APP下载

低盐再生水灌溉对亚热带红壤水力特性及微观结构的影响

2022-02-07卢佳宇欧阳赞

农业工程学报 2022年18期
关键词:红壤盐分土壤水分

卢佳宇,王 辉,欧阳赞

低盐再生水灌溉对亚热带红壤水力特性及微观结构的影响

卢佳宇,王 辉※,欧阳赞

(湖南农业大学水利与土木工程学院,长沙 410128)

低盐再生水是一种回用潜力巨大的替代性水源,为探究其灌溉亚热带红壤的适宜性,该研究以校园生活污水为再生水水源,设置再生水单一灌溉(WW)、再生水与蒸馏水交替灌溉(AWW)两种灌水模式,并以蒸馏水单一灌溉(CK)为对照。通过室外模拟土柱试验,研究了低盐再生水不同灌溉模式下红壤的盐碱度、微观结构及水力特性,并探讨了三者之间的相互作用关系。结果表明:1)低盐再生水灌溉降低了红壤的持水能力和导水能力;2)与CK处理相比,低盐再生水灌溉导致红壤田间持水率和凋萎系数降低,有效水在WW处理下增加6.33%,在AWW处理下减小27.85%;3) 大孔隙含量均增加,而有效孔隙、微小孔隙含量在WW处理下增加,分别为16.1%、11.0%,在AWW 处理下减小,分别为10.5%、4.9%;4)与CK处理相比,低盐再生水灌溉使红壤电导率(Electrical Conductivity,EC)和Na+含量显著提高,而交换性阳离子总量(Cation Exchange Capacity,CEC)显著降低(<0.05)。再生水两种灌溉模式中,AWW处理下土壤交换性钠百分比(Exchangeable Sodium Percentage,ESP)和钠吸附比(Sodium Adsorption Ratio,SAR)分别显著高于WW处理142.4%、120.3%(<0.05),从而引起更强烈的土壤黏粒分散;5)田间持水率、凋萎系数、有效水及有效孔隙和微小孔隙比例均与交换性Na+、ESP、SAR呈显著负相关,与CEC呈显著正相关。综上,低盐再生水灌溉亚热带红壤宜选择单一灌溉模式,且应定期监测土壤SAR和ESP等指标。研究结果可为再生水水质标准和灌溉制度制定提供参考。

灌溉;再生水;盐碱度;土壤水分特征曲线;水分常数;红壤

0 引 言

随着工农业及城市用水量不断增加,水资源供需矛盾日益突出,非常规水利用已成为一种行之有效的节水途径[1]。大量城镇废污水经适当处理并再生利用,不仅能够有效缓解水资源短缺,优化供水结构,同时能够降低再生水排放引发的生态环境污染[2-3]。然而,再生水水源较为复杂,包括生活污水、部分工业废水和截流的雨水等[4],且因处理成本过高,污水处理厂降低了盐分去除率,导致再生水中盐分浓度通常较高[5-7]。美国盐土实验室根据电导率(Electrical Conductivity,EC)作为划分灌溉用水危害等级的指标之一[8]。经过处理后EC值在100~250S/cm之间的再生水为低盐再生水;EC值高于750S/cm的再生水则属于高盐再生水[9]。已有大量研究中采用的再生水均为高盐再生水,灌溉后易引起土壤盐碱化,改变土壤物理结构和水力性质,加重土壤退化风险[10-14]。高校人员构成较为单一,生活习惯和需求相似,故不同地区的高校生活污水有其共性,具有来源单一稳定,可生化性好,含盐量低,但化学需氧量(Chemical Oxygen Demand,COD)高等特点[15-16],因其产生量大、处理成本低,这种低盐再生水势必被广泛灌溉利用,从而实现绿色校园、绿色社区的内部水循环。

由于再生水中盐分浓度和盐离子类型、土壤理化性质及灌溉模式等存在差异,导致再生水灌溉对土壤结构及水力性质的作用效果出现明显异同。唐胜强等[17]认为灌溉水中微量盐分能够促进土壤团粒形成,增强土壤导水能力,但也有学者认为低盐使土壤颗粒分散并堵塞土壤孔隙[18]。李法虎等[19]发现随着灌溉水盐浓度提高,土壤饱和水力传导度增大。再生水灌溉改善了土壤中大孔隙连通情况,提高了小于130m孔隙占比,且土壤持水能力和非饱和导水率均降低[20]。另外,再生水中COD较高表示有机污染物多,能够促进微生物生长和繁殖,使生物膜厚度增加,堵塞土壤孔隙,从而降低土壤导水率,影响田间水分循环[21-22]。除灌溉水质外,再生水灌溉周期内较好水质(雨水等)的介入也会影响土壤水力性质的改变。Blum等[23]发现再生水灌溉后土壤交换性钠百分率(Exchangeable Sodium Percentage,ESP)提高,导致土壤黏粒分散,但随着降雨的产生,土壤中Na+发生淋失,土壤结构逐渐恢复。也有研究表明,较好水质介入的影响是负面的,这是由于土壤溶液中的盐浓度被稀释,土壤崩解分散作用增强,土壤导水能力降低[24]。

目前,大多数关于再生水灌溉对土壤结构及水力性质的影响研究主要集中在干旱、半干旱地区,且采用的灌溉水中盐含量较高[7,11],而低盐再生水不同灌溉模式下亚热带红壤微观结构及水力性质改变的研究鲜有报道。另外,红壤具有盐分含量低、酸性强、阳离子交换量和交换性盐基总量低等特点,再生水灌溉后可能具备特有的盐分累积和水力性质变化特性[18]。因此,本文以处理后的校园生活污水为低盐再生水水源,设置再生水单一灌溉(WW)、再生水-蒸馏水交替灌溉(AWW)两种灌水模式,并以蒸馏水灌溉为对照(CK),探究低盐再生水灌溉后红壤盐分变化规律及其对土壤微观结构和水力性质的作用机制,以期为亚热带红壤区非常规水灌溉提供一定的科学参考。

