生态沟渠对农田面源污染的消减机理及其影响因子分析
2022-02-15程浩淼葛恒军朱腾义冯绍元
程浩淼,季 书,葛恒军,朱腾义,冯绍元
·农业水土工程·
生态沟渠对农田面源污染的消减机理及其影响因子分析
程浩淼1,2,季 书1,葛恒军3,朱腾义1,冯绍元2※
(1. 扬州大学环境科学与工程学院,扬州 225127; 2. 扬州大学水利科学与工程学院,扬州 225127;3. 扬州市勘测设计研究院有限公司,扬州 225007)
农业生产过程中肥料和农药的大量施用,造成农田面源污染问题日益突出,开发农田面源污染的减控技术对生态修复具有重要的意义。生态沟渠不仅兼具农田排水沟的过水功能,同时是有效消减面源污染且适合中国农情的重要生态措施之一。该研究阐述了生态沟渠对农田面源污染的消减机理(底泥吸附及植物阻抗作用、植物/微生物吸收作用、降解去除作用);通过整理分析559组生态沟渠野外观测试验数据,剖析了污染物初始浓度、水力停留时间、植物种类、生物量这4个主要影响因子对农田排水中N、P及农药去除率的影响;进而采用多元线性回归模型将多因子影响与N、P及农药去除率之间建立定量关系。结果表明总氮和总磷的去除率随单一因子污染物初始浓度、水力停留时间或生物量增大而增大,但与植物种类没有显著关系(>0.05);且多元线性回归模型结果表明污染物初始浓度的对总氮/总磷去除率的贡献大于生物量。农药的去除率随水力停留时间、生物量增大而增大,随污染物初始浓度增大而减小,与植物种类没有显著关系(>0.05)。研究可为生态沟渠的合理构建和设计提供理论和技术支撑。
生物量;氮;磷;生态沟渠;去除率;初始浓度;水力停留时间
0 引 言
中国是一个农业大国,农田面积仅占世界的7%,但要养活世界22%的人口;施用肥料和农药是确保农作物稳产、高产与优产的重要手段。中国肥料、农药的单位面积用量分别是世界平均水平的2.5~3.0倍和2.0~2.5倍[1-2]。与此同时,中国肥料农药的利用率也低于世界平均水平:全球氮肥(N)、磷肥(P)、农药利用率分别为30%~60%,10%~20%和50%~60%[3-4],而中国分别为<35%,5%~10%和<40%[5]。大量施用于田间的N、P及农药会通过雨水冲刷、径流、淋溶渗漏等方式进入地表水或地下水,造成水体富营养化、生物多样性减少等生态风险[6-8]。因此,开发农田面源污染的减控技术对生态修复具有重要的意义。
目前,国内外农田面源污染的减控技术主要分为源头控制、末端控制和过程控制[9]。其中,过程控制具有处理效果好、管控方便、投入低等优势,已成为了当下控制面源污染的主要技术之一[10]。过程控制技术主要有生态沟渠、植被缓冲带、人工湿地等[11]。其中,生态沟渠是在原农田沟渠中种植具有净化功能的植物,构建独特的水-底泥-植物-微生物多介质系统[12]。在该系统中,农田尾水中的N、P及农药会经沉降吸附、植物吸收、微生物分解等环境过程,最终被逐渐消减。与植被缓冲带、人工湿地等相比,生态沟渠运行费用更低且占地更少(仅占农田面积的3%),在中国土地资源紧张的国情下有很好的推广应用前景[13-14]。
近年来,生态沟渠已成为中国处理农田面源污染的研究热点。张燕等[15]综述了生态沟渠对P的净化机理及影响因子,并探讨了增加其除P效果的控制措施,如蓄水、清淤、投加外源微生物等措施。Kumwimba等[16]综述了生态沟渠中营养盐及有机物的去除机理、影响因子,并提出了构建低级堰以刺激反硝化作用,进而提高N的去除率。钟珍梅等[6]综述了生态沟渠中常见植物及其治理效果,并指出可采取挺水植物、浮水植物和沉水植物的垂直搭配,实现去除N、P及农药的目的。先前的综述研究多集中于N、P的消减机理,而对农药去除效果的研究很少。同时,现有研究所考虑的影响因子通常为单一因子,而生态沟渠对农田面源污染物的去除效果是受到多重因子复合影响的。因此,亟需开展相关研究厘清多因子与面源污染去除率之间的交互关系。
基于以上背景,本文综述了生态沟渠消减农田面源污染的相关文献,阐明了生态沟渠对N、P及农药的消减机理及影响因子;探索了污染物初始浓度(Initial Concentration,IC)、水力停留时间(Hydraulic Retention Time,HRT)、植物种类(Plant Species,PS)、生物量(Plant Biomass,BM)对N、P及农药的去除率的影响;进而采用多元线性回归方程模型(Multiple Linear Regression Model,MLR),探索了N、P及农药去除率与多重影响因子与之间的定量关系,以期为提高生态沟渠的面源污染去除效果奠定理论基石,同时也为生态沟渠的合理构建和设计提供科学依据。
1 数据来源及处理
1.1 生态沟渠的野外观测试验数据收集
为探明生态沟渠系统对农田面源污染物(N、P及农药)的影响因子及去除效果,本文利用ISI Web of Science 和CNKI数据库,对生态沟渠去除N、P及农药的野外观测试验研究进行了系统地调研。检索标准如下:1)野外观测试验或Field experiment;2)生态沟渠、农田排水沟、Ecological ditch或Drainage ditch;3)农业面源污染或Agricultural non-point source pollution。通过系统性检索,获得有41篇相关文献(其中,SCI文献17篇,中文文献24篇),共计559组生态沟渠试验数据,文献时间跨度2001年1月—2022年4月。
1.2 统计分析方法
基于以上野外观测试验数据,生态沟渠对N、P及农药的去除效果主要影响因子有:IC、HRT、PS、BM。先进行单因子影响分析,具体试验数据分组如下:1)分析生态沟渠中污染物去除率与其对应IC的关系,包括:总氮(Total Nitrogen,TN)(64,为样本数量)[17-29]、NH4+-N(28)[17,27,29-31]、NO3--N(22)[13,17-18,25,29-30,32]、总磷(Total Phosphorus,TP)(40)[13,20-21,26-27]、PO43--P(16)[30,33]、农药(39)[34-39];2)分析污染物去除率与其对应HRT的关系,包括:TN(39)[20-22,24,28,36]、TP(34)[20-21,23,36]、农药(39)[34-39];3)分析污染物去除率与其对应PS的关系,包括:TN(=67)[21-23,27,30,36,40]、TP(=66)[13,19-21,23-27,32]、农药(=39)[34-39];4)分析污染物去除率与其对应BM的关系,包括:TN(36)[20,22-24,40-41]、TP(15)[20,23-24,40-41]、农药(15)[36,42-43]。其他影响因子,如温度、水力负荷、降雨、干湿交替等未在统计范围内。采用Pearson相关进行单因子分析,<0.05认为有显著相关性。
