步骤6 根据式(5)更新寄生巢穴的位置,若优于上一代则保留其值。
步骤7 计算本次迭代更新的寄生巢穴位置与目前找到的最佳鸟巢位置是否满足式(12),若不满足转回步骤2。
步骤8 将最前得到的最佳占空比做为P&O的起始步长值,根据式(11)来对占空比进行更新。
步骤9 查看是否到达重启时间或满足式(13),若符合重启条件则转至步骤1,否则转至步骤8。
步骤10 输出当前的最优占空比值,结束算法迭代。
![](https://img.fx361.cc/images/2023/0117/396b031955e92e74dc83ad807a9455f5b7fe5e98.webp)
图4 光伏系统MPPT控制算法的流程图
3 算法性能验证与仿真结果分析
为了验证所提光伏MPPT算法的性能改进,ACS-P&O算法与PSO算法和CS算法在Matlab/Simulink上进行了仿真和验证。用于仿真系统的模型结构如图5所示。光伏阵列是由四个单独的电池元件串联而成的,所使用的单个光伏组件型号为TP250MBZ。控制方法为直接控制法,利用占空比的变化配合boost电路来促使外接负载阻值与光伏阵列的内阻相匹配,从而使功率输出最大化。电路中的原始参数设置如下:1= 400mF,2= 0.5 mF,= 0.8 mH,load= 20 Ω,开关频率为20 kHz。
![](https://img.fx361.cc/images/2023/0117/7c1967382f03efb29839462a13cc93d3c4d39569.webp)
图5 光伏系统MPPT控制系统
该模拟将分别在STC(模式1)和PSC(模式2)和动态变化环境(模式1突变至模式2)中进行,模拟所用的曲线如图6所示。为了比较,种群数量都被设定为4。
![](https://img.fx361.cc/images/2023/0117/5d76bf17948bcc763b9065ed6991da7ca17a087c.webp)
图6 仿真实验阵列的P-V曲线变化情况
3.1 无阴影状况下的仿真
光伏阵列的设置通常是为了在宽阔、无遮挡的环境中接受较大面积的光线,因此一般来说,接受均匀光线的光伏阵列在曲线上有一个且只有一个极值点。模式1显示了标准条件下的曲线,最大系统功率为996 W。设置仿真时间为1 s,三种算法的仿真结果如图7所示。
从图7中可以看出,三种算法都收敛到了接近GMPP的水平。PSO、CS和ACS-P&O算法跟踪到的平均功率值分别为975.28 W、994.65 W和995.95 W。当迭代进行到接近GMPP时,PSO算法和CS算法仍然存在比较明显的电流和电压纹波及功率振荡现象。相比之下,本文提出的算法在功率收敛到GMPP附近时自动切换到小步长的P&O算法,调整占空比变化的形式,使功率输出更加稳定。表2记录了在光照均匀时的三种算法跟踪时间、功率波动范围与发电效率(发电效率=平均输出功率/最大功率点处功率)。
![](https://img.fx361.cc/images/2023/0117/40eb38450aa9c7f435b745a32947c23a276bb1a1.webp)
图7 无遮挡情况下的光伏阵列输出波形
![](https://img.fx361.cc/images/2023/0117/e878e373a9d11aa95e9971a8395fe2ebbf246cf3.webp)
表2 实验结果对比
3.2 局部遮阴状况下的仿真
当光伏阵列被云层、鸟类等遮挡时,-曲线从单峰转变为多峰。模式2是四个串联的光伏板分别接收800 W/m2、800 W/m2、300 W/m2和600 W/m2的辐照度的曲线。同一条曲线上有三个极值点,其中两个LMPP的功率值分别为389.6 W、342.1 W,GMPP的功率值为483.8 W。图8中显示了三种算法在1 s模拟时间内的光伏电池输出波形。
![](https://img.fx361.cc/images/2023/0117/9a869be21daee97dcb95ce984a029c7169517dd4.webp)
图8 部分遮挡下的光伏阵列输出波形
从图8中可以看出,PSO、CS和ACS-P&O算法跟踪的平均功率分别近似为482.29 W、483.31 W和483.76 W。在图8中还可以发现,PSO算法在跟踪GMPP时,首先在LMPP附近的功率上有波动,然后在0.2 s后跳出局部最优。与其他算法相比,ACS-P&O算法收敛速度更快,精度更高,跟踪时振荡更小。三种算法的实验结果对比值如表3所示。
![](https://img.fx361.cc/images/2023/0117/3a507212ec4d67f072c957690748d8ebcfe68887.webp)
表3 实验结果对比
3.3 动态变化状况下的仿真
为了模拟改进后的算法在动态环境中跟踪光伏系统GMPP的能力,模拟时间被设定为3 s,光伏电池的-输出特性曲线在1.5 s时从模式1切换到模式2。三种算法的仿真输出如图9所示。