1 材料与方法

1.1 供试土壤与灌溉用水

供试土壤为第四纪红黏土发育而成的旱地红壤(113º7'33"E,28º11'45"N),广泛分布于亚热带地区。采用随机、多点(10个点)法采集表层0~40 cm土壤,自然风干,除去根、石块等杂物,粉碎过5 mm筛,充分混匀后备用。供试土壤颗粒组成采用比重计法测定,砂粒(>0.02~0.2 mm)质量百分数为12%,粉砂粒(0.002~0.02 mm)质量百分数为32%,黏粒(<0.002 mm)质量百分数为56%,根据国际制分类标准土壤质地为黏土;土壤EC、pH值采用梅特勒—托利多Seven ExcellenceTM多参数测试仪(S470-B)测定;交换性阳离子总量(Cation Exchange Capacity,CEC)采用乙酸铵-EDTA交换法测定;交换性钾、钠采用火焰光度计测定;交换性钙、镁采用原子吸收分光光度计(TAS-990)测定,结果见表1。

试验灌溉用水取自长沙市某高校附近的污水处理厂入河排污口,水源主要为校园生活污水。由于水质波动较大,每次取水后均进行测试,结果见表2,水质指标符合国家污水综合排放标准(GB8978—1996)和城市污水再生利用农田灌溉用水水质(GB200922—2007),其中EC< 250S/cm、钠吸附比(Sodium Adsorption Ratio,SAR)小于10,根据美国盐土实验室发表的灌溉水质分类[8],灌溉用水为低盐再生水。

表1 试验土壤基本化学性质

注:EC为土壤电导率;CEC为阳离子交换量。下同。

Note: EC represents soil electric conductivity; CEC represents cation exchange capacity. Same as below.

表2 灌溉用水基本理化指标

注:SAR为钠吸附比;TSS为总悬浮物;COD为化学需氧量。下同。

Note: SAR represents sodium adsorption ratio; TSS represents total suspended solids; COD represents chemical oxygen demand. Same as below.

1.2 试验设计与模拟过程

亚热带红壤区降雨量大且时空分布不均,低盐再生水灌溉过程中易出现雨水等较好水质介入的情况。因此,本文模拟研究了低盐再生水与较好水质的水反复作用对红壤水力性质和微观结构的影响,并且为了突出二者交互作用效果,选用了与雨水相比化学物质含量更低的蒸馏水作为交替灌溉用水,设置再生水-蒸馏水交替灌溉模式(AWW)。另外,设置了再生水单一灌溉模式(WW),并以蒸馏水灌溉作为对照(CK)。每个处理设置3个重复。

采用高32 cm、直径26 cm的塑料桶装填土壤,进行室外模拟土柱试验,桶底打孔使空气流动,并让多余的灌溉水排出。桶底铺设两层纱网,然后均匀装填5 cm厚石英砂,再在石英砂表面放置一层纱网后进行土柱装填。土壤装填容重为1.2 g/cm3,分3次装填,每次装填5 cm,并将层与层之间打毛,考虑土壤沉降多装填2 cm,土柱总高度为17 cm。土壤装填完成后,3个处理中分别选取1个土柱埋设张力计,埋设位置在土柱中部,埋深10 cm。为了加快再生水对红壤的作用过程和强度,使再生水与土壤充分接触,设计每个土柱每次灌水量均为6 L,使土壤饱和且土柱上方有5 cm左右的水层以测定入渗率。为了使土壤与灌溉水充分接触,灌溉开始前先将塑料桶底部孔洞堵住再进行灌水,24 h后打开底部孔洞,使桶内多余水分流出,同时记录土柱上部水层入渗一定距离所需的时间,并根据式(1)计算入渗率,然后将土柱自然风干并进行遮雨处理。待张力计读数约为80 kPa(土壤含水率约为田间持水量的60%)时,再次进行灌水,反复进行干湿循环处理。待最后3次的入渗率基本稳定时终止灌水试验,累积灌溉8次,历时1 a。WW和CK处理每次分别灌溉再生水和蒸馏水,AWW处理则根据灌水次数轮流灌溉再生水和蒸馏水,两种水质各灌溉4次。由于表层土壤受灌溉水质的影响较大[19],试验结束后,用环刀采集灌溉土柱表层(0~5 cm)土样并测定土壤水分特征曲线,其余表层土壤充分混合后用于测定土壤盐分离子、颗粒形态等理化指标。

式中为入渗速率,cm/min;为积水入渗深度,cm;为入渗时间,min。

1.3 土壤理化指标测试与计算

土壤颗粒形态采用FEI Nova Nano SEM 230场发射扫描电子显微镜观测,用导电胶将风干并过60目筛(孔径0.25 mm)的土壤颗粒粘贴在金属载物台上,并对其进行导电处理(喷金),然后将处理好的样品放入扫描电镜的观察室,在真空条件下进行检测。

土壤EC值,交换性钾、钠、钙、镁,CEC含量的测试方法见1.1。交换性钠百分比(Exchangeable Sodium Percentage,ESP)、SAR及钾吸附比(Potassium Adsorption Ratio,PAR)是判断土壤盐碱度的重要参数,根据测得的交换性钾、钠、钙、镁以及土壤CEC含量分别计算ESP、SAR及PAR,计算方法见式(2)~式(4)。

1.4 土壤水力参数测试与计算

1.4.1 土壤水分特征曲线测定及拟合

土壤水分特征曲线测定采用压力膜仪法(WD 58-1500F1,SM Company,Arizona,USA),分别测定土壤吸力为1、15、33、80、280、500、1 000、1 500 kPa时土壤含水率,并绘制土壤水分特征曲线。运用van Genuchten模型(VG模型)[25]对测得的土壤水分特征曲线进行拟合,得到模型参数,计算式如下:

式中为土壤体积含水率,cm3/cm3;θ为土壤残余体积含水率,cm3/cm3;θ为土壤的饱和体积含水率,cm3/cm3;为负压,cm;为进气值的倒数,1/cm;、为形状参数,=1-1/。