为探索TN、TP和农药去除率与其影响因子之间的相互关系,本文采用多元线性回归模型(MLR)进行分析,模型综合考虑单因子分析中的4个变量:IC、HRT、BM、PS。同时2>0.50且<0.05认为MLR有统计学意义。模型公式如下:
R=·IC+·HRT+·BM+·PS+(1)
式中R为污染物的去除率;下标为TN,TP和Pes,分别代表TN、TP和农药,三者对应的样本数量分别为35,28和39;、、、和均为标准化系数。
2 结果与分析
2.1 生态沟渠对农业面源污染的消减机理
生态沟渠对N、P及农药的去除方式主要有底泥吸附及植物阻抗作用、植物/微生物吸收作用、降解去除作用,见图1。其主要去除路径有:1)底泥吸附及植物阻抗作用:进入生态沟渠上覆水中的N、P和农药分子会沉降到底泥后被吸附[44];同时,植物对水流的阻抗作用,会增大HRT,也会加速污染物的沉降,并抑制污染物的再悬浮释放[45],从而增大底泥的吸附量。2)植物/微生物吸收作用:大量赋存于底泥的无机N、无机P和农药分子极易被植物及其根系微生物直接吸收并用于自身生长代谢[46-48]。3)植物/微生物降解作用:有机N在微生物作用下通过氨化/生物固定、亚硝化、硝化和反硝化作用生成气体被去除(图1a);颗粒态有机P在矿化作用下转化为磷酸盐并与活性Ca2+、Fe3+吸附结合成Ca(Fe-P)化合物[49-50](图1b);此外,农药还会通过脱氢、脱氯、水解、还原、羟基化、环破裂等过程降解[51](图1c)。
图1 生态沟渠中营养盐[29,45-46,49,52-53]及农药[42,51,54]的主要环境行为示意图
2.2 影响生态沟渠消减效果的影响因子
2.2.1 初始浓度
如图2f所示,Pes随着ICPes的增大而减小(<0.05)。这可能是农药的降解存在多重机理的结果:一方面,较高的ICPes会对生态沟渠内的降解微生物及植物产生毒性抑制作用,使微生物的代谢活动和植物的吸收作用减弱,进而延缓农药的降解[21];另一方面,底泥的吸附作用会增强农药的消解,但存在明显的拐点浓度。因此,ICPes越大,Pes越小。此外,还有研究表明不同种类的农药其降解半衰期及降解机制不同,其Pes随ICPes的变化规律也有所不同[32],难以得出一致的结论。
图2 初始浓度对营养盐及农药去除率的影响
2.2.2 水力停留时间
如图3a和3b所示,R均随着水力停留时间(HRT)增大而增大(为TN和TP)。当HRT>2 d时,R均集中在50%以上;当HRT>4 d时,R均在90%以上。有研究表明,HRT存在优化区间(TN: 0~5 d,TP: 0~4 d),当HRT≤4 d时,R上升较快,继续延长HRT,R增速放缓[40]。
对于TN(图3a),随着HRTTN的延长,TN也随之升高,这是因为较长的HRTTN使得植物根系泌氧量增加,传输到沟渠中的氧气量也随之增加,创造了利于微生物生长繁殖的好氧环境。同时,好氧环境也为硝化反硝化微生物提供了充足的反应底物,从而使硝化反硝化反应进行的更彻底[61]。并且,延长HRTTN可提高TN与基质中硝化微生物接触与反应时间,进一步提高TP[62]。还有研究指出,适当延长HRTTN可增加反应的稳定性[63]。类似地,Hunter等[64]研究称,6 d HRT(RTN=80%)时的RTN显著高于2 d HRT(RTN=53%)。
对于TP(图3b),它随着HRTTP的延长而升高,这是因为TP的去除主要依靠吸附沉淀作用,HRTTP越长,流速越慢,吸附质不易被冲走[65]。此外,延长HRTTP可以促进溶解性有机P转化为溶解性无机P,进而被植物吸收利用[66],并且有研究表明,当HRTTP为2 d时,TP仅为29%,而延长至6 d时,去除率可达到55%[64]。
如图3c所示,Pes随着HRTPes增大而增大。这可能是由于HRTPes越长,底泥吸附量和植物吸收量越大[54];同时,较长的停留时间也会给生态沟渠中的农药降解菌提供充足的反应时间,进而提高降解率[37]。此外,HRTPes的延长也会加强农药的光解作用。
图3 水力停留时间(HRT)对营养盐及农药去除率的影响
2.2.3 植物种类
如图4a和4b所示,PS(为TN和TP)对R的影响不显著(>0.05)。在菖蒲、茭白、芦苇、水葱、香蒲5种常见水生植物的处理下,TN、TP的均值分别为76.6±2.8%和79.1±2.7%;较小的均值波动(<2.8%)也说明了该5种水生植物对R的影响不大。张树楠等[20]的研究也得到类似的结论。
在图4c中,在芦苇、香蒲、美人蕉、再力花、灯芯草5种常见水生植物的处理下,除芦苇外其他4种植物对Pes的影响均无明显差异(>0.05),这可能是由于芦苇拥有较大的生物量,对农药的吸附量也会变大;同时,较大型的挺水植物也可以增加农药在生态沟渠中流阻,进而增加了农药的反应时间。此外,还有研究表明植物去除污染物的关键在于其根系及茎叶,水生植物根系不仅为微生物提供附着的载体,根系分泌物还为微生物提供碳源,为微生物的生存和繁殖创造良好的条件[67];同时通过茎叶的传送将光合作用产生的氧扩散到根区周围,使水中同时存在好氧和缺氧的环境,强化了各类微生物的协同作用,从而实现对污染物质的分解转化和去除[53,68]。因此,不同种类植物的在根系生物量相差较小的情况下(如:香蒲、美人蕉、再力花、灯芯草),对污染物的去除效果相差不大[69]。
注:图中箱体内长实线、三角分别代表中位线、均值;箱体表示25%和75%的四分位数,上、下边缘分别表示第95和第5个百分位数. 单个植物种类n<4不纳入统计。
2.2.4 生物量
生态沟渠内水生植物的BM是影响N、P去除率的关键因子之一。王令等[40]在长为80 m的沟渠研究水生植物的BM对N、P去除效果的影响,结果表明BM增大,TN、TP均有所升高。其中BM为1 453.6 g/m2时,TN为61.2%,TP为72.8%;BM为170.3 g/m2时,TN为51.8%,TP为64.8%。这与张树楠等[41]对5种生物量相差较大的水生植物对N、P的吸收效果的研究结果类似:5种试验植物的N、P吸收量与BM为呈显著的正相关(2=0.93,0.01)。其中,水生美人蕉的BM为3 100 g/m2,含N量为22.2 g/kg,含P量为3.0 g/kg。而灯芯草BM仅为1 300 g/m2,含N量仅为15.3 g/kg,含P量为3.3 g/kg。这表明BM越大,对N、P的吸收量越大。此外,余红兵等[69]指出同一水生植物不同部位对N、P的吸收量存在差异,通常地上部分的N、P吸收量均大于地下部分。并且从不同部位的N、P浓度分布看,同一水生植物地上部分的N、P浓度均明显大于地下部分,地上部分的N、P平均浓度是地下部分的5倍。这表明水生植物对N、P等污染物主要取决于地上部分的BM,植物地上部分可吸收N、P用于自身生长代谢,且BM越大,吸收量越大,而植物地下部分的作用更多在于为根系的微生物提供去除N、P的反应场所及氧气。
