science,60(2):115-124. doi:10.1080/00071668.2018.1564242.
Siersb?k R,Nielsen R,Mandrup S. 2010. PPAR? in adipocyte differentiation and metabolism—Novel insights from genome-wide studies[J]. FEBS Letter,584(15):3242-3249. doi:10.1016/j.febslet.2010.06.010.
Song P Y,Yue Q X,Fu Q,Li X Y,Li X J,Zhou R Y,Chen XY,Tao C Y. 2021. Integrated analysis of miRNA-mRNA interaction in ovaries of Turpan black sheep du-ring follicular and luteal phases[J]. Reproduction in Domestic Animals,56(1):46-57. doi:10.1111/rda.13848.
Wang X G,Li Y F,Qu L,Guo J,Dou T C,Hu Y P,Ma M,Wang K H. 2021. Lipolytic gene DAGLA is targeted by miR-223 in chicken hepatocytes[J]. Gene,767:145184. doi:10.1016/j.gene.2020.145184.
Wang X G,Shao F,Yu J F,Jiang H L,Gong D Q,Gu Z L. 2015. microRNA-122 targets genes related to liver meta-bolism in chickens[J]. Comparative Biochemistry and Physiololy. Part B:Biochemistry and Molecular Biology,184:29-35. doi:10.1016/j.cbpb.2015.02.002.
Wang X G,Yang L,Wang H J,Shao F,Yu J F,Jiang H L,Han Y P,Gong D P,Gu Z L. 2014. Growth hormone-re-gulated mRNAs and miRNAs in chicken hepatocytes[J]. PLoS One,9(11):e112896. doi:10.1371/journal.pone. 0112896.
Wang X G,Yu J F,Shao F,Zhang Y P,Li Y Y,Lu X Y,Gong D Q,Gu Z L. 2019. microRNA-122 targets the P4HA1 mRNA and regulates its expression in chicken hepatocytes[J]. Italian Journal of Animal Science,18(1):587-593. doi:10.1080/1828051X.2018.1548912.
Yu N,Yong S,Kim H K,Choi Y L,Jung Y,Kim D,Seo J,Lee Y E,Baek D,Lee J,Lee S,Lee J E,Kim J,Kim J,Lee S. 2019. Identification of tumor suppressor miRNAs by integrative miRNA and mRNA sequencing of matched tumor-normal samples in lung adenocarcinoma[J]. Molecular Oncology,13(6):1356-1368. doi:10.1002/1878-0261.12478.
(責任编辑 兰宗宝)