1.4.2 非饱和导水率及水分扩散度模型

根据VG模型拟合的水分特征曲线参数,进一步计算土壤非饱和导水率(K)和水分扩散度(D)[26],计算式如下:

式中K为土壤饱和导水率;K为土壤非饱和导水率;D为水分扩散度,为土壤体积含水率,cm3/cm3,其余符号同式(4),其中K采用定水头法测定,CK、WW、AWW处理下K分别为3.31、2.11、2.43 cm/min。

1.4.3 土壤当量孔径计算

土壤当量孔径累积曲线和微分曲线计算过程如下:若将土壤中的孔隙设想为各种孔径的圆形毛管,那么土壤水吸力和毛管直径的关系可表示为

=4/(8)

式中为水的表面张力系数,室温条件下一般取75×10-5N/cm,为当量孔径。

若土壤水吸力的单位为Pa,当量孔径以mm计,则当量孔径与吸力的关系可以用=300/表示[27]。为了便于计算VG模型中不同土壤水吸力对应的当量孔径,将式中的单位由Pa换算成cm,得到=3/。由上式可得吸力S对应的当量孔径d,并根据土壤水分特征曲线得到吸力为S时土壤含水率θ及土壤饱和含水率θ。土壤水分特征曲线脱湿曲线为大孔隙先排水,当土壤中含水率为θ时,排水孔隙对应含水率变化为θ-θ,因此土壤中大于某孔径d的孔隙所占体积与总孔隙体积之比可表示为(θ-θ) /θ。由此,得到大于某孔径的孔隙体积占总孔隙体积比例的关系曲线,即累积曲线,对累积曲线求导得到某孔径孔隙体积占总孔隙体积比例的关系曲线,即微分曲线,进而根据这两条曲线分析土壤孔隙大小分布状况。由于实际土壤孔隙直径主要位于10-6~5 mm之间,根据有效含水率的基质势吸力范围为33~1 500 kPa,对应的当量孔径范围为0.0 002~0.009 mm[28]。为了便于分析,将当量孔径0.009 mm以上的孔隙称为大孔隙,当量孔径范围为>0.0 002~0.009 mm的孔隙称为有效孔隙,当量孔径10-6~0.000 2 mm的孔隙称为微小孔隙。

1.5 数据处理与分析

使用Excel 2003处理数据,利用SPSS 21进行Pearson相关性分析、差异显著性分析以及主成分分析,采用Origin 8.5绘图,应用RETC软件进行土壤水分特征曲线模型参数拟合。

2 结果与分析

2.1 低盐再生水灌溉模式对红壤表层盐分积累影响

表3所示为低盐再生水不同灌溉模式下表层土壤(0~5 cm)盐碱度指标变化情况。低盐再生水灌溉导致土壤盐分增加,CEC含量降低,WW和AWW处理下土壤EC值分别显著高于CK处理约84.7%、82.0%(<0.05),土壤CEC分别显著低于CK处理4.8%、7.7%(<0.05)。再生水灌溉后土壤Ca2+、K+、Mg2+变化较小,仅WW处理下Ca2+、K+与CK组存在显著性差异(<0.05),分别变化-12.3%、195.6%,而土壤Na+浓度在WW和AWW处理下分别显著高于CK处理116.3%、408.3%(<0.05)。土壤PAR在WW处理下显著高于CK处理212.5%(<0.05),而AWW处理下与CK组无显著差异。

表3 两种低盐再生水灌溉模式下土壤化学指标变化

注:CK为蒸馏水对照处理;WW为再生水单一灌溉;AWW为再生水-蒸馏水交替灌溉。ESP为土壤交换性钠百分率。PAR为钾吸附比。下同。表中结果均为3个处理的平均值±标准差;同行不同小写字母表示不同处理间差异显著(<0.05)。

Note: CK represents distilled water treatment; WW represents continuous reclaimed water irrigation; AWW represents alternating reclaimed water and distilled water irrigation. ESP represents exchangeable sodium percentage. PAR represents potassium adsorption ratio. Same as below. Each value is the mean of three replicates ± standard error. Different letters in the same row indicate significant difference between different treatments (<0.05).

综上,与CK处理比,低盐再生水灌溉使土壤盐分增加,交换性盐基离子中Na+变化最大,其次是K+和Ca2+,从而影响土壤ESP、SAR、PAR等指标,WW、AWW处理下SAR分别高于CK处理126.5%、399.0%,ESP则分别高于CK处理127.6%、540.0%,且AWW处理下土壤ESP、SAR分别显著高于WW处理142.4%、120.3%(<0.05),而PAR则反之。

2.2 低盐再生水灌溉模式对红壤水力特性及其参数的影响

2.2.1 低盐再生水灌溉模式对土壤水分特征曲线和导水性能的影响

土壤水分特征曲线、非饱和导水率和水分扩散度能够反映土壤水力特性,对研究土壤孔隙的大小和分布、土壤水分的可利用性、持水性及导水性等具有重要作用[29]。低盐再生水不同灌溉模式下土壤水分特征曲线及水力传导度变化如图1所示。由图1a,相对于CK,WW和AWW处理下土壤水分特征曲线左移,其中AWW处理变化较大。通过对比土壤水分特征曲线的拟合曲线中多个相同吸力下的土壤含水率差值可以得出,与CK处理相比,WW处理下的土壤含水率平均下降3.5%,而AWW处理下的含水率平均下降20.1%,说明低盐再生水灌溉会导致红壤持水能力下降,且交替灌溉加剧了持水性能退化。此外,根据图1b、图1c可知,低盐再生水灌溉导致红壤导水能力也下降,其中非饱和导水率在WW处理下降低幅度较大,而水分扩散度曲线在两种再生水灌溉模式下几乎重合。