如图9所示,尽管PSO算法在环境突然变化后跟踪到了正确的GMPP,但存在明显的功率振荡,系统难以保持稳定。观察CS算法的仿真结果可发现,在光线变化后的0.5 s,系统重新追踪到新的GMPP,但在2 s后趋于平稳之前,系统仍然经历了小幅度的功率振荡。而ACS-P&O算法在1.5 s时检测到功率的突然变化,并将P&O算法切换到ACS算法,以确保系统不会陷入局部最优,只有当算法检测到收敛至GMPP附近时才会再次切换P&O算法,以保持稳定的跟踪,而重新收敛到最大功率点只需要0.18 s。P&O算法的小步长也能满足后续跟踪的要求,且功率振荡始终处于最小振幅,很大程度上提升了跟踪效率。
![](https://img.fx361.cc/images/2023/0117/d23c92209eaf3567d09a1d95de55998a13dd2926.webp)
图9 动态变化下的光伏阵列输出波形
4 结论
本文提出了一种基于ACS-P&O算法的光伏阵列最大功率点跟踪控制方法。为了解决CS算法问题,将Lévy飞行方程中的步长系数改为自适应递减形式,以满足前后期探测与开发的需要;令CS算法的切换概率随着迭代的进行而线性增长,这使得布谷鸟在早期有更大的机会随机游动,以保证算法在运行初期顺利跳出LMPP,同时也加速了后期的收敛;边界个体处理条件的加入使个体向最优值处靠拢,减少迭代次数;为避免算法收敛在全局最优值后产生不必要的功率振荡,将在GMPP附近时切换小步长P&O算法,以保持功率输出的稳定性。仿真结果表明,所提出的方法在早期收敛速度和后期稳态振荡方面都优于PSO算法和CS算法,并有效提高了光伏系统的能量利用率。
[1] KERMADI M, BERKOUK E M.Artificial intelligence-based maximum power point tracking controllers for Photovoltaic systems: comparative study[J].Renewable & Sustainable Energy Reviews, 2017, 69: 369-386.
[2] MOHAPATRA A, NAYAK B, DAS P, et al.A review on MPPT techniques of PV system under partial shading condition[J].Renewable and Sustainable Energy Reviews, 2017, 80: 854-867.
[3] 王志豪, 李自成, 王后能, 等.基于RBF神经网络的光伏系统MPPT研究[J].电力系统保护与控制, 2020, 48(6): 85-91.
WANG Zhihao, LI Zicheng, WANG Houneng, et al.MPPT study of solar PV power system based on RBF neural network algorithml[J].Power System Protection and Control, 2020, 48(6): 85-91.
[4] YANG B, ZHU T, WANG J, et al.Comprehensive overview of maximum power point tracking algorithms of PV systems under partial shading condition[J].Journal of Cleaner Production, 2020, 268.
[5] 李立雄, 阳同光, 袁越阳, 等.基于改进有限集模型预测控制策略的光伏发电系统最大功率点追踪算法[J].电力系统保护与控制, 2021, 49(17): 28-37.
LI Lixiong, YANG Tongguang, YUAN Yueyang, et al.Maximum power point tracking algorithm of a photovoltaic power generation system based on an improved finite set model predictive control strategy[J].Power System Protection and Control, 2021, 49(17): 28-37.
[6] 韩鹏, 李银红, 何璇, 等.结合量子粒子群算法的光伏多峰最大功率点跟踪改进方法[J].电力系统自动化, 2016, 40(23): 101-108.
HAN Peng, LI Yinhong, HE Xuan, et al.Improved maximum power point tracking method for photovoltaic multi-peak based on quantum-behaved particle swarm potimization algorithm[J].Automation of Electric Power Systems, 2016, 40(23): 101-108.