与N、P类似,Pes也会随着BM的增大而提高。Li等[43]研究了12种植物对三唑磷的去除,结果表明,BM较大的植物,Pes越高。这是因为BM大的植物往往根系发达,发达的根系会促进农药的吸附和吸收,同时,其根系附近的微生物群落种类多,数量大,活性高,从而促进了微生物对三唑磷的降解。此外,Wang等[70]在对菖蒲去除毒死蜱的研究中表明,菖蒲不同部位对毒死蜱的吸收量不同,其中以根状茎最多(60.8%),其次为根(38.1%)、叶(0.6%)和茎(0.5%)。这是由于根状茎的BM最大,约占总BM的38%,因此对毒死蜱吸收量大于其他部位。
2.2.5 其他影响因子
此外,温度、水力负荷、降雨、干湿交替等因子也是消减农田面源污染物的影响因素。通常情况下,温度升高,生态沟渠对N、P及农药的去除率也随之提高[18,71]。这是由于较高的温度会提升植物的光合作用和微生物的代谢速率[72],进而导致N、P及农药分子的快速循环和降解[73-74]。当生态沟渠长度一定,水力负荷越大,HRT越短,N、P及农药的去除率降低[75-76],同时水流速过大极易冲击底泥和植物根吸附的污染物,使其重新释放到水体中[77-78];水力负荷过低易造成生态沟渠底泥淤积,使水流不畅,影响去除效果。频繁的降雨会使生态沟渠的主要功能向农田排水转变,以确保农作物不淹不渍[79];此时,N、P及农药在沟渠内HRT会减少,进而削弱了沟渠的去除效果[15,66]。此外,沟渠的干湿交替状态会创造出好氧或厌氧的环境,对微生物生长代谢造成影响,但目前干湿交替的生态沟渠对N、P及农药去除率的研究较少[15]。
2.2.6 多因子与生态沟渠中面源污染去除率的关联分析
采用MLR对R与4个影响因子(IC、HRT、BMPS)进行定量分析(为TN、TP和Pes)。PS对R影响无明显差异。因此,在对TN、TP和农药的分析中,未考虑PS。
TN=0.55ICTN+0.51BMTN(2)
TP=0.73ICTP+0.30BMTP(3)
Pes=−0.50ICPes+0.36HRTPes(4)
MLR分析结果表明,TN、TP、Pes的决定性系数(2)分别为0.80(=36,<0.01)、0.92(=27,<0.01)、0.56(=39,<0.01),表明IC、HRT及BM对R有较好的拟合效果(2>0.50)。
对于TN和TP,MLR结果表明(式2~式3),IC和BM均与R存在显著正相关关系(<0.01)(为TN和TP)。这是由于IC和BM越高,植物吸收量与底泥吸附量越大[80];同时较高的IC促使植物根系发达,创造了好氧环境,进而为底泥中的微生物的生长代谢提供了良好的场所。但也有研究表明[81],IC过高会抑制生态沟渠内的植物生长;此外,底泥吸附的N、P达到饱和后会向水体重新释放,进而导致TN和TP下降。植物地上部分BM越大,对N、P的吸收量越大;如赵原等[82]在7种水生植物对N、P吸收量的研究表明,美人蕉地上部分BM为1.34 kg,其对N、P的吸收量分别为15.02、1.71 g/m2;而地上部分BM最小的菖蒲(0.45 kg),对N、P的吸收量分别为2.88、0.48 g/m2。MLR的标准化系数表明,IC对TN、TP的贡献大于BM。这可能是由于IC的升高既会刺激生态沟渠中植物的吸收作用,又会增强微生物作用,进而提高TN和TP。Geary等[83]研究表明,高浓度的N、P负荷下,N、P的去除主要依靠底泥吸附,而不是植物吸收。故IC较高时,BM对TN、TP的贡献较小。此外,HRT为式(2)~式(3)中的排除变量(>0.05),这是由于HRT与TN、TP可能存在非线性关系的,这也与图3的结果一致。
对于农药,根据MLR结果表明(式(4)),ICPes与Pes呈负相关关系。这可能是因为ICPes过高,农药对降解微生物及植物产生毒性抑制作用,使微生物的代谢活动和植物的吸收作用减弱,进而延缓农药的降解。也有研究表明[84],随着ICPes的增大,Pes呈现先升高后降低的规律;这可能是由于低ICPes的农药会刺激生态沟渠中的降解微生物及活性酶,而高ICPes有显著的抑制作用。此外,生态沟渠中不同种类农药对降解微生物的影响有明显差异。姜伟丽等[85]研究得出草甘膦在低ICPes时对降解微生物活性无显著影响,而高ICPes时会对其产生一定的激活作用;辛承友等[86]指出不同ICPes的阿特拉津对降解微生物活性的影响没有明显的规律性。同时,HRTPes与Pes呈正相关关系;这是由于HRTPes越长,植物吸收和底泥吸附作用越强,且微生物的反应时间越充足[87]。Smith等[88]研究表明,较短的HRTPes会导致农药还未完全沉降就被冲刷出生态沟渠,不利于农药的有效去除。此外,BMPes为式(4)中的排除变量(>0.05),这也说明了BMPes与Pes可能呈非线性关系的。这与Li[43]在12种植物对三唑磷的去除研究的结果一致。
3 结 论
近年来,生态沟渠已逐渐成为一种消减农田面源污染的重要生态措施,本文综述了当前生态沟渠对N、P及农药的处理效果的研究,并剖析污染物去除率与其对应的影响因子之间的定量关系,包括:初始浓度(Initial Concentration,IC)、水力停留时间(Hydraulic Retention Time,HRT)、生物量(Plant Biomass,BM)和植物种类(Plant Biomass,PS)(为TN 、TP或Pes),主要结论如下:
1)TN和TP的去除率均会随着其对应的IC、HRT、BM的增大而增大,这可能是由于较大的IC与HRT不仅促进了植物与底泥的吸附,同时也为底泥微生物降解提供了良好的生存场所和反应条件;BM越大,植物的养分需求量越大,同时其对水流的阻抗作用也越大,进而增大了HRT,进一步抑制营养盐的再悬浮。此外,多元线性回归模型(Multiple Linear Regression Model,MLR)结果表明,IC和BM与TN和TP的去除率显著正相关,同时IC对其去除率的贡献大于BM。PS与营养盐去除率不存在显著性关系。
2)对于农药,其IC越高,去除率越低,这可能是由于农药对降解微生物及植物产生毒性抑制作用,使微生物的代谢活动和植物的吸收作用减弱。HRT与BM越大,植物吸收和底泥吸附作用越强,且微生物反应的底物与时间也得到增强农药去除率越高。MLR结果表明,农药去除率与IC呈负相关关系,与HRT呈正相关关系。
3)目前针对生态沟渠消减农田面源污染的野外观测试验主要停留在单一因子上,仍需补充开展多重因子交互影响的观测试验研究;当前的研究主要考虑了IC、HRT、BM和PS等常规因子,仍需研究水文及环境因子对影响生态沟渠去除效果的影响,如温度、降雨、干湿交替等;生态沟渠对农药去除机制方面的研究目前仍处于起步阶段,需要综合分析农药结构性质、分异特性及其微生物学机制,为探明生态沟渠对农药去除机理的数据和理论支持。
[1] Liu Y B, Pan X B, Li J S. A 1961-2010 record of fertilizer use, pesticide application and cereal yields: A review[J]. Agronomy for Sustainable Development, 2015, 35(1): 83-93.