图1 低盐再生水灌溉下土壤水分特征曲线和水力传导度变化

2.2.2 低盐再生水灌溉模式对VG模型参数的影响

利用RETC软件中的van Genuchten(VG)模型对灌溉后的红壤水分特征曲线进行拟合,拟合结果较好(2>0.99),拟合参数结果如表4所示。与CK相比,WW、AWW处理下θ分别降低43.3%、25.2%;低盐再生水灌溉使土壤θ增加,其中AWW处理下增加较多,与CK相比增加4.7%;θθ的差值越大表示该土壤所能吸持的水量越多,与CK相比,WW和AWW处理分别提高了35.1%、24.6%,说明低盐再生水灌溉提高了红壤的吸持水量;拟合参数数值上为进气值倒数,它反映土壤初始排水时的难易程度[30],值越大越易排水,说明AWW处理下的土壤最易排水;再生水灌溉后参数减小,其中WW处理下的较小,即土壤基质势降低时,土壤不易失水[31]。

表4 两种低盐再生水灌溉模式下VG模型拟合参数

注:θ为土壤残余体积含水率;θ为土壤的饱和体积含水率;为进气值的倒数;为形状参数。表中同列不同小写字母表示不同处理间差异显著(<0.05),下同。

Note:θis the residual volume water content of soil.θis the saturated volume water content of soil.is the reciprocal of the intake value.is the shape parameter. Different lowercase letters in the same column in the table indicate significant difference between different treatments (<0.05), same as below.

2.2.3 低盐再生水灌溉模式对土壤水分常数的影响

通过土壤水分特征曲线分别计算出田间持水率、凋萎系数、重力水、有效水及有效水比例,其中土壤水吸力为33 kPa时的土壤含水率为田间持水率,土壤水吸力为1 500 kPa时的土壤含水率为凋萎系数,饱和含水率与田间持水率的差值为重力水,田间持水率与凋萎系数的差值为有效水,有效水占饱和含水率的比值即为有效水比例。由表5可知,低盐再生水灌溉导致土壤田间持水率和凋萎系数降低,其中AWW处理下降幅较大,分别低于CK处理21.8%、19.9%。与CK相比,WW、AWW处理下重力水分别增加13.3%、48.7%。低盐再生水两种灌溉模式下有效水变化出现相反趋势,其中在WW处理下增加6.33%,而AWW处理下则减少27.85%。低盐再生水灌溉导致无效水减少,且AWW处理下减少程度较大,达19.9%。可见,低盐再生水灌溉降低了红壤田间持水率和凋萎系数,提高了重力水,降低了无效水,且AWW处理下的变化程度大于WW处理。有效水在WW处理下增加,而在AWW处理下降低。

表5 两种低盐再生水灌溉模式下壤水分常数变化

2.3 低盐再生水灌溉模式对红壤微观结构的影响

2.3.1 低盐再生水灌溉模式对红壤当量孔径的影响

干湿交替过程中土壤结构的变化取决于当量孔径的稳定与形成[32],土壤孔隙又决定着土壤的通透性和持水性。图2所示为不同处理下土壤当量孔径累积曲线和微分曲线。由图2a可知,CK处理下土壤当量孔径大于10-6mm的累积孔隙含量为58.2%,低盐再生水两种灌溉模式处理下累积曲线均位于CK处理上方,WW和AWW处理下土壤当量孔径大于10-6mm的累积孔隙含量分别高于CK处理17.5%、18.3%,说明再生水灌溉会增加孔径大于10-6mm的孔隙体积。结合图2b可知,低盐再生水灌溉导致孔隙含量最多的土壤孔径增大,其中以AWW处理增大较多。CK处理下土壤大孔隙、有效孔隙、微小孔隙含量分别为37.4%、14.8%、6.0%。相对于CK,WW处理下大孔隙、有效孔隙、微小孔隙含量均增加,孔隙含量分别为41.3%、16.1%、11.0%。然而,相对于CK,AWW处理下土壤大孔隙增加,有效孔隙、微小孔隙减少,孔隙含量分别为53.4%、10.5%、4.9%。综上所述,低盐再生水单一灌溉增加了大孔隙、有效孔隙和微小孔隙含量,但交替灌溉则使大孔隙含量增加,有效孔隙和微小孔隙含量减少。

图2 两种低盐再生水灌溉模式下土壤当量孔径累积曲线和微分曲线

2.3.2 低盐再生水灌溉模式对红壤颗粒形态的影响

图3所示为低盐再生水不同灌溉模式下土壤颗粒的SEM图像。与CK相比,低盐再生水灌溉后土壤颗粒变得更为模糊,形成了较为粗糙的表面,且该现象在AWW处理下更明显,说明再生水灌溉后Na+等盐离子累积使土壤黏粒分散,该结果与Marchuk等[33]的研究结果一致。

2.4 土壤盐分与土壤水力参数的相关性分析

土壤水力性质受土壤中盐离子类型和浓度影响[34]。因此,为了更准确了解再生水灌溉后土壤水分常数、当量孔径分布、土壤水分特征曲线的拟合参数与土壤盐分之间的相关程度,利用SPSS统计软件进行双变量Pearson相关分析,结果如表6所示。田间持水率、凋萎系数及有效水等土壤水分常数与交换性Na+、ESP、SAR呈显著负相关。大孔隙比例与Na+、ESP、SAR呈极显著正相关,与CEC呈显著负相关,而有效孔隙和微小孔隙比例则与Na+、ESP、SAR呈极显著负相关,与CEC呈显著正相关。模型拟合参数θ、主要与EC、K+、PAR显著相关,而参数θ、主要与EC、Na+、CEC、ESP、SAR显著相关。

图3 两种低盐再生水灌溉模式下土壤颗粒形态

表6 土壤水力参数与化学指标间相关性分析

注:**表示在0.01水平(双侧)上极显著相关;*表示在0.05水平(双侧)上显著相关。

Note: ** is significantly correlated at 0.01 level (bilateral); * is significantly correlated at 0.05 level (bilateral).