[7] BDEL-SALAM M, EL-MOHANDES M T, EL-GHAZALY M.An efficient tracking of MPP in PV systems using a newly-formulated P&O-MPPT method under varying irradiation levels[J].Journal of Electrical Engineering & Technology, 2020, 15(1): 501-513.
[8] 盛四清, 陈玉良.基于功率预测的新型变步长电导增量法最大功率点跟踪策略[J].电力系统保护与控制, 2017, 45(23): 42-48.
SHENG Siqing, CHEN Yuliang.Maximum power point tracking strategy based on power predication for a novel variable step-size incremental conductance algorithm[J].Power System Protection and Control, 2017, 45(23): 42-48.
[9] 陈景文, 张文倩, 李晓飞.基于改进电导增量法的光伏MPPT控制[J].智慧电力, 2021, 49 (9): 47-55.
CHEN Jingwen, ZHANG Wenqian, LI Xiaofei.Photovoltaic MPPT control based on improved conductance[J].Smart Power, 2021, 49(9): 47-55.
[10] SHANG L, GUO H, ZHU W.An improved MPPT control strategy based on incremental conductance algorithm[J].Protection and Control of Modern Power Systems, 2020, 5(2): 176-163.
[11] 吴志程, 江智军, 杨晓辉.一种基于功率闭环控制的改进全局MPPT方法[J].电力系统保护与控制, 2018, 46(1): 57-62.
WU Zhicheng, JIANG Zhijun, YANG Xiaohui.An improved global MPPT method based on power closed-loop control[J].Power System Protection and Control, 2018, 46(1): 57-62.
[12] 商立群, 朱伟伟.基于全局学习自适应细菌觅食算法的光伏系统全局最大功率点跟踪方法[J].电工技术学报, 2019, 34(12): 2606-2614.
SHANG Liqun, ZHU Weiwei.Photovoltaic system global maximum power point tracking method based on the global learning adaptive bacteria foraging algorithm[J].Transactions of China Electrotechnical Society, 2019, 34(12): 2606-2614.
[13] SHANG L, ZHU W, LI P, et al.Maximum power point tracking of PV system under partial shading conditions through flower pollination algorithm[J].Protection and Control of Modern Power Systems, 2018, 3(4): 400-406.
[14] SEN T, PRAGALLAPATI N, AGARWAL V, et al.Global maximum power point tracking of PV arrays under partial shading conditions using a modified particle velocity-based PSO technique[J].IET Renewable Power Generation, 2018, 12(5): 555-564.
[15] PREMKUMAR M, SOWMYA R.An effective maximum power point tracker for partially shaded solar photovoltaic systems[J].Energy Reports, 2019, 5: 1445-1462.
[16] TEY K S, MEKHILEF S, SEYEDMAHMOUDIAN M, et al.Improved differential evolution-based MPPT algorithm using SEPIC for PV systems under partial shading conditions and load variation[J].IEEE Transactions on Industrial Informatics, 2018, 14(10): 4322-4333.
[17] 盛四清, 陈玉良, 张晶晶.基于差分进化人工蜂群算法的光伏最大功率跟踪策略研究[J].电力系统保护与控制, 2018, 46(11): 23-29.
SHENG Siqing, CHEN Yuliang, ZHANG Jingjing.Research on maximum power point tracking strategy based on differential evolution artificial bee colony algorithm of photovoltaic system[J].Power System Protection and Control, 2018, 46(11): 23-29.
[18] MANICKAM C, RAMAN G R, RAMAN G P, et al.A hybrid algorithm for tracking of GMPP based on P&O and PSO with reduced power oscillation in string inverters[J].IEEE Transactions on Industrial Electronics, 2016, 63(10): 6097-6106.
[19] 朱梓嘉, 肖辉, 赵帅旗, 等.基于并行组合进化算法的光伏阵列最大功率点追踪[J].电力系统保护与控制, 2020, 48(4): 1-10.
ZHU Zijia, XIAO Hui, ZHAO Shuaiqi, et al.Maximum power point tracking of photovoltaic array based on parallel combination evolutionary algorithm[J].Power System Protection and Control, 2020, 48(4): 1-10.
[20] MOHANTY S, SUBUDHI B, RAY P K.A grey wolf-assisted perturb & observe MPPT algorithm for a PV system[J].IEEE Transactions on Energy Conversion, 2016, 32(1): 340-347.
