杉木高世代育种群体和一代群体遗传基础的比较研究及早期初选
2022-03-22包小梅华朝晖叶金俊王海蓉齐明何贵平
包小梅, 华朝晖, 叶金俊, 王海蓉, 齐明, 何贵平
1. 浙江省遂昌县生态林业发展中心,浙江 遂昌 323300;
2. 中国林业科学研究院亚热带研究所,浙江 富阳 311400
杉木(Cunninghamia lanceolata)是我国南方最主要的用材树种之一。杉木的遗传改良倍受政府的重视。目前浙江省的杉木育种已深入到第三代,并展开了后代测定工作。杉木高世代育种群体中的亲本是多性状与高强度选择的结果,其育种群体的遗传基础是否窄化是一个值得研究的问题。
李梅[10]采用RAPD分子标记,对杉木第一代,第二代和第三代育种群体的遗传多样性进行了系统研究,发现各个育种世代的育种群体,其遗传基础并没有窄化,而且其遗传多样性比天然群体的遗传多样性还高。但这是从群体遗传学的角度来研究育种群体的遗传多样性,其中关于杉木第一代或第三代育种群体的子代遗传变异这方面的研究渐多,但就杉木第一代与第三代试验材料间的比较研究还不多见。
研究以杉木一代自由授粉试验林为参照对象,从数量遗传学的角度,通过比较两个良种基地:长乐余杭的杉木第一代的子代试验林与浙江龙泉的第三代的子代试验林树高的遗传变异,来研究杉木第一代和第三代生长等性状为直接选择改良目标时,对育种群体的遗传基础带来的影响。研究杉木三代初级种子园中亲本自由授粉试验林生长性状的遗传变异性,通过比较,了解三代育种群体的遗传基础是否变窄,为高世代遗传改良提供科学依据;并根据三代试验分析结果,逆向选择了若干家系,同时还估计了前向选择的单株遗传力,为杉木第四代改良做准备。
1 材料和方法
1.1 研究材料
浙江省龙泉杉木3代育种园中的亲本,有70%以上的亲本是从余杭长乐林场的2代杉木子代试验林中选择而来。研究使用的两类材料,它们都与余杭长乐杉木良种基地上的育种材料有联系,并且参试家系是从杉木育种园随机抽取,因此其群体的遗传基础间具有可比性。从浙江龙泉杉木第3代初级种子园中随机挑选若干亲本自由授粉家系,于2015和2016分别在龙泉、遂昌两个地点进行造林试验,本研究仅涉及遂昌县的杉木高世代子代试验结果,遂昌县有两批高世代自由授粉子代试验。其中一个试验点为东丈,参试材料为31份,包括3份对照:龙15、闽33和杉木二代混合种子;另一个试验点为郑岗岭,参试材料为29份,包括3份对照:龙混二代,福建第3代杉木种子园的混合种子和龙15半同胞家系的种子。野外田间试验设计为完全随机区组,4株纵行小区,10次重复。2016年春对东丈片试验林进行调查,测定了幼林树高等性状;2017年对郑岗岭两年生的杉木试验林进行了调查,测定了树高和地径,因地径测量误差太大,故仅对幼林树高进行分析。
参照群体是余杭长乐林场杉木一代初级种子园中随机挑选的自由授粉家系子代试验林,出栽地江西分宜大岗山砚里林场,参试家系有54个,外加一个对照,随机区组设计,10个区组重复,5株单行小区.调查分析时有胸径、树高、材积、枝下高和枝高比.由于高世代群体只有树高一个性状,故参比群体也只列举了树高一个性状。
1.2 研究方法
根据田间试验的原理,完全随机区组属于正交设计,其试验获得的非平衡数据,可采用转化分析法的原理进行统计分析:即将4株纵行小区(或5株纵行小区)转化为单株小区,进行统计分析[1]。具体方法如下。
(1)转化后的线性模型:
yijk= u + fi+ bj+ eijk这 里: i = 1→a; j =1→b;k=1或0
上式中: yijk是第i个家系第j个重复第k株的表型观察值;u是群体平均效应;fi是家系效应;bj是重复效应;eijk是随机误差。
(2)期望均方
本研究中的三片试验林,其方差分析信息见表1[1]。
表 1 单因素随机区组不平衡数据的期望均方结构Tab. 1 Expected mean square structure of single factor random block unbalance data
上表中:K值是调节系数,由各因子的参试子代样数计算而来,具体计算公式如下:
(3)各因子效应方差份量的求解:
建立联立线性方程组如下:
解如上线性方程组,即得σe2, σf2,σb2
(4)遗传参数的分析
性状的遗传变异系数为:GCV=σf/群体平均值;表型变异系数为:PCV=σp/群体平均值
家系遗传力: hf2=σf2/[σf2+( k4/k3) σb2+(1/ k3) σe2]
单株遗传力: hi2=3*σf2/[σf2+σb2+σe2]
所有的数据采集、处理都是采用齐明开发的程序[2],在excel和 matlab7.0平台上进行。
2 结果与分析
2.1 杉木第3代试验林树高分析结果
随机模型条件下,遂昌杉木第3代两片高世代试验林的树高方差分析结果(见表2),可见遂昌东丈试点杉木第3代家系树高存在极显著的差异,这为选择杉木第3代亲本家系提供了科学依据。按研究方法所述,建立联立线性方程组,可计算各参数大小由表3可见,杉木高世代育种群体具有较宽的遗传基础,遗传变异系数达11.56%,且具有较高的遗传力:家系遗传力为88.25%;前向选择的单株遗传力为45.67%(见表3)。
郑岗岭试点杉木高世代自由授粉家系两年生树高方差分析结果列于表4,可见郑岗岭试点杉木高世代自由授粉家系两年生树高差异显著,这一结果与遂昌东丈试点的试验结果一致。同样仿上述方法,建立联立线性方程组,解方程后可计算各种参数,结果列于表5。由表5可见,杉木第3代育种群体具有较高的遗传变异,遗传变异系数达9.08%,家系遗传力达81.69%;前向选择的单株遗传力为30.66%,比东丈试点的单株遗传力略小。比较表3和表5的结果,可以发现杉木第3代育种群体,具有相类似的遗传变异性,根据树高的研究结果,可得出浙江省杉木高世代育种群体具有相类似和较宽广的遗传基础。
表 2 东丈试点杉木高世代自由授粉家系一年生树高方差分析结果Tab. 2 Variance analysis of annual seedling height of high generation open pollination families of Cunninghamia lanceolata at Dongzhang site
表 3 杉木高世代群体自由授粉家系遗传变异(东丈试点)Tab. 3 Genetic variation of first generation open pollinating families of Cunninghamia lanceolata at Dongzhang site
表 4 郑岗岭试点杉木高世代自由授粉家系两年生树高方差分析结果Tab. 4 Variance analysis of Cunninghamia lanceolata high-generation open pollinating families at biennial seedling height at Zhenggangling site
表 5 郑岗岭试点杉木高世代自由授粉家系两年生树高方差分析结果Tab. 5 Genetic variation of third generation open pollinating families of Cunninghamia lanceolata at Zhenggangling site
2.2 杉木第1代试验林树高分析结果
江西分宜亚林中心,大岗山砚里的杉木一代自由授粉子代试验林,树高的方差分析结果列于表6。由表6可知,第1代杉木自由授粉的家系在树高性状间存在极其显著的差异,这和杉木第3代试验结果一致。
由表7可见,杉木第1代家系具有较小的遗传变异,其遗传变异系数为5.28%,但拥有较高的家系遗传力(80.37%),这意味着杉木树高的改良要采取连续多世代改良,其改良效果较好;前向选择的单株遗传力表现正常,大小为24.63%,这表明杉木多世代改良很有价值。这已为杉木第3代改良的试验所证实。将表7与表3和表5进行比较,可以得出结果:随着改良世代的推进,杉木第3代育种群体遗传基础未窄化。以上这一结果也与马尾松(Pinus massoniana)多世代改良研究结果[8,9]一致。
表 6 杉木一代自由授粉家系8年生树高方差分析结果Tab. 6 Hight variance analysis of 8-year old trees in open pollinating families of Cunninghamia lanceolata