通过主成分分析,进一步判断土壤盐碱度对水力性质的影响,载荷图如图4所示。由图4a可知,各指标影响水分常数的权重从大到小依次为Na+、 ESP、SAR、CEC,其中Na+、ESP、SAR对土壤水分常数主要起负向作用,而CEC则反之。第一主成分包括Na+、ESP、SAR、凋萎系数、有效水、田间持水率、CEC;第二主成分包括PAR、K+、Ca2+、EC。图4b反映了各指标对土壤孔隙分布的影响,Na+、ESP、SAR、CEC、EC等指标对孔隙分布的作用效果依次减小,其中Na+、ESP、SAR、EC对大孔隙起促进作用,CEC则起抑制作用,对有效孔隙和微小孔隙的影响则反之。第一主成分包括微小孔隙、Na+、大孔隙、有效孔隙、ESP、SAR、CEC、EC;第二主成分包括PAR、K+、Ca2+。图4c反映了盐分指标对VG模型拟合参数的影响,影响VG模型拟合参数的主要指标为EC、CEC、Na+、ESP、SAR等,其作用效果依次减小,其中EC、Na+、ESP、SAR等指标对θ、起正向作用,CEC对θ、起负向作用,而对θ、的影响则反之。第一主成分包括EC、θ、CEC、θ、、Na+、ESP、SAR、;第二主成分包括Ca2+、PAR、K+。综上说明,土壤水分常数、孔隙分布、VG模型拟合参数主要受Na+、ESP、SAR、CEC、EC等指标的影响。

注:F1、F2表示提取两个主成分;有向线段表示土壤水分常数、土壤孔隙和拟合参数指标,若有向线段指向某盐分指标所在象限则表示该盐分指标对其有正向作用,反之则起负向作用;圆形标记点到原点的距离在坐标轴上的投影越大表示其所示指标与对应的主成分相关度越高。

3 讨 论

3.1 低盐再生水灌溉下红壤盐碱度变化及其作用机制

土壤中离子络合、交换、吸附的反应速度较快,时间尺度在微秒至月之间[35],所以低盐再生水灌溉1 a红壤盐分和盐离子含量即发生改变。WW、AWW处理下红壤EC、交换性Na+、K+、Mg2+浓度均高于CK处理(表 3),这是由于再生水中盐离子在灌溉过程中在土壤中累积所导致[36]。值得注意的是,与CK相比,WW和AWW两种灌溉模式下Na+分别增加116.3%、408.3%,ESP则分别增加127.6%、451.7%,可见AWW处理下红壤Na+含量和ESP值均高于WW处理,另外,Ca2+含量也在AWW处理下较高。这可能是由于WW处理下交换性K+、Na+、Ca2+、Mg2+被H+和Al3+所替换并发生淋失,特别是红壤中在高温多雨、干湿交替明显的气候条件下,风化淋溶作用强烈,尤其是Na+、Ca2+淋失更甚,故导致这两种离子浓度较低。然而,在AWW处理下,蒸馏水灌溉时土壤表面的H+解离和水解并发生淋失[37],从而导致置换Na+和Ca2+的能力降低,使盐离子吸附在土壤中的可交换络合物上,再进行灌溉时也难以将其淋洗出来。AWW处理下土壤pH值低于WW和CK处理(表3),也说明AWW处理下土壤中H+浓度降低。另一方面,由于该试验采用重新装填的土柱,土壤结构不稳定,累积的Na+易引起土壤黏粒分散和膨胀,导致比表面积增加,土壤吸附盐离子的能力进一步增强。由此可见,低盐再生水灌溉提高了土壤盐碱度,但土壤中盐基离子累积程度并不一定随着再生水施入量增加而增大,而与灌溉水质及土壤中盐分吸附、解吸、置换和迁移特性有关。

由表3可知,红壤EC值在再生水两种灌溉模式下相近,但SAR在WW处理下较低,而在AWW处理下较高。土壤颗粒的稳定性取决于SAR和EC的相对平衡[38],所以WW处理下土壤溶液中盐分的絮凝作用可以削弱灌溉水引入的Na+对土壤黏粒的膨胀和分散,而AWW处理下土壤溶液中的盐分则不足以阻止土壤黏粒发生分散。显微镜观测的土壤颗粒形态(图3)也可以看出,低盐再生水灌溉导致土壤颗粒分散,AWW处理下分散作用比WW处理更明显。

3.2 低盐再生水灌溉下红壤水力性质响应机制

低盐再生水灌溉改变了红壤盐碱度,从而影响土壤孔隙结构和水力性质。本研究发现再生水灌溉后红壤持水性能下降,且与WW处理相比,AWW处理导致红壤持水能力退化加剧。这是由于相对于WW处理,AWW处理下土壤中交换性Na+浓度和SAR较高(表3),土壤黏粒被分散,且该试验中土柱填装高度仅15 cm,被分散的黏土颗粒向下迁移并流失,使土壤孔径变大,从而导致土壤持水能力降低。Assouline等[39]也指出,再生水灌溉通过增加平均孔隙半径,降低了一种黏土的持水能力。王辉等[14]采用与本文相同的供试土壤和试验方法探究了不同稀释倍数再生水灌溉对土壤水力性质的影响,发现与蒸馏水灌溉相比,单一灌溉条件下再生水原液和稀释2倍再生水(EC:787~1 246S/cm;SAR:6.40~7.48)使红壤持水能力提高,而稀释4、6倍再生水(EC:312~467S/cm;SAR:4.12~5.15)则降低了持水能力,说明低盐再生水灌溉可能更易使红壤持水性能退化。低盐再生水灌溉引起的土壤大孔隙含量增多、土壤孔径增大,并未提高红壤KD,反而使红壤导水性能低于CK处理。这可能是由于低盐再生水灌溉引起土壤斥水性、土壤颗粒膨胀及生物膜厚度增加等[21,40],从而改变孔隙分布和孔隙连通情况,使非饱和状态下水力传导性能下降,另外再生水中的悬浮物堵塞也会导致KD降低,该结果与王辉等[14,41]的研究结果一致。