[2] Zhan X S, Shao C F, He R, et al. Evolution and efficiency assessment of pesticide and fertiliser inputs to cultivated land in China[J]. International Journal of Environmental Research and Public Health, 2021, 18(7): 3771.
[3] Glroto A S, Guimaraes G G F, Foschini M, et al. Role of slow-release nanocomposite fertilizers on nitrogen and phosphate availability in soil[J]. Scientific Reports, 2017, 7: 40632.
[4] Tarafder C, Daizy M, Alam M M, et al. Formulation of a hybrid nanofertilizer for slow and sustainable release of micronutrients[J]. Acs Omega, 2020, 5(37): 23960-23966.
[5] 李姗,沈成波. 调控作物硝态氮代谢和利用的研究进展[J/OL]. 南京农业大学学报,2022:1-9[2022-01-26]. https://kns.cnki.net/kcms/detail/32.1148.s.20220124.0915.002.html.
Li Shan, Shen Chengbo. Research progress on regulation of nitrate metabolism and utilization in crops[J/OL]. Journal of Nanjing Agricultural University, 2022: 1-9[2022-01-26]. (in Chinese with English abstract)
[6] 钟珍梅,黄毅斌,李艳春,等. 我国农业面源污染现状及草类植物在污染治理中的应用[J]. 草业科学,2017,34(2):428-435.
Zhong Zhenmei, Huang Yibing, Li Yanchun, et al. Current state of agricultural environmental pollution and herbaceous plants used in controlling pollution in China[J]. Pratacultural Science, 2017, 34(2): 428-435. (in Chinese with English abstract)
[7] 陶园,徐静,任贺靖,等. 黄河流域农业面源污染时空变化及因素分析[J]. 农业工程学报,2021,37(4):257-264.
Tao Yuan, Xu Jing, Ren Hejing, et al. Spatiotemporal evolution of agricultural non-point source pollution and its influencing factors in the Yellow River Basin[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(4): 257-264. (in Chinese with English abstract)
[8] 杜军,杨培岭,李云开,等. 不同灌期对农田氮素迁移及面源污染产生的影响[J]. 农业工程学报,2011,27(1):66-74.
Du Jun, Yang Peiling, Li Yunkai, et al. Effect of different irrigation seasons on the transfer of N in different types farmlands and the no-point pollution production[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(1): 66-74. (in Chinese with English abstract)
[9] 吴永红,胡正义,杨林章. 农业面源污染控制工程的“减源-拦截-修复”(3R)理论与实践[J]. 农业工程学报,2011,27(5):1-6.
Wu Yonghong, Hu Zhengyi, Yang Linzhang. Strategies for controlling agricultural non-point source pollution: Reduce-retain-restoration (3R) theory and its practice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of theCSAE), 2011, 27(5): 1-6. (in Chinese with English abstract)
[10] 邓雄. 农业非点源污染的研究进展、存在的问题及发展[J]. 中山大学学报(自然科学版),2007,46(增刊2):244-247.
Deng Xiong. The research progresses problems and prospects of non-point source pollution[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2007, 46(Suppl.2): 244-247. (in Chinese with English abstract)
[11] 单立楠,丁能飞,王洪才,等. 蔬菜地面源污染生态拦截系统与效果[J]. 农业工程学报,2013,29(20):168-178.
Shan Linan, Ding Nengfei, Wang Hongcai, et al. Effect of ecological interception system in reducing non-point source pollution from vegetable fields[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of theCSAE), 2013, 29(20): 168-178. (in Chinese with English abstract)
[12] 潘延鑫,冯绍元,井思媛,等. 盐碱化改良区农田排水沟水体与底泥界面微环境特征分析[J]. 农业工程学报,2021,37(2):258-167.
Pan Yanxin, Feng Shaoyuan, Jing Siyuan, et al. Characteristics analysis of micro-environment of sediment-water interface in drainage ditches in reclamation areas[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(2): 258-267. (in Chinese with English abstract)
[13] 黄俣晴,陈婷婷,李勇,等. 流域沟渠植草拦截农田氮磷入河污染的有效性研究[J]. 植物营养与肥料学报,2021,27(11):1993-2000.
Huang Yuqing, Chen Tingting, Li Yong, et al. Effectiveness of grass planting in drainage ditches to intercept nitrogen and phosphorus pollution from farmland into rivers[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(11): 1993-2000. (in Chinese with English abstract)
[14] Ren Y B, Ren N Q, Li X K, et al. Efficiency of urban wetlands in removing agricultural non-point source pollution[J]. Asian Journal of Chemistry, 2013, 25(9): 4726-4730.
[15] 张燕,阎百兴,刘秀奇,等. 农田排水沟渠系统对磷面源污染的控制[J]. 土壤通报,2012,43(3):745-750.
Zhang Yan, Yan Baixing, Liu Xiuqi, et al. Measures for controlling phosphorus from agricultural non-point source pollutions in drainage ditch systems[J]. Chinese Journal of Soil Science, 2012, 43(3): 745-750. (in Chinese with English abstract)
[16] Kumwimba M N, Meng F G, Iseyemi O, et al. Removal of non-point source pollutants from domestic sewage and agricultural runoff by vegetated drainage ditches (VDDs): Design, mechanism, management strategies, and future directions[J]. Science of the Total Environment, 2018, 639: 742-759.
[17] 周邶邶,冯钰婷,刘泉. 川中丘陵区生态沟渠对径流无机含氮化合物的截除效果[J/OL]. 西华师范大学学报(自然科学版),2021:1-8[2021-06-05]. https://kns.cnki.net/kcms/detail/ 51.1699.N.20210604.1346.002.html.
Zhou Beibei, Feng Yuting, Liu Quan. Interception effct of ecological ditches on inorganic nitrogenous compounds from runoff in hilly areas of central Sichuan[J/OL]. Journal of China West Normal University (Natural Sciences), 2021:1-8[2021-06-05]. https://kns.cnki.net/kcms/detail/51.1699.N. 20210604. 1346.002.html. (in Chinese with English abstract)
[18] Chen L, Liu F, Wang Y, et al. Nitrogen removal in an ecological ditch receiving agricultural drainage in subtropical central China[J]. Ecological Engineering, 2015, 82: 487-492.
[19] 金聪颖,韩建华,刘文政,等. 不同植物配置的生态沟渠对稻田氮磷养分流失拦截效果分析[J]. 天津农林科技,2020,73(3):4-5,7.
Jin Congying, Han Jianhua, Liu Wenzheng, et al. Analysis of the interception effect of ecological ditches with different plants on the loss of nitrogen and phosphorus in paddy fields[J]. Science and Technology of Tianjin Agriculture and Forestry, 2020, 73(3): 4-5, 7. (in Chinese with English abstract)
[20] 张树楠,肖润林,刘锋,等. 生态沟渠对氮、磷污染物的拦截效应[J]. 环境科学,2015,36(12):4516-4522.