[21] 吴忠强, 谢宗奎, 王国勇, 等.一种基于改进羊群算法的光伏系统最大功率跟踪策略[J].电子学报, 2020, 48(10): 2017-2024.
WU Zhongqiang, XIE Zongkui, WANG Guoyong, et al.A maximum power point tracking strategy for photovoltaic system based on improved sheep behaviors optimization[J].Acta Electronica Sinica, 2020, 48(10): 2017-2024.
[22] 张明锐, 陈喆旸, 韦莉.免疫萤火虫算法在光伏阵列最大功率点跟踪中的应用[J].电工技术学报, 2020, 35(7): 1553-1562.
ZHANG Mingrui, CHEN Zheyang, WEI Li.Application of immune firefly algorithms in photovoltaic array maximum power point tracking[J].Transactions of China Electrotechnical Society, 2020, 35(7): 1553-1562.
[23] AHMED J, SALAM Z.A maximum power point tracking (MPPT) for PV system using cuckoo search with partial shading capability[J].Applied Energy, 2014, 119:118-130.
[24] 赵帅旗, 肖辉, 刘忠兵, 等.基于CSA-IP&O的局部遮阴下光伏最大功率点追踪[J].电力系统保护与控制, 2020, 48(5): 26-32.
ZHAO Shuaiqi, XIAO Hui, LIU Zhongbing, et al.Photovoltaic maximum power point tracking under partial shading based on CSA-IP&O[J].Power System Protection and Control, 2020, 48(5): 26-32.
[25] PENG B R, HO K C, LIU Y H.A novel and fast MPPT method suitable for both fast changing and partially shaded conditions[J].IEEE Transactions on Industrial Electronics, 2017, 65(4): 3240-3251.
[26] NUGRAHA D A, NUGRAHAD A, LIAN K L.A novel MPPT method based on Cuckoo search algorithm and golden section search algorithm for partially shaded PV system[J].Canadian Journal of Electrical and Computer Engineering, 2019, 42(3): 173-182.
[27] 刘宜罡, 邹应全, 张晓强, 等.基于差分进化的光伏MPPT算法改进[J].太阳能学报, 2020, 41(6): 264-271.
LIU Yigang, ZOU Yingquan, ZHANG Xiaoqiang, et al.An improved photovoltaic MPPT algorithm based on differential evolution algorithm[J].Acta Energiae Solaris Sinica, 2020, 41(6): 264-271.
PV power point tracking based on adaptive cuckoo search and perturbation observation method
SHANG Liqun, LI Fan
(School of Electrical and Control Engineering, Xi’an University of Science and Technology, Xi'an 710054, China)
When a photovoltaic array panel is exposed to uneven light, the power-voltage (-) characteristic curve becomes multi-peaked, and conventional maximum power point tracking (MPPT) algorithms will not be able to track the correct global maximum power point (GMPP), and artificial intelligence algorithms with global search capabilities are usually highly parameterized and complex.To address the above problems this paper proposes a composite tracking algorithm combining the adaptive cuckoo algorithm and perturbation observation method (ACS-P&O).This improved method takes the switching probabilities and Lévy flight step coefficients from the cuckoo search (CS) algorithm and adaptively adjusts them to extend the search range of the algorithm at an early stage.The introduction of a processing strategy for bounding individuals further reduces the number of algorithm iterations.The improved algorithm makes it easier for the system to jump out of the local maximum power point (LMPP), while at a later stage the algorithm operates precisely in a small area, improving the local exploitation capability.The addition of the perturbation and observation (P&O) method mitigates power oscillations when the system is located near the GMPP and stabilizes the output.Simulation results show that the ACS-P&O composite algorithm can adapt to the effects of environmental changes and track the GMPP quickly and accurately.
photovoltaic; MPPT; adaptive cuckoo search algorithm; perturbation and observation method; Lévy flight; boundary individuals
10.19783/j.cnki.pspc.211309
2021-09-25;
2021-11-12
商立群(1968—),男,博士,教授,研究方向为电力系统分析与控制、新能源发电及微网技术;E-mail: shanglq@ xust.edu.cn
李 帆(1996—),女,硕士研究生,研究方向为光伏发电及并网技术。E-mail: 903806082@qq.com
陕西省自然科学基金项目资助(2021JM-393)
This work is supported by the Natural Science Foundation of Shaanxi Province (No.2021JM-393).
(编辑 张爱琴)