本研究采用的再生水中有机污染物浓度较高(COD:(125.56±30.42)mg/L),这些物质能够促进微生物生长和繁殖[16],加之灌溉水中悬浮物的输入,可能会引起土壤孔隙生物和物理堵塞[42]。然而,研究结果表明与CK处理相比,低盐再生水灌溉导致土壤孔径增大,这是由于土壤碱化度提高,土壤颗粒发生分散并流失,从而导致土壤孔径增大,说明低盐再生水灌溉条件下化学作用对土壤孔隙的影响可能大于生物和物理作用。与CK处理相比,WW处理提高了大孔隙、有效孔隙和微小孔隙含量,从而降低了红壤田间持水率和凋萎系数,提高重力水,降低无效水,增加了有效水含量,说明WW处理下土壤孔隙向更有利的方向发展,提高了红壤的抗旱能力。Tunc等[43]也发现再生水灌溉后一种壤土的微孔体积增加,从而导致田间持水率和有效水量也增加。然而,AWW处理使土壤大孔隙比例增加,有效孔隙和微小孔隙减少,从而使有效水低于CK处理27.8%。结合王辉等[14]的研究结果:再生水与蒸馏水交替灌溉条件下,再生水原液处理下有效水低于CK处理9.9%,稀释2、4、6倍再生水处理下则分别低23.3%、26.5%、16.9%,可知与盐分含量较高的再生水相比,低盐再生水交替灌溉可能更易导致红壤有效水含量降低。

综上所述,低盐再生水灌溉使红壤盐碱度提高,与单一灌溉相比,低盐再生水-蒸馏水交替灌溉更易引起红壤碱化,从而加剧土壤黏粒分散,使土壤孔径增大,土壤水力性能退化。可见,低盐再生水灌溉红壤过程中蒸馏水的介入反而加剧了对土壤的破坏作用。因此,亚热带红壤区利用低盐再生水灌溉时宜选择单一灌溉模式,同时应特别注意土壤SAR和ESP等指标的监测。

4 结 论

1)低盐再生水灌溉使红壤持水性能和导水性能均降低,且再生水与蒸馏水交替灌溉(AWW)处理下持水能力下降程度高于再生水单一灌溉(WW)处理。与CK处理相比,WW处理使有效水增加6.33%,而AWW处理使有效水降低27.85%。这说明与AWW处理相比,WW处理能够减小低盐再生水对红壤持水能力的影响,提高水分有效性。

2)低盐再生水灌溉导致土壤孔径增大。与CK处理相比,WW处理下大孔隙、有效孔隙和微小孔隙含量均增加,而AWW处理使大孔隙含量增加,有效孔隙和微小孔隙减少。

3)低盐再生水灌溉使红壤盐碱度提高。与WW处理相比,AWW处理更易引起红壤Na+含量和钠吸附比增加,从而引起更强烈的土壤黏粒分散。土壤中盐离子累积不一定随着再生水施入量增加而增大,而与灌溉水质和土壤中盐基离子的吸附、解吸、置换和迁移特性有关。

4)低盐再生水灌溉后红壤盐碱度变化是影响土壤微观结构和水力性质变化的重要因素。土壤水分常数、孔隙分布、VG模型拟合参数主要受Na+、钠吸附比、交换性钠百分率、阳离子交换量及电导率等指标的影响。

[1] 彭世彰,程胜,徐俊增,等.劣质水安全利用研究综述[J].水资源保护,2014,30(4):1-6.

Peng Shizhang, Cheng Sheng, Xu Junzeng, et al. Advances in safe utilization of poor-quality water[J]. Water Resources Protection, 2014, 30(4): 1-6. (in Chinese with English abstract)

[2] Bhattacharjee A, Jana B B, Mandal S K, et al. Assessing phosphorus removal potential of laterite soil for water treatment and eco-technological application[J]. Ecological Engineering, 2021, 166: 106245.

[3] Chauhan J S, Kumar S. Wastewater ferti-irrigation: an eco-technology for sustainable agriculture[J]. Sustainable Water Resources Management, 2020, 6(3): 1-11.

[4] 师荣光,王德荣,赵玉杰,等.城市再生水用于农田灌溉的水质控制指标[J].中国给水排水,2006,22(18):100-104.

Shi Rongguang,, Wang Derong, Zhao Yujie, et al. Water quality control indexes of reclaimed municipal wastewater for farmland irrigation[J]. China Water&Wastewater, 2006, 22(18): 100-104. (in Chinese with English abstract)

[5] Gonçalves R A B, Folegatti M V, Gloaguen T V, et al. Hydraulic conductivity of a soil irrigated with treated sewage effluent[J]. Geoderma, 2007, 139(1/2): 241-248.

[6] 商放泽,杨培岭,任树梅.再生水灌溉对深层包气带土壤盐分离子的影响[J].农业机械学报,2013,44(7):98-106+97.

Shang Fangze, Yang Peiling, Ren Shumei. Effects of reclaimed Water Irrigation on Soil Salinity in Deep Vadose Zone[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(7): 98-106, 97. (in Chinese with English abstract)

[7] 刘春成,崔丙健,胡超,等.微咸水与再生水混灌对土壤特性的影响与灌溉效应评估[J].水土保持学报,2022,36(1):255-262.

Liu Chuncheng, Cui Bingjian, Hu Chao, et al. Effect of mixed irrigation of brackish water and reclaimed water on soil properties and irrigation effect evaluation[J]. Journal of Soil and Water Conservation, 2022, 36(1): 255-262. (in Chinese with English abstract)

[8] Regional Salinity Laboratory (US). Diagnosis and improvement of saline and alkali soils[M]. Washington: US Department of Agriculture, 1954.

[9] Alobaidy A H M J, Al-Sameraiy M A, Kadhem A J, et al. Evaluation of treated municipal wastewater quality for irrigation[J]. Journal of Environmental Protection, 2010, 1(3): 216.

[10] Muyen Z, Moore G A, Wrigley R J. Soil salinity and sodicity effects of wastewater irrigation in South East Australia[J]. Agricultural Water Management, 2011, 99(1): 33-41.

[11] Bourazanis G, Katsileros A, Kosmas C, et al. The effect of treated municipal wastewater and fresh water on saturated hydraulic conductivity of a clay-loamy soil[J]. Water Resources Management, 2016, 30(8): 2867-2880.