Zhang Shunan, Xiao Runlin, Liu Feng, et al. Interception effect of vegetated drainage ditch on nitrogen and phosphorus from drainage ditches[J]. Environmental Science, 2015, 36(12): 4516-4522. (in Chinese with English abstract)
[21] 涂佳敏. 生态沟渠处理农田氮磷污水的实验与模拟研究[D]. 天津:天津大学,2014.
Tu Jiamin. Experiment and Simulation on Nitrogen and Phosphorus Removal of Ecological Ditch[D]. Tianjin: Tianjin University, 2014. (in Chinese with English abstract)
[22] Han H H, Cui Y L, Gao R, et al. Study on nitrogen removal from rice paddy field drainage by interaction of plant species and hydraulic conditions in eco-ditches[J]. Environmental Science and Pollution Research, 2019, 26(7): 6492-6502.
[23] Kumwimba M N, Dzakpasu M, Zhu B, et al. Uptake and release of sequestered nutrient in subtropical monsoon ecological ditch plant species[J]. Water Air and Soil Pollution, 2016, 227(11): 405.
[24] 王振旗,沈根祥,钱晓雍,等. 抗侵蚀型生态沟渠构建及其稻田应用效果[J]. 环境工程学报,2014,8(9):4047-4052.
Wang Zhenqi, Shen Genxiang, Qian Xiaoyong, et al. Construction of anti-erosion ecological ditch and its application effct in paddy field[J]. Chinese Journal of Environmental Engineering, 2014, 8(9): 4047-4052. (in Chinese with English abstract)
[25] Vymazal J, Brezinova T D. Removal of nutrients, organics and suspended solids in vegetated agricultural drainage ditch[J]. Ecological Engineering, 2018, 118: 97-103.
[26] Cui N X, Zhang X, Cai M, et al. Roles of vegetation in nutrient removal and structuring microbial communities in different types of agricultural drainage ditches for treating farmland runoff[J]. Ecological Engineering, 2020, 155: 105941.
[27] 乔斌. 农田生态沟渠对稻田降雨径流氮磷的去除实验与模拟研究[D]. 天津:天津大学,2016.
Qiao Bing. Experiment and Simulation Study of Agricultural Ecological Ditch on Nitrogen and Phosphorus Removal in the Rainfall Runoff of a Paddy Rice Field[D]. Tianjin: Tianjin University, 2016. (in Chinese with English abstract)
[28] Tyler H L, Moore M T, Locke M A. Influence of three aquatic macrophytes on mitigation of nitrogen species from agricultural runoff[J]. Water Air and Soil Pollution, 2012, 223(6): 3227-36.
[29] 张燕,阎百兴,祝惠,等. 三江平原农田源头排水沟渠截留排水中氮素动态[J]. 生态与农村环境学报,2012,28(2):176-180.
Zhang Yan, Yan Baixing, Zhu Hui, et al. Dynamics of nitrogen in farmland-originating drainage water retained in ditches in the Sanjiang plain[J]. Journal of Ecology and Rural Environment, 2012, 28(2): 176-180. (in Chinese with English abstract)
[30] 张燕. 农田排水沟渠对氮磷的去除效应及管理措施[D]. 长春:中国科学院研究生院(东北地理与农业生态研究所),2013.
Zhang Yan. Removal Effect and Management Measures of Nitrogen and Phosphorus in Agricultural Drainage Ditches[D]. Changchun: University of Chinese Academy of Sciences (Northeast Institute of Geography and Agroecology), 2013. (in Chinese with English abstract)
[31] Zhang S, Liu F, Xiao R, et al. Effects of vegetation on ammonium removal and nitrous oxide emissions from pilot-scale drainage ditches[J]. Aquatic Botany, 2016, 130: 37-44.
[32] 朱晓瑞,张春雪,郑向群,等. 天津地区生态沟渠不同植物配置对氮磷去除效果研究[J]. 环境污染与防治,2020,42(2):170-175.
Zhu Xiaorui, Zhang Chunxue, Zheng Xiangqun, et al. Study on nitrogen and phosphorus purification effect of different plant configurations in ecological ditch in Tianjin area[J]. Environmental Pollution & Control, 2020, 42(2): 170-175. (in Chinese with English abstract)
[33] 陈志超,张志勇,刘海琴,等. 4种水生植物除磷效果及系统磷迁移规律研究[J]. 南京农业大学学报,2015,38(1):107-112.
Chen Zhichao, Zhang Zhiyong, Liu Haiqin, et al. Research on removal efficiency of phosphorus by four aquatic macrophytes and rule of phosphorus migration in systems[J]. Journal of Nanjing Agricultural University, 2015, 38(1): 107-112. (in Chinese with English abstract)
[34] Lizotte R E, Moore M T, Locke M A, et al. Effects of vegetation in mitigating the toxicity of pesticide mixtures in sediments of a wetland mesocosm[J]. Water Air and Soil Pollution, 2011, 220(1/2/3/4): 69-79.
[35] 曲军辉. 人工湿地对三种农药去除效果的研究[D]. 苏州:苏州大学,2018.
Qu Junhui. Study on Removal Effect of Three Kinds of Pesticides by Constructed Wetlands[D]. Suzhou: Soochow University, 2018. (in Chinese with English abstract)
[36] 靳聪聪. 六种水生植物在农药面源污染控制中的作用研究[D]. 广州:暨南大学,2017.
Jin Congcong. The Role of Six Aquatic Plants in Non-point Source Pollution Control of Pesticides[D]. Guangzhou: Jinan University, 2017. (in Chinese with English abstract)
[37] 赵梦云,熊家晴,郑于聪,等. 植物收割对人工湿地中污染物去除的长期影响[J]. 水处理技术,2019,45(11):112-116.
Zhao Mengyun, Xiong Jiaqing, Zheng Yucong, et al. Long-term effect of plant harvesting on pollutants removal in constructed wetlands[J]. Technology of Water Treatment, 2019, 45(11): 112-116. (in Chinese with English abstract)
[38] 张继彪,王曦曦,李培培,等. 人工湿地处理甲胺磷废水的试验研究[J]. 环境科学与技术,2010,33(10):154-157.
Zhang Jibiao, Wang Xixi, Li Peipei, et al. Treatment of methamidophos wastewater with constructed wetland[J]. Environmental Science & Technology, 2010, 33(10): 154-157. (in Chinese with English abstract)
[39] 吴仲坚. 有机氯农药β-HCH在潜流人工湿地中的净化过程研究[D]. 桂林:桂林理工大学,2017.
Wu Zhongjian. Study on Purification Process of Organochlorine Pesticide-HCH in Subsurface Flow Constructed Wetland[D]. Guiling: Guilin University of Technology, 2017. (in Chinese with English abstract)
[40] 王令,王文杰,夏训峰. 生态沟渠对农村生活污水脱氮除磷效果的研究[J]. 环境科学与技术,2015,38(8):196-199.
Wang Ling, Wang Wenjie, Xia Xunfeng. Denitrification and phosphorus removal of rural sewage by ecological ditch[J]. Environmental Science & Technology, 2015, 38(8): 196-199. (in Chinese with English abstract)
[41] 张树楠,肖润林,余红兵,等. 水生植物刈割对生态沟渠中氮、磷拦截的影响[J]. 中国生态农业学报,2012,20(8):1066-1071.
