APP下载

Rho激酶信号通路对小梁网细胞增殖作用机制的研究进展

2022-03-13刘璐姜文澜杨雪娇杨先

青岛大学学报(医学版) 2022年1期
关键词:细胞增殖信号系统青光眼

刘璐 姜文澜 杨雪娇 杨先

[摘要] 新型降眼压药物Rho激酶抑制剂直接作用于青光眼根本的致病部位——小梁网及小梁网细胞,通过调节细胞周期、细胞骨架,促进细胞增殖等多种机制降眼压。本文将针对Rho激酶信号通路对小梁网细胞增殖作用机制的研究进展进行综述。

[关键词] 青光眼;rho相关激酶类;信号系统;小梁网;细胞增殖;综述

[中图分类号] R775;R345.57

[文献标志码] A

[文章编号] 2096-5532(2022)01-0155-04

doi:10.11712/jms.2096-5532.2022.58.007

青光眼是不可逆性盲的主要病因[1]。降眼压是唯一被证实可延缓青光眼进展的干预措施[2]。已有研究结果显示,与同年龄段正常人相比较,青光眼病人小梁网细胞(TMC)数量减少、小梁网(TM)结构及功能障碍,导致房水外流阻力增加[3-5],从而引起眼压升高。近来发现Rho激酶抑制剂(ROCKi)通过调控TMC细胞骨架降低房水外流阻力,并在被日本和美国批准使用[6-7]。相关研究结果显示,ROCKi可促进人角膜内皮细胞(CEC)的增殖[8-9]。在人眼的胚胎发育中,TMC和CEC均来源于神经嵴[10]。本课题组前期研究结果显示,ROCKi有促进TMC增殖的作用,而对于ROCKi促进TMC增殖机制的研究,则有助于发现青光眼治疗新的靶点。本文将针对Rho/Rho激酶(ROCK)信号通路在促TMC增殖作用的机制展开综述。

1 ROCK对细胞增殖影响的研究现状

1.1 ROCK对细胞增殖的作用

ROCK属于小G蛋白家族,在体内主要通过调节细胞骨架、细胞形态与极性、细胞运动、囊泡运输、细胞周期进展、细胞增殖以及新基因的表达等来发挥其功能[11]。已有研究结果表明,激活ROCK信号通路可以促進多种肿瘤细胞的增殖[12]。在PC-3和DU145人前列腺癌细胞中,ROCK可以通过靶向LIM激酶-1和基质金属蛋白酶-2促进肿瘤细胞的增殖[13];色域螺旋酶DNA结合蛋白4通过调节PHD指状蛋白5,进而激活ROCK促进非小细胞肺癌肿瘤细胞的增殖[14]。NOBLET等[15]的研究结果也显示,瘦素可以通过ROCK信号通路促进血管平滑肌细胞的增殖。ROCK的过度表达通过作用于雌激素进而促进人子宫内膜上皮细胞的增殖[16]。此外,ROCKi可能通过TGF-β信号转导或LPA诱导的纤维化反应来抑制成纤维细胞向肌成纤维细胞的转化[17],从而抑制青光眼诱导的成纤维细胞的增殖[18]。然而,抑制ROCK也可促进多种细胞的增殖。ROCKi(Y-27632)能通过ERK/MAPK途径促进牙周膜干细胞增殖[19];Y-27632通过上调Noggin蛋白的表达促进人类脱落乳牙干细胞的增殖[20];还可通过旁分泌信号通路促进黑素细胞的增殖[21]。所以,ROCK信号通路对不同细胞的增殖可能产生不同的作用。

1.2 ROCK在眼部促增殖的作用

在眼部,ROCKi可促进人类CEC的增殖[22],局部使用ROCKi对于治疗大疱性角膜病、Fushs角膜营养不良以及局灶性水肿的角膜内皮功能障碍均有重要作用[23-24]。在人眼的发育过程中,角膜内皮和基质、小梁网、大部分巩膜和睫状肌等都是由神经嵴衍生出来的,而所有的血管内皮、其余部分巩膜、Schlemm管和眼外肌肉等都来自中胚层[25]。神经嵴细胞是通过上皮-间充质转化从背神经管产生的多能迁徙细胞[26]。神经嵴细胞的迁徙遍布整个胚胎,小GTP酶的活性、细胞骨架的重塑、细胞的黏附和细胞膜的运动都是其有效的定向迁徙所必需的。已有研究结果显示,角膜内皮在其整个生命周期中处于细胞周期的G1期,而细胞周期G1/S过程的调节在细胞增殖中起核心作用。有丝分裂刺激诱导细胞进入G1期,G1期是细胞复制DNA的准备阶段,ROCKi激活PI3-激酶信号,随之调节G1/S进展所需通路(细胞周期蛋白-D1(cycliinD1)、cyclinD 3上调[27];周期蛋白依赖性激酶(CDK)2和CDK4、CKD6的上调,以及P27的下调[27]),从而促进CEC增殖。可以认为ROCKi主要通过调控CEC的细胞周期进而调控其细胞增殖。此外,研究还发现激活Rho-ROCK-经典骨形态蛋白信号与mi302b-Oct4-Sox2-Nanog的网络激活相关联,可以将成年CEC重新编程为神经嵴样细胞[28]。