[12] Halliwell D J, Barlow K M, Nash D M. A review of the effects of wastewater sodium on soil physical properties and their implications for irrigation systems[J]. Soil Research, 2001, 39(6): 1259-1267.

[13] Lado M, Ben-Hur M. Treated domestic sewage irrigation effects on soil hydraulic properties in arid and semiarid zones: A review[J]. Soil and Tillage Research, 2009, 106(1): 152-163.

[14] 王辉,黄正忠,谭帅,等.再生水灌溉对红壤水力特性的影响[J].农业工程学报,2019,35(17):120-127.

Wang Hui, Huang Zhengzhong, Tan Shuai, et al. Effects of irrigation with reclaimed water on hydraulic characteristics of red soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(17): 120-127. (in Chinese with English abstract)

[15] 俞果,马建初,蒋萍萍,等.新型植物景观墙处理高校生活污水研究[J].水处理技术,2020,46(3):101-104,109.

Yu Guo, Ma Jianchu, Jiang Pingping, et al. Study on new plant landscape wall for campus domestic sewage treatment[J]. Technology of Water Treatment, 2020, 46(3): 101-104, 109. (in Chinese with English abstract)

[16] 王燕,程东会,檀文炳,等.土壤微生物群落结构对生活源和工业源再生水灌溉的差异化响应[J].环境科学,2020,41(9):4253-4261.

Wang Yan, Cheng Donghui, Tan Wenbing, et al. Different responses of soil microbial community structure to irrigation with treated wastewater from domestic and industrial sources[J]. Environmental Science, 2020, 41(9): 4253-4261. (in Chinese with English abstract)

[17] 唐胜强,佘冬立.灌溉水质对土壤饱和导水率和入渗特性的影响[J].农业机械学报,2016,47(10):108-114.

Tang Shengqiang, She Dongli. Influence of water quality on soil saturated hydraulic conductivity and infiltration properties[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(10): 108-114. (in Chinese with English abstract)

[18] Oster J D, Shainberg I. Soil responses to sodicity and salinity: challenges and opportunities[J]. Soil Research, 2001, 39(6): 1219-1224.

[19] 李法虎,闫红,庞昌乐,等.华北地区微咸水应用对土壤水力传导性能的影响[J].农业工程学报,2013,29(2):73-80.

Li Fahu, Yan Hong, Pang Changle, et al. Soil hydraulic conductivity affected by slight saline water irrigation in North China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(2): 73-80. (in Chinese with English abstract)

[20] Leuther F, Schlüter S, Wallach R, et al. Structure and hydraulic properties in soils under long-term irrigation with treated wastewater[J]. Geoderma, 2019, 333: 90-98.

[21] Zhou H, Xu G. Integrated effects of temperature and COD/N on an up-flow anaerobic filter-biological aerated filter: Performance, biofilm characteristics and microbial community[J]. Bioresource technology, 2019, 293: 122004.

[22] Volk E, Iden S C, Furman A, et al. Biofilm effect on soil hydraulic properties: Experimental investigation using soil-grown real biofilm[J]. Water Resources Research, 2016, 52(8): 5813-5828.

[23] Blum J, Herpin U, Melfi A J, et al. Soil properties in a sugarcane plantation after the application of treated sewage effluent and phosphogypsum in Brazil[J]. Agricultural Water Management, 2012, 115(19): 203-216.

[24] Bagarello V, Iovino M, Palazzolo E, et al. Field and laboratory approaches for determining sodicity effects on saturated soil hydraulic conductivity[J]. Geoderma, 2006, 130(1/2): 1-13.

[25] van Genuchten M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898.

[26] Mualem Y. A new model for predicting the hydraulic conductivity of unsaturated porous media[J]. Water resources research, 1976, 12(3): 513-522.

[27] D'Hollander E H. Estimation of the pore size distribution from the moisture characteristic[J]. Water Resources Research, 1979, 15(1): 107-112.

[28] Chaudhari S K, Somawanshi R B. Effect of water quality on moisture retention characteristics of different texture soils[J]. Journal of Maharashtra Agricultural Universities, 2000, 25(2): 128-133.

[29] 陈俊英,柴红阳,Leionid Gillerman,等.再生水水质对斥水和亲水土壤水分特征曲线的影响[J].农业工程学报,2018,34(11):121-127.

Chen Junying, Chai Hongyang, Leionid Gillerman, et al. Impact of treated waste water quality on repellent and wettable soil water characteristic curve[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(11): 121-127. (in Chinese with English abstract)

[30] van Genuchten M T, Leij F J, Yates S R. The RETC code for quantifying the hydraulic functions of unsaturated soils[R]. Riverside: U.S. Salinity Laboratory, USDA ARS, Washington, 1991.

[31] Ma D H, Shao M A, Zhang J B, et al. Validation of an analytical method for determining soil hydraulic properties of stony soils using experimental data[J]. Geoderma, 2010, 159(3/4): 262-269.

[32] Newman A C D, Thomasson A J. Rothamsted studies of soil structure III: Pore size distributions and shrinkage processes[J]. Journal of Soil Science, 1979, 30(3): 415-439.

[33] Marchuk S, Marchuk A. Effect of applied potassium concentration on clay dispersion, hydraulic conductivity, pore structure and mineralogy of two contrasting Australian soils[J]. Soil and Tillage Research, 2018, 182: 35-44.

[34] Xing X, Ma X. Differences in loam water retention and shrinkage behavior: Effects of various types and concentrations of salt ions[J]. Soil and Tillage Research, 2017, 167: 61-72.

[35] Aharoni C, Sparks D L. Kinetics of soil chemical reactions-a theoretical treatment[J]. Rates of Soil Chemical Processes, 1991, 27: 1-18.

[36] Zalacáin D, Martínez-Pérez S, Bienes R, et al. Salt accumulation in soils and plants under reclaimed water irrigation in urban parks of Madrid (Spain)[J]. Agricultural Water Management, 2019, 213: 468-476.