Zhang Shunan, Xiao Runlin, Yu Hongbing, et al. Effects of cutting aquatic plants on nitrogen and phosphorus interception in ecological ditches[J]. Chinese Journal of Eco-Agriculture, 2012, 20(8): 1066-1071. (in Chinese with English abstract)
[42] 李本行. 生态沟渠和人工湿地组合系统处理两种农药的研究及工程方案设计[D]. 北京:北京林业大学,2017.
Li Benhang. Removal of Two Kinds of Pesticides by an Integrated Ecological Ditches with Constructed Wetland System and Engineering Design[D]. Beijing: Beijing Forestry University, 2017. (in Chinese with English abstract)
[43] Li Z, Xiao H P, Cheng S P, et al. A comparison on the phytoremediation ability of triazophos by different macrophytes[J]. Journal of Environmental Sciences, 2014, 26(2): 315-322.
[44] 梁雪,贺锋,徐栋,等. 人工湿地植物的功能与选择[J]. 水生态学杂志,2012,33(1):131-138.
Liang Xue, He Feng, Xu Dong, et al. Plant function and selection for constructed wetlands[J]. Journal of Hydroecology, 2012, 33(1): 131-138. (in Chinese with English abstract)
[45] 段四喜,张磊,杨芳,等. 典型生态拦截措施水质净化效果研究[J]. 农业资源与环境学报,2021:1-12[2021-04-21]. https://doi.org/10.13254/j.jare.2021.0026.
Duan Sixi, Zhang Lei, Yang Fang, et al. Study on water purification effect of typical ecological interception measures[J]. Journal of Agricultural Resources and Environment, 2021: 1-12[2021-04-21]. https://doi.org/10.13254/j.jare.2021.0026. (in Chinese with English abstract)
[46] 崔虎,王莉霞,欧洋,等. 湿地生态系统磷迁移转化机制研究进展[J]. 水生态学杂志,2020,41(2):105-112.
Cui Hu, Wang Lixia, Ou Yang, et al. Research progres on phosphorus migration and transformation in wetland ecosystem[J]. Journal of Hydroecology, 2020, 41(2): 105-112. (in Chinese with English abstract)
[47] 李华超,陈宗晶,陈章和. 六种湿地植物根际氧化还原电位的日变化[J]. 生态学报,2014,34(20):5766-5773.
Li Huachao, Chen Zongjing, Chen Zhanghe. Daily variation of the rhizosphere redox potential of six wetland plants[J]. Acta Ecologica Sinica, 2014, 34(20): 5766-5773. (in Chinese with English abstract)
[48] Kroger R, Moore M T. Phosphorus dynamics within agricultural drainage ditches in the lower Mississippi Alluvial Valley[J]. Ecological Engineering, 2011, 37(11): 1905-1909.
[49] 文湘华,钱易,顾夏声. 生物稳定塘碳、氮、磷物质迁移转化模型的研究[J]. 生态学报,1992,12(3):193-200.
Wen Xianghua, Qian Yi, Gu Xiasheng. An ecological model for biological stabilization pond[J]. Acta Ecologica Sinica, 1992, 12(3): 193-200. (in Chinese with English abstract)
[50] 杨大文,杨诗秀,莫汉宏. 农药在土壤中迁移及其影响因素的初步研究[J]. 土壤学报,1992,29(4):383-391.
Yang Dawen, Yang Shixiu, Mo Hanhong. Transport of pesticide in unsaturated soil and its influence factors[J]. Acta Pedologica Sinica, 1992, 29(4): 383-391. (in Chinese with English abstract)
[51] Lee S, Gan J K, Crowley D E, et al. Microbial transformation of pyrethroid insecticides in aqueous and sediment phases[J]. Environmental Toxicology and Chemistry, 2004, 23(1): 1-6.
[52] 徐红灯,席北斗,翟丽华. 沟渠沉积物对农田排水中氨氮的截留效应研究[J]. 农业环境科学学报,2007,26(5):1924-1928.
Xu Hongdeng, Xi Beidou, Zhai Lihua. Interception effect of ditch sediment on NH4+-N in agricultural drainage ditch[J]. Journal of Agro-Environment Science, 2007, 26(5): 1924-1928. (in Chinese with English abstract)
[53] 余红兵. 生态沟渠水生植物对农区氮磷面源污染的拦截效应研究[D]. 长沙:湖南农业大学,2012.
Yu Hongbing. Interception Effects of Aquatic plants on Nitrogen and Phosphorus Non-point Source Pollution of Agricultural Areas in Ecological Ditch[D]. Changsha: Hunan Agricultural University, 2012. (in Chinese with English abstract)
[54] Elsaesser D, Stang C, Bakanov N, et al. The landau stream mesocosm facility: Pesticide mitigation in vegetated flow-through streams[J]. Bulletin of Environmental Contamination and Toxicology, 2013, 90(6): 640-645.
[55] 王志荣,庄海峰,郑良燕,等. 生态沟渠对农田排水中菌群组分、耐药基因谱及氮磷浓度的影响[J]. 环境化学,2022,41(9):3055-3064.
Wang Zhirong, Zhuang Haifeng, Zheng Liangyan, et al. Effects of ecological ditches on bacterial community composition, antibiotic resistance gene profiles, nitrogen and phosphorus concentrations in farmland drainage[J]. Environmental Chemistry, 2022, 41(9): 3055-3064. (in Chinese with English abstract)
[56] 尹黎明,张树楠,李宝珍,等. 沟渠湿地技术对农业径流中氮去除机理及应用研究进展[J]. 农业现代化研究,2014,35(5):583-587.
Yin Liming, Zhang Shunan, Li Baozhen, et al. Progress of the ditch wetland technologies in research mechanism and application of removing nitrogen from agricultural surface runoff[J]. Research of Agricultural Modernization, 2014, 35(5): 583-587. (in Chinese with English abstract)
[57] 王迪,李红芳,刘锋,等. 亚热带农区生态沟渠对农业径流中氮素迁移拦截效应研究[J]. 环境科学,2016,37(5):1717-1723.
Wang Di, Li Hongfang, Liu Feng, et al. Interception effect of ecological ditch on nitrogen transport in agricultural runoff in subtropical China[J]. Environmental Science, 2016, 37(5): 1717-1723. (in Chinese with English abstract)
[58] 姜婷婷,李昱含,谢雨阳,等. 游离氨对污水生物脱氮的影响综述[J]. 应用化工,2020,49(9):2308-2312,2318.
Jiang Tingting, Li Yuhan, Xie Yuyang, et al. Review of the effect of free ammonia on biological nitrogen removal in wastewater[J]. Applied Chemical Industry, 2020, 49(9): 2308-2312, 2318. (in Chinese with English abstract)
[59] 张芳. 不同水生植物对富营养化水体净化效果和机理的比较[D]. 南京:南京理工大学,2016.
Zhang Fang. Comparison of Efficiency and Mechanisms in Eutrophic Water Treatment Using Different Types of Aquatic Plants[D]. Nanjing: Nanjing University of Science & Technology, 2016. (in Chinese with English abstract)
[60] 汪文强,王子芳,高明. 5种水生植物的脱氮除磷效果及其对水体胞外酶活的影响[J]. 环境工程学报, 2016,10(10):5440-5446.