此外,研究发现ROCKi对眼部其他细胞也有促增殖作用[29-32]。ROCKi可增加视网膜神经节细胞轴突的再生[29];可通过诱导参与细胞的多种成分来促进视网膜色素上皮细胞增殖、附着,并抑制其凋亡[30-31]。ROCKi还可诱导体外培养的角膜缘上皮细胞的增殖并促进体内上皮伤口愈合[32]。

2 TMC增殖的研究现状

TMC是一种兼有内皮细胞、肌成纤维细胞、巨噬细胞的特性为一体的特殊细胞,主要负责调节房水的流出阻力[33]。有研究表明,TMC保留了成年干细胞的特性[34]。小梁网干细胞(TMSCs)可以在眼球的TM组织中存在,并有能力分化为TMC,从而诱导TM再生[34]。ZHU等[35]发现,在转基因小鼠青光眼模型中移植诱导多能干细胞衍生TM样细胞(iPSC-TM)可以刺激其眼内源性TMC的增殖,从而增加房水流出,降低眼压。另有研究表明,热休克蛋白70(Hsp 70)可以通过抑制Smad途径抑制TMC的凋亡,促进TMC的增殖[36]。WANG等[37]研究发现,H2O2可使TMC增殖显著减少,凋亡增加,而miR-17-5p可抑制H2O2的上述作用,使TMC的增殖显著增加。miR-144-3p的过度表达通过抑制氧化应激TMC中纤维连接蛋白-1的表达,促进TMC增殖与迁移[38]。miR-200c-3p的过度表达通过抑制半胱天冬酶-3(caspase-3)和凋亡调节因子 Bax的表达,靶向磷酸酶和张力蛋白(PTEN)激活PTEN/AKT/mTOR信号通路,分别增强TMC增殖,抑制TMC凋亡[39]。综上所述,TMC可认为是可再生细胞,通过促进其增殖来促进房水流出,进而降低眼压。

3 ROCKi促进TMC增殖的可能机制

3.1 ROCKi通过调控细胞周期促进TMC增殖

ROCK已被证明可以调节细胞周期,特别是调节诸多参与G1/S转换的基因表达,ROCK在有丝分裂中起关键作用[40-43]。在有丝分裂后期,ROCK直接通过调节肌动蛋白和肌球蛋白收缩环,参与胞质分裂[40]。然而,Rho/ROCK信号通路调控细胞周期的具体机制尚未完全清楚。研究证明,在多数肿瘤细胞,ROCK激活可以调节细胞G1/S期,上调cyclinD1,下调P21、P27的表达[41]。但也有研究表明,在肝细胞中抑制ROCK可以上调cyclinD1[42]。在CEC中,抑制ROCK可降低cyclinD1、cyclinD3、CDK4和CDK6的表达,并延缓细胞的核移位,进而延迟细胞进入S期[43]。不同细胞类型中ROCK抑制作用的差异表明,ROCK的下游效应信号可能取决于不同的细胞类型。

人TMC与CEC均起源于神经嵴细胞,如前所述,我们可以认为ROCKi可以通过调控细胞周期进而促进细胞增殖。细胞周期分为分裂间期(G1、S、G2)和分裂期(M)。细胞由G1期向S期转化主要受G1期CDK激酶及CDK激酶抑制剂的调控。细胞周期G1/S过程的调节在细胞增殖中起核心作用,G1期是细胞复制DNA的准备阶段。我们可以认为ROCKi通过激活PI3-激酶信号,随之调节G1/S期进展所需通路(引起cyclinD1、cyclinD3、CDK2、CDK4、CDK6表达的上调,以及P27的下调),从而促进TMC增殖,进而增加房水流出,降低眼压。

