关于唑类骨架构建的进展研究
2022-04-02张幸
张幸
摘要:吡唑、咪唑、三唑、噁唑、異噁唑、噻唑、异噻唑等都属于唑类衍生物,是常见且重要的五元杂环化合物。本文叙述了构建唑类骨架的最新进展,丰富了该类衍生物的合成研究。
关键词:吡唑;咪唑;三唑;噁唑;异噁唑;噻唑;异噻唑
中图分类号:A 文献标识码:A
唑类衍生物[1]是常见且重要的杂环化合物,包括吡唑[2]、咪唑[3]、三唑[4]、噁唑[5]、异噁唑[6]、噻唑[7]、异噻唑[8]等不同的结构(图1)。国内外众多课题组对唑类骨架进行了细致的研究[9-10]。本文报道了近年来关于该类衍生物的最新合成进展,丰富了该类骨架的构建及修饰研究。
1 构建吡唑骨架
Kawai H等在室温下构建了吡唑骨架。该反应从三氟甲磺酸取代的芳炔和异喹啉衍生物出发,经过一锅两步反应,合成了三环稠合的吡唑并异喹啉衍生物(图2)。
2 构建咪唑骨架
Yang H等构建了咪唑骨架。该反应的原料为甲亚胺叶立德和三氟乙酰亚胺基氯,在氧化银催化下,经过异构化环化、氧化等过程,高效合成了多取代的咪唑衍生物(图3)。
3 构建三唑骨架
Cui X等构建了三唑骨架。该反应的原料为烯胺酮和重氮化合物,经过互变异构、去质子化、亲核加成、Regitz重氮转移、环化等过程,区域选择性地合成了三唑衍生物(图4)。
4 构建噁唑骨架
Hu J等构建了噁唑骨架。该反应涉及电化学脱硫环化过程,通过分子间C-N键和C-O键的构建,合成了噁唑-2-胺衍生物(图5)。
5 构建异噁唑骨架
Gao H等构建了异噁唑骨架。该反应的原料为N-苯氧基酰胺与α,α-二氟亚甲基炔烃,通过铑催化的氧化还原中性[4 + 1]反应,合成了苯并异噻唑衍生物(图6)
6 构建噻唑骨架
Wang H等构建了噻唑骨架。该反应以可见光为催化剂,通过分子内C-S键的形成,合成了噻唑衍生物(图7)。
7 构建异噻唑骨架
Gyujto I等构建了异噻唑骨架。该反应的原料为苯并噻二嗪二氧化物,通过氮杂-[1,2]-Wittig重排过程,简洁高效地合成了苯并异噻唑衍生物(图8)。
8 结论
本文叙述的关于吡唑、咪唑、三唑、噁唑、异噁唑、噻唑、异噻唑等唑类衍生物的合成方法,具有区域选择性高、温度适中、产率优良等优点,但同时也具有原料不易制得、易爆炸、后处理不便等缺点。以上述文献为指导,可以更好地探究构建唑类骨架的新法。
参考文献
[1]Long Zhang, Wanyuan Deng, Baoqi Wu, Long Ye, Xiaofei Sun, Zhenfeng Wang, Ke Gao, Hongbin Wu, Chunhui Duan, Fei Huang, Yong Cao, Reduced Energy Loss in Non-Fullerene Organic Solar Cells with Isomeric Donor Polymers Containing Thiazole π-Spacers [J]. ACS Applied Materials & Interfaces, 2020, 12, 1, 753-762.
[2]Jatinder Singh, Richard J. Staples, Jean’ne M. Shreeve, Pushing the Limit of Nitro Groups on a Pyrazole Ring with Energy-Stability Balance [J]. ACS Applied Materials & Interfaces, 2021, 13, 51, 61357-61364.
[3]Rebecca Meißner, Linda Feketeová, Anita Ribar, Katharina Fink, Paulo Limão-Vieira, Stephan Denifl, Electron Ionization of Imidazole and Its Derivative 2-Nitroimidazole [J]. Journal of the American Society for Mass Spectrometry, 2019, 30, 12, 2678-2691.
[4]Thomas E. La Cruz, Daniel S. Treitler, Annie Tam, Kristine M. Smith, Simon Leung, Charles Pathirana, Michael Peddicord, Yu Fan, Dale Vanyo, Joerg Deerberg, Process Development and Scale-up of a Multicomponent Synthesis of a 3-Methyl-1-aryl-1,2,4-triazole Building Block [J]. Organic Process Research & Development, 2020, 24, 2, 279-285.
[5]Edward Sisco, Korry L. Barnes, Design, Synthesis, and Biological Evaluation of Novel 1,3-Oxazole Sulfonamides as Tubulin Polymerization Inhibitors [J]. ACS Medicinal Chemistry Letters, 2021, 12, 6, 1030-1037.
[6]Xin-Lin Sun, Zhen-Meng Ji, Shao-Peng Wei, Zhi-Qin Ji, Design, Synthesis, and Herbicidal Activity of N-Benzyl-5-cyclopropyl-isoxazole-4-carboxamides [J]. Journal of Agricultural and Food Chemistry, 2020, 68, 51, 15107-15114.
[7]Zengbing Bai, Qingqing Chen, Jun Gu, Chuangxu Cai, Jie Zheng, Wangjian Sheng, Shandong Yi, Fang Liu, Huan Wang, Late-Stage Functionalization and Diversification of Peptides by Internal Thiazole-Enabled Palladium-Catalyzed C(sp3)–H Arylation [J]. ACS Catalysis, 2021, 11, 24, 15125-15134.
[8]Weibo Wang, Zhixinyi Li, Wei Gao, Xiaoyu Liu, You Lv, Zesheng Hao, Liangfu Tang, Kun Li, Bin Zhao, Zhijin Fan, Design, Synthesis, and Evaluation of Novel Isothiazole-Purines as a Pyruvate Kinase-Based Fungicidal Lead Compound [J]. Journal of Agricultural and Food Chemistry, 2021, 69, 32, 9461-9471.
[9]Songsong Li, Hao Yu, Kenneth Schwieter, Kejia Chen, Bo Li, Yun Liu, Jeffrey S. Moore, Charles M. Schroeder, Charge Transport and Quantum Interference Effects in Oxazole-Terminated Conjugated Oligomers [J]. Journal of the American Chemical Society, 2019, 141, 40, 16079-16084.
[10]Serena Ferrini, Jay Zumbar Chandanshive, Stefano Lena, Mauro Comes Franchini, Giuseppe Giannini, Andrea Tafi, Maurizio Taddei, Ruthenium-Catalyzed Synthesis of 5-Amino-1,2,3-triazole-4-carboxylates for Triazole-Based Scaffolds: Beyond the Dimroth Rearrangement [J]. The Journal of Organic Chemistry, 2015, 80, 5, 2562-2572.
基金項目:滁州城市职业学校级教研课题:医学检验技术专业课程思政优秀教学团队;滁州城市职业学校级横向课题:合成多环稠合的4-酯基吲哚。