Wang Wenqiang, Wang Zifang, Gao Ming. Efficiency of removing nitrogen and phosphorous and effects on extracellular enzyme activity in water body by five hydrophytesv[J]. Chinese Journal of Environmental Engineering, 2016, 10(10): 5440-5446. (in Chinese with English abstract)
[61] Kroger R, Holland M M, Moore M T, et al. Hydrological variability and agricultural drainage ditch inorganic nitrogen reduction capacity[J]. Journal of Environmental Quality, 2007, 36(6): 1646-1652.
[62] Kroger R, Cooper C M, Moore M T. A preliminary study of an alternative controlled drainage strategy in surface drainage ditches: Low-grade weirs[J]. Agricultural Water Management, 2008, 95(6): 678-684.
[63] Jia Z, Chen C, Luo W, et al. Hydraulic conditions affect pollutant removal efficiency in distributed ditches and ponds in agricultural landscapes[J]. Science of the Total Environment, 2019, 649: 712-721.
[64] Hunter R G, Combs D L, George D B. Nitrogen, phosphorous, and organic carbon removal in simulated wetland treatment systems[J]. Archives of Environmental Contamination and Toxicology, 2001, 41(3): 274-281.
[65] Bois P, Huguenot D, Norini M P, et al. Herbicide degradation and copper complexation by bacterial mixed cultures from a vineyard stormwater basin[J]. Journal of Soils and Sediments, 2011, 11(5): 860-873.
[66] 王晓玲,乔斌,李松敏,等. 生态沟渠对水稻不同生长期降雨径流氮磷的拦截效应研究[J]. 水利学报,2015,46(12):1406-1413.
Wang Xiaoling, Qiao Bin, Li Songmin, et al. Studies on the interception effects of ecological ditch on nitrogen and phosphorus in the rainfall runoff of different rice growth period[J]. Journal of Hydraulic Engineering, 2015, 46(12): 1406-1413. (in Chinese with English abstract)
[67] 路璐,杨培岭,李云开,等. 水生植物对河湖中回用的再生水富营养化的控制效应[J]. 农业工程学报,2011,27(增刊2):196-203.
Lu Lu, Yang Peiling, Li Yunkai, et al. Control effects of aquatic plants on eutrophication in reclaimed water river-lake[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of theCSAE), 2011, 27 (Suppl.2): 196-203. (in Chinese with English abstract)
[68] 范晶,郜莹,肖洋. 哈尔滨市9种湿地植物在不同HRT下净污效果研究[J]. 森林工程,2012,28(6):22-24,27.
Fan Jing, Gao Ying, Xiao Yang. Study on the pollutant removal efficiency of nine wetland plants in Harbin[J]. Forest Engineering, 2012, 28(6): 22-24, 27. (in Chinese with English abstract)
[69] 余红兵,肖润林,杨知建,等. 五种水生植物生物量及其对生态沟渠氮、磷吸收效果的研究[J]. 核农学报,2012,26(5):798-802.
Yu Hongbing, Xiao Runlin, Yang Zhijian, et al. Biomass and effects of five aquatic plants uptake of nitrogen and phosphorus in ecological ditch[J]. Journal of Nuclear Agricultural Sciences, 2012, 26(5): 798-802. (in Chinese with English abstract)
[70] Wang C, Liu B, Xu D, et al. Mitigation of wastewater-borne chlorpyrifos in constructed wetlands: The role of vegetation on partitioning[J]. Polish Journal of Environmental Studies, 2017, 26(1): 347-354.
[71] Kumwimba M N, Zhu B. Effectiveness of vegetated drainage ditches for domestic sewage effluent mitigation[J]. Bulletin of Environmental Contamination and Toxicology, 2017, 98(5): 682-689.
[72] Vymazal J. Removal of nutrients in various types of constructed wetlands[J]. Science of the Total Environment, 2007, 380(1/2/3): 48-65.
[73] Kumwimba M N, Dzakpasu M, Zhu Bo, et al. Nutrient removal in a trapezoidal vegetated drainage ditch used to treat primary domestic sewage in a small catchment of the upper Yangtze River[J]. 2017, 31(1): 72-79.
[74] 王纳川,付新喜,陈永华,等. 人工湿地除磷基质及其净化机理研究进展[J]. 环境生态学,2021,3(2):53-61.
Wang Nachuan, Fu Xinxi, Chen Yonghua, et al. Research progress on phosphorus removal fillers and purification mechanism of constructed wetlands[J]. Environmental Ecology, 2021, 3(2), 53-61. (in Chinese with English abstract)
[75] 李咏梅,魏海林. 人工湿地对有机农药烟嘧磺隆去除的试验[J]. 同济大学学报(自然科学版),2012,40(10):1532-1535,1547.
Li Yongmei, Wei Hailin. Experimental study on removal of organic pesticide nicosulfuron by constructed wetland[J]. Journal of Tongji University (Natural science), 2012, 40(10): 1532-1535, 1547. (in Chinese with English abstract)
[76] Bouldin J, Farris J, Moore M, et al. Vegetative and structural characteristics of agricultural drainages in the Mississippi Delta landscapes[J]. 2004, 132(3): 403-411.
[77] 张德喜. 不同人工湿地植物对生活污水净化效果研究[J]. 基因组学与应用生物学,2018,37(4):1621-1628.
Zhang Dexi. Study on purification efficiency of domestic wastewater by different constructed wetland plants[J]. Genomics and Applied Biology, 2018, 37(4): 1621-1628. (in Chinese with English abstract)
[78] Andersen J H, Murray C, Kaartokallio H, et al. A simple method for confidence rating of eutrophication status classifications[J]. Marine Pollution Bulletin, 2010, 60(6): 919-924.
[79] Wang X, Li J, Li S, et al. A study on removing nitrogen from paddy field rainfall runoff by an ecological ditch-zeolite barrier system[J]. Environmental Science and Pollution Research, 2017, 24(35): 27090-27103.
[80] 许航,陈焕壮,熊启权,等. 水生植物塘脱氮除磷的效能及机理研究[J]. 哈尔滨建筑大学学报,1999,32(4):69-73.
Xu Hang, Chen Huanzhuang, Xiong Qiquan, et al. Studies on the efficiencies and mechanisms of N and P removal in macrohydrophyte ponds[J]. Journal of Harbin University of Civil Engineering and Architecture, 1999, 32(4): 69-73. (in Chinese with English abstract)
[81] 舒同,周佳林,段婧婧,等. 黑麦草草帘浮床对农田排水中氮的去除效果[J]. 生态与农村环境学报,2022,38(6):787-794.
Shu Tong, Zhou Jialin, Duan Jingjing, et al. Study on nitrogen removal effect for farmland drainage by floating ryegrass mat[J]. Journal of Ecology and Rural Environment, 2022, 38(6): 787-794. (in Chinese with English abstract)
[82] 赵原,王彦,汪涛,等. 川中丘陵区高富集氮、磷沟渠植物的筛选[J]. 环境污染与防治,2015,37(10):12-16.