3.2 ROCKi促进TMC增殖的其他机制

研究表明,ROCK依赖细胞增殖的调节是通过抑制肌球蛋白收缩性来实现的[44]。WU等[45]发现,新型ROCKi(Y-27632)通过抑制caspase-3表達促进绒猴诱导的多能干细胞的增殖并减少其凋亡。在心血管疾病中,ROCK对内皮细胞增殖的影响主要归因于其对细胞骨架的作用。例如,局部黏着斑激酶的减少可以促进RhoA/ROCK活性,进而增强细胞骨架张力,创造一种促进增殖的条件[27]。此外,ROCK的活化诱导增加了β-连环蛋白及其转录靶点c-myc的表达,进而促进细胞系和小鼠表皮细胞的增殖[46]。

我们前期研究表明,ROCKi可以促进TMC的增殖,但其具体机制尚未明确。综上所述,我们可认为ROCKi可能通过调控细胞周期及相关因子、调节肌球蛋白收缩、调节细胞骨架、抑制caspase-3的表达和活性,以及调节β-连环蛋白、c-myc的表达来促进TMC增殖。见图1。

4 小结

ROCKi已经作为新型降眼压药物在国外上市,其降眼压的机制主要是通过改变TMC形态、细胞运动、平滑肌收缩、胞质分裂等影响细胞骨架,改变细胞外基质,增加房水流出,进而降低眼压。然而,我们的前期研究已表明,ROCKi可通过促进TMC增殖,达到中远期降眼压效果。但其具体机制十分复杂,可能通过调控细胞周期及相关因子、肌球蛋白收缩、细胞骨架,抑制caspase-3的表达和活性,以及调节β-连环蛋白、c-myc的表达来促进TMC增殖,增加房水外流,进而降低眼压。因此,还需要继续展开相关研究探索ROCKi促进TMC增殖的具体机制,明确其降眼压的相关机制,从而为临床应用新型降眼压药物提供更好的理论依据及支持。

[参考文献]

[1]STEIN J D, KHAWAJA A P, WEIZER J S. Glaucoma in adults-screening, diagnosis, and management: a review[J]. JAMA, 2021,325(2):164-174.

[2]SHALABY W S, SHANKAR V, RAZEGHINEJAD R, et al. Current and new pharmacotherapeutic approaches for glaucoma[J]. Expert Opinion on Pharmacotherapy, 2020,21(16):2027-2040.

[3]KUMAR A, XU Y, DU Y Q. Stem cells from human trabecular meshwork hold the potential to develop into ocular and no-nocular lineages after long-term storage[J]. Stem Cells and Development, 2020,29(1):49-61.

[4]YUN H, WANG Y, ZHOU Y, et al. Human stem cells home to and repair laser-damaged trabecular meshwork in a mouse model[J]. Commun Biol, 2018,1:216.

[5]ALVARADO J, MURPHY C, JUSTER R. Trabecular meshwork cellularity in primary open-angle glaucoma and nonglaucomatous normals[J]. Ophthalmology, 1984,91(6):564-579.

[6]KOMIZO T, ONO T, YAGI A, et al. Additive intraocular pressure-lowering effects of the rho kinase inhibitor ripasudil in japanese patients with various subtypes of glaucoma[J]. Japanese Journal of Ophthalmology, 2019,63(1):40-45.

[7]BERRINO E, SUPURAN C T. Rho-kinase inhibitors in the management of glaucoma[J]. Expert Opinion on Therapeutic Patents, 2019,29(10):817-827.

[8]KINOSHITA S, KOIZUMI N, UENO M, et al. Injection of cultured cells with a rock inhibitor for bullous keratopathy[J]. The New England Journal of Medicine, 2018,378(11):995-1003.

[9]SCHLTZER-SCHREHARDT U, ZENKEL M, STRUNZ M, et al. Potential functional restoration of corneal endothelial cells in fuchs endothelial corneal dystrophy by rock inhibitor (ripasudil)[J]. American Journal of Ophthalmology, 2021,224:185-199.

[10]TIAN H Y, SANDERS E, REYNOLDS A, et al. Ocular anterior segment dysgenesis upon ablation of p120 catenin in neural crest cells[J]. Investigative Ophthalmology & Visual Science, 2012,53(9):5139-5153.

[11]CROSAS-MOLIST E, SAMAIN R, KOHLHAMMER L, et al. Rhogtpase signalling in cancer progression and dissemination[J]. Physiological Reviews, 2021. doi:10.1152/physrev.00045.2020.

