赋Luxemburg范数的Orlicz序列空间的次接近一致凸性
2022-05-25崔云安代明君
崔云安 代明君
摘要:接近一致非折是Banach空间中一种重要的性质。引入一个新的几何性质,称为次接近一致凸性,其蕴含Banach空间关于非扩张映射具有弱不动点性质,给出了赋Luxemburg范数的Orlicz序列空间是次接近一致凸的充要条件。
关键词:Orlicz序列空间;Luxemburg范数;次接近一致凸
DOI:10.15938/j.jhust.2022.02.019
中图分类号: O177.3
文献标志码: A
文章编号: 1007-2683(2022)02-0149-05
Sub Nearly Uniformly Convex of Orlicz Sequence Spaces Equipped with Luxemburg Norm
Cui Yun-an,Dai Ming-jun
(School of Sciences,Harbin University of Science and Technology,Harbin 150080,China)
Abstract:Nearly uniform noncreasy is a important property in Banach spaces. In this paper we introduce a new geometric property, which is called sub nearly uniformly convex property. It implies that Banach spaces have weak fixed point property for nonexpansive mappings. The necessary and sufficient condition for the Orlicz sequence space with Luxemburg norm to be sub nearly uniformly convex is given.
Keywords:Orlicz sequence spaces; Luxemburg norm; sub nearly uniformly convex
0引言
自20世纪以来,不动点问题已经成为时下最热门的数学问题之一,与不动点有关的几何性质问题也已经成为人们热衷的研究课题之一,近年来与不动点有关的几何性质问题得到了充分的发展,许多数学研究者们将Banach空间中的一系列问题推广到Orlicz空间中,2002年,崔云安和Hudzik證明了Orlicz 空间是非折的判定准则[1];2003年,石忠锐和林伯禄将Banach空间中的非折性质和一致非折性质推广到了Orlicz函数空间中,并且给出了Orlicz函数空间是非折的和一致非折的充要条件[2],2005年,Stanislaw Prus和Mariusz Szczepanik证明了具有接近一致非折性质的实Banach空间具有弱不动点性质[3]。本文主要讨论Orlicz序列空间中的次接近一致凸性质,给出了赋Luxemburg范数的Orlicz序列空间是次接近一致凸的充要条件,为下一步证明Orlicz序列空间中的接近一致非折性质做了充足的准备。
1预备知识
2主要结果及证明
参 考 文 献:
[1]CUI Y A, HUDZIK H. Orlicz Spaces Which are Noncreasy[J]. Archiv Der Mathematik, 2002, 78(4): 303.
[2]LIN B L, SHI Z R. Noncreasy and Uniformly Noncreasy Orlicz Function Spaces[J]. Journal of Mathematical Analysis & Applications, 2003, 287(1): 253.
[3]PRUS S, SZCZEPANIK M. Nearly Uniformly Noncreasy Banach Spaces[J]. Journal of Mathematical Analysis and Applications, 2005, 307(1): 255.
[4]左明霞, 彭丽娜. Orlicz序列空间的(k)性质[J]. 哈尔滨理工大学学报, 2017,22(6): 122.ZUO Mingxia, PENG Lina. Property (k) of Orlicz Sequence Spaces[J]. Journal of Harbin University of Science and Technology, 2017, 22(6): 122.
[5]吴从炘, 王廷辅, 陈述涛, 等. Orlicz空间几何理论[M]. 哈尔滨:哈尔滨工业大学出版社, 1986: 1.
[6]崔云安.Banach空间几何理论及应用[M]. 北京:科学出版社, 2011:1.
[7]王廷辅. Orlicz序列空间的一致凸条件[J]. 哈尔滨科学技术大学学报, 1983(2): 1.WANG Tingfu. Uniformly Convex Conditions for Orlicz Sequence Spaces[J]. Journal of Haerbin University of Science AND Technology,1983(2): 1.
[8]TAKAHASHI W, TOYODA M. Weak Convergence Theorems for Nonexpansive Mappings and Monotone Mappings[J]. Journal of Optimization Theory and Applications, 2003, 118(2) : 417.
[9]李朝博, 陈丽丽. b-凸度量空间的不动点理论[J]. 哈尔滨理工大学学报, 2021, 26(2): 143.LI Chaobo, CHEN Lili.Fixed Point Theory in b-convex Metric Spaces[J]. Journal of Harbin University of Science and Technology, 2021, 26(2): 143.
[10]崔云安, 安莉丽, 展玉佳. 赋s-范数的Orlicz空间的端点[J]. 哈尔滨理工大学学报, 2020, 25(5): 143.CUI Yunan, AN Lili, ZHAN Yujia. Extreme Points in Orlicz Spaces Equipped with S-norm[J]. Journal of Harbin University of Science and Technology, 2020, 25(5): 143.
[11]崔云安, 安莉丽. 赋Φ-Amemiya范数的Orlicz空间的端点[J]. 哈尔滨理工大学学报, 2021, 26(2): 149.CUI Yunan, AN Lili. An Extreme Point of Orlicz Spaces Equipped with Φ-Amemiya Norm[J]. Journal of Harbin University of Science and Technology, 2021, 26(2): 149.
[12]BAI X R, CUI Y A, Joanna Konczak. Monotonicities in OrliczSpaces Equipped with Mazur-Orlicz F-Norm[J]. Journal of Function Spaces, 2020, 2020(4): 1.
[13]SHANG S Q, CUI Y A. Musielak-Orlicz-Bochner Function Spaces Which are Uniformly Noncreasy[J]. Mathematische Nachrichten, 2018, 291(13): 2099.
[14]CHENGQ J, WANG B, WANG C L. On Uniform Convexity of Banach Spaces[J]. ActaMathematica Sinica, English Series, 2011, 27(3): 587.
[15]LI X Y, CUI Y A, WISLA M. Smoothness of Orlicz Function Spaces Equipped with thep-Amemiya Norm[J]. Banach Journal of Mathematical Analysis, 2021, 15(3).
[16]AN L L, CUI Y A. Strongly Extreme Pointsof Orlicz Function Spaces Equipped with Φ-Amemiya Norm[J]. Journal of Inequalities and Applications, 2020, 2020(1): 78.
[17]SHANG S Q, CUI Y A. Approximative Compactness in Musielak-Orlicz Functionspaces of Bochner Type [J]. Banach Journal of Mathematical Analysis, 2017, 11(1): 143.
[18]CHEN L L, LI C B, KACZMAREK R, et al. Several Fixed Point Theorems in Convex b-Metric Spaces and Applications[J]. Mathematics, 2020, 8(2): 242.
[19]SRIVATSAB K, RANJAN G. Non-rotating Beams Isospectral to Rotating Rayleigh Beams[J].International Journal of Mechanical Sciences, 2018: 142.
[20]FAN L Y, CUI Y A. On Schur Property in Orlicz Sequence Spaces.[J].Heilongjiang Daxue Ziran Kexue Xuebao,2005,22(3):342.
[21]KAMINSKA A. On Uniform Convexity of OrliczSpaces [J]. Indagationes Mathematicae, 1982, 2020(1): 27.
(編辑:温泽宇)