Zhao Yuan, Wang Yan, Wang Tao, et al. Screening for high nitrogen and phosphorus enrichment ditch plants in the Hilly Area of Central Sichuan Basin[J]. Environmental Pollution & Control, 2015, 37(10): 12-16. (in Chinese with English abstract)
[83] Geary P M, Moore J A. Suitability of a treatment wetland for dairy wastewaters[J]. Water Science and Technology, 1999, 40(3): 179-185.
[84] 黄小辉. 江西省双季稻区氮磷肥和除草剂二氯喹啉酸的农艺效应研究[D]. 杭州:浙江大学,2020.
Huang Xiaohui. Exploring the Agronomic Effect of Nitrogen and Phosphorus Fertilizers and Herbicide Quincloracin the Double-season Rice Region of Jiangxi Province[D]. Hangzhou: Zhejiang University, 2020. (in Chinese with English abstract)
[85] 姜伟丽,马小艳,彭军,等. 除草剂草甘膦对棉田土壤酶活性的影响[J]. 棉花学报,2014,26(5):431-437.
Jiang Weili, Ma Xiaoyan, Peng Jun, et al. Effects of glyphosate on soil enzyme activities in cotton fields[J]. Cotton Science, 2014, 26(5): 431-437. (in Chinese with English abstract)
[86] 辛承友,朱鲁生,王军,等. 阿特拉津对不同肥力土壤磷酸酶的影响[J]. 农业环境科学学报,2004,23(3):479-483.
Xin Chengyou, Zhu Lusheng, Wang Jun, et al. Effects of atrazine on phosphatase in soils with different fertility[J].Journal of Agro-Environment Science, 2004, 23(3): 479-483. (in Chinese with English abstract)
[87] 丁浩,凌云,徐亚同,等. 梦清园芦苇湿地根际微生物特性研究[J]. 四川环境,2007,26(2):6-10.
Ding Hao, Ling Yun, Xu Yatong, et al. Investigation on rhizosphere microbes of bulrush wetland of Mengqing garden[J]. Sichuan Environment, 2007, 26(2): 6-10. (in Chinese with English abstract)
[88] Smith S, Lizotte R, Moore M T, et al. Toxicity assessment of diazinon in a constructed wetland using Hyalella azteca[J]. Environmental Contamination and Toxicology, 2007, 79(1): 58-61.
Dissipation mechanisms of ecological ditch on agricultural non-point source pollution and their influencing factors
Cheng Haomiao1,2, Ji Shu1, Ge Hengjun3, Zhu Tengyi1, Feng Shaoyuan2※
(1.,,225127,;2.,,225127,;3..,.,225007,)
Agricultural Non-Point Source Pollution (ANSP) has posed a great challenge in modern agriculture worldwide, due mainly to the massive application of fertilizers and pesticides in fields. It is of great significance to develop ecological restoration technologies to mitigate the ANSP. Among them, an ecological ditch can function as a farmland drainage ditch and constructed wetland in recent years. Most previous studies have focused on the dissipation mechanisms of nitrogen (N) and phosphorus (P). However, it is still lacking in the pesticide removal in the ecological ditch. Meanwhile, it is a high demand for the multiple factors analysis rather than the commonly-used single factor analysis, because the dissipation mechanisms of the ecological ditch were influenced by the interaction of multiple factors. In this review, a literature survey was performed on the field experiments of ecological ditches using the ISI Web of Science and CNKI databases from 2001 to 2022. The dissipation mechanisms of ANSP included sediment sorption and plant resistance, as well as plant/microorganism absorption and degradation. The search criteria involved field experiment, ecological ditch or drainage ditch, and ANSP. A total of 559 groups of field experimental data were analyzed to explore the removal rates of total nitrogen, ammonia nitrogen, nitrate nitrogen, total phosphorus, orthophosphate, and pesticides. Four influencing factors were taken into account, i.e., the Initial Contaminant Concentration (IC), Hydraulic Retention Time (HRT), Plant Species (PS), and Plant Biomass (BM). Other influencing factors were also discussed, such as the temperature, hydraulic load, rainfall, and alternate wetting and drying. Both single and multiple factors analysis were carried out using correlation analysis and Multiple Linear Regression Model (MLR), respectively. The results indicated that both total nitrogen and total phosphorus increased as the IC, HRT and BM increased (<0.01), while the PShad no significant correlation with total nitrogen and total phosphorus(>0.05). The reason was that the sorption and uptake processes were stimulated by the higherIC, HRT and BM, whereas, the resuspension was inhibited by the higherHRT and BM in the ecological ditchThe MLR analysis demonstrated thatthe coefficient of determination (2) was 0.80 and 0.92 for thetotal nitrogen and total phosphorus, respectively. Both the IC and BM showed a positive correlation with thetotal nitrogen and total phosphorus (<0.05). Therefore, the high IC and BM greatly contributed to the high total nitrogen and total phosphorus.Particularly, the contribution ratio of IC was higher than that of BMin the MLR equations for the total nitrogen and total phosphorus. The high concentration gradient was attributed to the contribution of the ecological ditch. The diffusion of nutrients was promoted from the overlying water to pore water in the sediment. As such, more favorable absorption conditions were provided for the sediment microorganisms and plants. The single-factor analysis indicated that the pesticide declined as the IC raised (<0.05), in terms of pesticides. The toxicity of pesticides might inhibit the pesticide-degradation ability of the microorganisms and plants in high IC condition, further weakening the metabolic activity of microorganisms and the absorption of plants. The pesticides raised significantly, as the HRT increased (<0.05), indicating the longer microbial reaction for the higher pesticide removal rate. Besides, the MLR equation for the pesticides showed reliable statistical parameters in the training set with the2=0.56. The pesticides in the MLR were negatively correlated with the IC (<0.05), but positively correlated with the HRT (<0.05), which were consistent with the single-factor analysis. Therefore, it is very necessary to supplement the experimental research on the interaction of multiple factors in the future. It is also of great significance to investigate the other hydrologic and environmental factors on the removal efficiencies of ecological ditches. Future research can also explore the effects of pesticide structures and microbiological mechanisms on pesticide removal in ecological ditches.
biomass; nitrogen; phosphorus; ecological ditch; removal rate; initial concentration; hydraulic retention time
10.11975/j.issn.1002-6819.2022.21.006
X52
A
1002-6819(2022)-21-0042-11
程浩淼,季书,葛恒军,等. 生态沟渠对农田面源污染的消减机理及其影响因子分析[J]. 农业工程学报,2022,38(21):42-52.doi:10.11975/j.issn.1002-6819.2022.21.006 http://www.tcsae.org
Haomiao Cheng, Shu Ji, Hengjun Ge, et al. Dissipation mechanisms of ecological ditch on agricultural non-point source pollution and their influencing factors[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(21): 42-52. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.21.006 http://www.tcsae.org
2022-05-12
2022-08-10
国家自然科学基金资助项目(42177365、51809226);江苏省农业科技自主创新资金项目(CX(21)3071)
程浩淼,博士,副教授,博士生导师,研究方向为农业面源污染及污染物输移规律。Email:yzchhm@yzu.edu.cn
冯绍元,博士,教授,博士生导师,研究方向为农田排水与面源污染治理。Email:syfeng@yzu.edu.cn