[12]HUMPHRIES B, WANG Z S, LI Y F, et al. Arhgap18 downregulation by mir-200b suppresses metastasis of triple-negative breast cancer by enhancing activation of rhoa[J]. Cancer Research, 2017,77(15):4051-4064.

[13]GONG H, ZHOU L, KHELFAT L, et al. Rho-associated protein kinase (rock) promotes proliferation and migration of pc-3 and du145 prostate cancer cells by targeting lim kinase 1 (limk1) and matrix metalloproteinase-2 (mmp-2)[J]. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 2019, 25:3090-3099.

[14]XU N, LIU F, WU S, et al. Chd4 mediates proliferation and migration of non-small cell lung cancer via the rhoa/rock pathway by regulating phf5a[J]. BMC Cancer, 2020,20(1):262.

[15]NOBLET J N, GOODWILL A G, SASSOON D J, et al. Leptin augments coronary vasoconstriction and smooth muscle proliferation via a rho-kinase-dependent pathway[J]. Basic Research in Cardiology, 2016,111(3):25.

[16]HUANG Z X, MAO X M, WU R F, et al. Rhoa/rock pathway mediates the effect of oestrogen on regulating epithelial-mesenchymal transition and proliferation in endometriosis[J]. Journal of Cellular and Molecular Medicine, 2020,24(18):10693-10704.

[17]HONJO M, TANIHARA H. Impact of the clinical use of rock inhibitor on the pathogenesis and treatment of glaucoma[J]. Japanese Journal of Ophthalmology, 2018,62(2):109-126.

[18]PITHA I, OGLESBY E, CHOW A, et al. Rho-kinase inhibition reduces myofibroblast differentiation and proliferation of scleral fibroblasts induced by transforming growth factor β and experimental glaucoma[J]. Translational Vision Science & Technology, 2018,7(6):6.

[19]WANG T, KANG W Y, DU L Q, et al. Rho-kinase inhibitor y-27632 facilitates the proliferation, migration and pluripotency of human periodontal ligament stem cells[J]. Journal of Cellular and Molecular Medicine, 2017, 21(11):3100-3112.

[20]YANG S, XIN C J, ZHANG B, et al. Synergistic effects of rho kinase inhibitor y-27632 and noggin overexpression on the proliferation and neuron-like cell differentiation of stem cells derived from human exfoliated deciduous teeth[J]. IUBMB Life, 2020,72(4):665-676.

[21]MI J, FENG Y, WEN J, et al. A rock inhibitor promotes keratinocyte survival and paracrine secretion, enhancing establishment of primary human melanocytes and melanocyte-keratinocyte co-cultures[J]. Pigment Cell & Melanoma Research, 2020,33(1):16-29.

[22]MEEKINS L C, ROSADO-ADAMES N, MADDALA R, et al. Corneal endothelial cell migration and proliferation enhanced by rho kinase (rock) inhibitors in in vitro and in vivo models[J]. Investigative Ophthalmology & Visual Science, 2016,57(15):6731-6738.

[23]MOURA-COELHO N, TAVARES FERREIRA J, BRUXELAS C P, et al. Rho kinase inhibitors-a review on the phy-siology and clinical use in ophthalmology[J]. Albrecht Von Graefes Archiv Fur Klinische Und Experimentelle Ophthalmologie, 2019, 257(6):1101-1117.

[24]KOIZUMI N, OKUMURA N, UENO M, et al. New therapeutic modality for corneal endothelial disease using rho-associated kinase inhibitor eye drops[J]. Cornea, 2014: S25-S31.

[25]GAGE P J, RHOADES W, PRUCKA S K, et al. Fate maps of neural crest and mesoderm in the mammalian eye[J]. Investigative Ophthalmology & Visual Science, 2005,46(11):4200-4208.

[26]THIERY J P. Epithelial-mesenchymal transitions in development and pathologies[J]. Current Opinion in Cell Biology, 2003,15(6):740-746.

[27]LIU J, WADA Y, KATSURA M, et al. Rho-associated coiled-coil kinase (rock) in molecular regulation of angiogenesis[J]. Theranostics, 2018,8(21):6053-6069.

[28]ZHU Y T, LI F, HAN B, et al. Activation of rhoa-rock-bmp signaling reprograms adult human corneal endothelial cells[J]. The Journal of Cell Biology, 2014, 206(6):799-811.

[29]DING J, YU J Z, LI Q Y, et al. Rho kinase inhibitor fasudil induces neuroprotection and neurogenesis partially through astrocyte-derived g-csf[J]. Brain, Behavior, and Immunity, 2009, 23(8):1083-1088.