表 7 杉木1代自由授粉家系的遗传变异Tab. 7 Genetic variation of first generation open pollinating families of Cunninghamia lanceolata
2.3 杉木第3代家系树高、成活率的平均表现及速生家系的早期初选
两个试点,杉木高世代各家系树高、成活率的平均表现列于表8和表9。表8中群体平均值为60.4369 cm,群体标准差SD为15.5140 cm。1年生树高超过群体平均值的共有18个家系,1年生树高超过群体半倍的标准差(68.193 9)的家系有两个:b105-3;b42-3。成活率最高的家系亦有两个:B109-3,b13-3,其中b13-3的树高超过 B109-3。
表9中群体平均值为2.5438m,群体标准差SD为0.7222 m.两年生树高超过群体平均值的共有13个家系,1年生树高超过群体半倍的标准差(2.9049 m)的家系有两个:龙2代混,b03-3;成活率最高的家系有龙2代混,a09-3,1 339双,a76-3,b145-3,b03-3等六个家系。
3 讨论
(1)研究从杉木数量遗传学的角度,比较了杉木第3代育种群体的遗传多样性,结果表明:相对于一代育种群体,经多个世代的选择,树高性状在第3代育种园的遗传基础没有窄化,这可能与杉木第3代亲本选择材料广泛,同时控制较高的入选率和控制选择材料的亲缘关系等因素有关。杉木高世代育种具有良好的前景,这与李梅等人[10]从群体遗传学的角度研究的结果一致。
(2)统计结果表明,遂昌杉木第3代试验林的树高性状有较高家系遗传力,其大小在0.8以上,单株遗传力在0.3以上,遗传变异系数GCV在10%以上。其中遗传变异性GCV参数都超过杉木的一代树高的遗传变异性(GCV在5.28%左右),故杉木高世代育种中,只要对杉木经济性状(杉木树高))进行中度过选择,便可达到改良的目的。
表 8 杉木第3代自由授粉家系一年生树高、成活率(东丈试点)Tab. 8 One-year seedling height and survival rate of open pollinating families of advanced generations of Cunninghamia lanceolata at Dongzhang site
表 9 杉木第3代两年生自由授粉家系两年生树高、成活率(郑岗岭试点)Tab. 9 Biennial seedling height and survival rate of open pollinating families of advanced generation of Cunninghamia lanceolata at Zhenggangling site
(3)固定模型条件下,东丈试点的方差分析结果中,1年生树高超过群体平均值的共有18个家系,1年生树高超过群体倍半标准差(68.193 9)的家系有两个:b105-3和b42-3;郑岗岭试点的方差分析结果是两年生树高超过群体平均值的共有13个家系,1年生树高超过群体倍半的标准差(2.9049cm)的家系有两个:龙2代混和b03-3。这一结果与李寿茂等人[3-7]的研究结果不同,可能由研究材料或试验环境不同造成。陈岳武等人[3-7]的研究认为:杉木的树高性状早期选择要等到6—8年,本研究结果只是对杉木高世代亲本进行初选,同时由于浙江遂昌的两片杉木第3代试验林,因参试材料不同,试验环境各异,其试验结果缺乏可比性。
(4)两个试点的杉木造林成活率较高,说明龙泉参试的第3代杉木对试验环境适应性较好。其中,东丈试点成活率最高的家系亦有两个:B109-3和b13-3;郑岗岭试点成活率最高的家系有龙2代混、a09-3、1 339双、a76-3、b145-3和b03-3等6个家系,杉木苗木对环境的适应性是随着年龄的增加而增加[3,6,7],遂昌杉木幼年期表现出良好的适应性。从生态遗传学的角度来看,杉木的适应性性状可在2年生时进行选择,即不同的经济性状,选择年限不同。