[30]CROZE R H, THI W J, CLEGG D O. Rock inhibition promotes attachment, proliferation, and wound closure in human embryonic stem cell-derived retinal pigmented epithelium[J]. Translational Vision Science & Technology, 2016,5(6):7.

[31]NI Y, QIN Y, FANG Z, et al. Rock inhibitor y-27632 promotes human retinal pigment epithelium survival by altering cellular biomechanical properties[J]. Current Molecular Medicine, 2017,17(9):637-646.

[32]SUN C C, CHIU H T, LIN Y F, et al. Y-27632, a rock inhibitor, promoted limbal epithelial cell proliferation and cor-neal wound healing[J]. PLoS One, 2015,10(12):e0144571.

[33]BUFFAULT J, LABB A, HAMARD P, et al. The trabecular meshwork: Structure, function and clinical implications. A review of the literature[J]. Journal Francais d’Ophtalmologie, 2020,43(7):e217-e230.

[34]SUN H, ZHU Q, GUO P, et al. Trabecular meshwork cells are a valuable resource for cellular therapy of glaucoma[J]. Journal of Cellular and Molecular Medicine, 2019, 23(3):1678-1686.

[35]ZHU W, GODWIN C R, CHENG L, et al. Transplantation of ipsc-tm stimulates division of trabecular meshwork cells in human eyes[J]. Scientific Reports, 2020,10(1):2905.

[36]CAO Y N, GAO L, TANG R H, et al. Hsp70 protects human trabecular meshwork cells injury induced by uvb through smad pathway[J]. Die Pharmazie, 2017,72(6):334-337.

[37]WANG X Y, LI Z J, BAI J, et al. Mir-17-5p regulates the proliferation and apoptosis of human trabecular meshwork cells by targeting phosphatase and tensin homolog[J]. Molecular Medicine Reports, 2019,19(4):3132-3138.

[38]YIN R X, CHEN X Y. Regulatory effect of mir-144-3p on the function of human trabecular meshwork cells and fibronectin-1[J]. Experimental and Therapeutic Medicine, 2019,18(1):647-653.

[39]SHEN Y F, ZHU Y, RONG F. Mir-200c-3p regulates the proliferation and apoptosis of human trabecular meshwork cells by targeting pten[J]. Molecular Medicine Reports, 2020,22(2):1605-1612.

[40]DAVID M, PETIT D, BERTOGLIO J. Cell cycle regulation of rho signaling pathways[J]. Cell Cycle (Georgetown, Tex), 2012,11(16):3003-3010.

[41]COLEMAN M L, MARSHALL C J, OLSON M F. Ras and rho gtpases in g1-phase cell-cycle regulation[J]. Nature Reviews Molecular Cell Biology, 2004,5(5):355-366.

[42]WELSH C F. Rho gtpases as key transducers of proliferative signals in g1 cell cycle regulation[J]. Breast Cancer Research and Treatment, 2004,84(1):33-42.

[43]CHEN J, GUERRIERO E, LATHROP K, et al. Rho/rock signaling in regulation of corneal epithelial cell cycle progression[J]. Investigative Ophthalmology & Visual Science, 2008,49(1):175-183.

[44]KMPER S, MARDAKHEH F K, MCCARTHY A, et al. Rho-associated kinase (rock) function is essential for cell cycle progression, senescence and tumorigenesis[J]. eLife, 2016,5:e12994.

[45]WU Y H, SHU J H, HE C W, et al. Rock inhibitor y27632 promotes proliferation and diminishes apoptosis of marmoset induced pluripotent stem cells by suppressing expression and activity of caspase-3[J]. Theriogenology, 2016,85(2):302-314.

[46]SCHOFIELD A V, BERNARD O. Rho-associated coiled-coil kinase (rock) signaling and disease[J]. Critical Reviews in Biochemistry and Molecular Biology, 2013,48(4):301-316.

(本文編辑 于国艺)

3194500338270

猜你喜欢

细胞增殖信号系统青光眼
青光眼能治好吗?
地铁信号系统车站施工工艺研究
浅谈第一致盲眼病——青光眼
浅谈无锡地铁信号系统人机界面的应用与研究
防治青光眼,别只盯着眼睛看
地铁信号系统的维护方法与维修技术探析
miRAN—9对肿瘤调控机制的研究进展
人类microRNA—1246慢病毒抑制载体的构建以及鉴定
40岁以上人群青光眼患病率为2.6%
有关“细胞增殖”一轮复习的有效教学策略