[37] 胡传旺,王辉,武芸,等.再生水盐分在亚热带不同土壤中的迁移特性及其差异[J].农业工程学报,2018,34(20):99-107.

Hu Chuanwang, Wang Hui, Wu Yun, et al. Migration characteristics and its differences of reclaimed water salinity in different subtropical soils[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(20): 99-107. (in Chinese with English abstract)

[38] Obaidy A, Al-Sameraiy M A, Kadhem A J, et al. Evaluation of treated municipal wastewater quality for irrigation[J]. Journal of Environmental Protection, 2010, 1(3):216-225.

[39] Assouline S, Narkis K. Effects of long-term irrigation with treated wastewater on the hydraulic properties of a clayey soil[J]. Water Resources Research, 2011, 47(8): 2924-2930.

[40] 胡廷飞,王辉,胡传旺,等.灌溉水质和灌水方式对红壤斥水性及其理化性质的影响[J].排灌机械工程学报,2018,36(8):651-655,661.

Hu Tingfei, Wang Hui, Hu Chuanwang, et al. Effects of different water quality and irrigation methods on red soil water repellency and physical-chemical properties[J]. Journal of Drainage and Irrigation Machinery Engineering, 2018, 36(8): 651-655, 661. (in Chinese with English abstract)

[41] 胡传旺,王辉,卢佳宇,等. 亚热带土壤导水特征对钠盐溶液浓度的响应[J]. 农业工程学报,2020,36(3):86-91.

Hu Chuanwang, Wang Hui, Lu Jiayu, et al. Response of soil hydraulic property to sodium salt solution concentration in subtropical zone[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(3): 86-91. (in Chinese with English abstract)

[42] Ozcoban M S, Cetinkaya N, Celik S O, et al. Hydraulic conductivity and removal rate of compacted clays permeated with landfill leachate[J]. Desalination and Water Treatment, 2013, 51(31-33): 6148-6157.

[43] Tunc T, Sahin U. The changes in the physical and hydraulic properties of a loamy soil under irrigation with simpler-reclaimed wastewaters[J]. Agricultural Water Management, 2015, 158: 213-224.

Effects of low-salinity reclaimed wastewater irrigation on the hydraulic properties and microstructure of subtropical red soil

Lu Jiayu, Wang Hui※, Ouyang Zan

(,,410128,)

Domestic wastewater is characterized by a single and stable source, good biodegradability, and low salinity, but high Chemical Oxygen Demand (COD) in densely populated areas, such as campuses and communities. Therefore, there is a great potential to reuse, due to the low cost of treatment. A sustainable water recycling system can be expected to effectively alleviate the seasonal drought and water shortage with high quality in South China. However, accumulative irrigation with low-salinity reclaimed wastewater can cause a change in soil structure and hydraulic properties, and then result inirreversible damage to the soil. This study aims to explore the effects of low-salinity reclaimed wastewater irrigation on the hydraulic properties and microstructures in subtropical red soil. The campus's domestic wastewater was also treated for irrigation. Two irrigation modes were applied, including continuous reclaimed wastewater irrigation (WW), and alternating reclaimed wastewater and distilled water irrigation (AWW). In addition, the distilled water continuous irrigation was set as the control treatment (CK). An outdoor simulated soil column test was carried out to determine the soil salinity and sodicity, while the microstructure and hydraulic properties were under the irrigation modes. The interaction mechanism was proposed between the soil salinization, structure, and hydraulic properties. The results showed that: 1) Low-salinity reclaimed wastewater irrigation led to the decrease of water holding capacity and hydraulic conductivity of the red soil. Specifically, the water holding capacity under the WW treatment was higher than that under the AWW treatment, whereas, the unsaturated hydraulic conductivities were on the contrary. There was a small difference in water diffusivities under the two low-salinity reclaimed wastewater irrigation modes. 2) The low-salinity reclaimed wastewater decreased the field water holding capacity and wilting coefficient of the red soil, compared with the CK treatment. The available water increased by about 6.33% under the WW treatment, but decreased by 27.85% under the AWW treatment. 3) The low-salinity reclaimed wastewater increased the proportion of macropores. The proportion of effective pores and micropores increased under the WW treatment, which were 16.1% and 11.0% respectively. The proportion of effective pores and micropores decreased under the AWW treatment, which were 10.5% and 4.9%, respectively. 4) Low-salinity reclaimed wastewater irrigation significantly increased the Electrical Conductivity (EC) value and Na+concentration of the red soil (<0.05), but significantly decreased the Cation Exchangeable Capacity (CEC) (<0.05), compared with the CK treatment. The soil Exchangeable Sodium Percentage (ESP) and Sodium Adsorption Ratio (SAR) under the AWW treatment were significantly higher by 142.4% and 120.3%, respectively (<0.05) than that of the WW treatment, resulting in stronger clay dispersion. The soil particle morphology was also confirmed by scanning an electron microscope. 5) Principal component and Pearson correlation analysis were used to analyze the interaction between the soil structure, hydraulic properties, as well as soil salinity and sodicity. The field water holding capacity, wilting coefficient, available water, the proportion of effective pores, and micropores were significantly negatively correlated with the exchangeable Na+, ESP, and SAR, but significantly positively correlated with the CEC. The water with good quality (rainwater) can be involved in the process of low-salinity reclaimed wastewater irrigation, due to the high rainfall variability in subtropical regions, thus intensifying the destruction of reclaimed wastewater on the red soil. Therefore, much attention should be paid to monitoring the soil SAR, ESP, reclaimed water quality, and irrigation mode. The findings can provide a strong reference to formulate the reclaimed wastewater irrigation schedules in subtropical red soil areas.

irrigation; reclaimed water; salinity and sodicity; soil water characteristic curve; moisture constant; red soil

10.11975/j.issn.1002-6819.2022.18.011

S152.7;S278

A

1002-6819(2022)-18-0103-10

卢佳宇,王辉,欧阳赞. 低盐再生水灌溉对亚热带红壤水力特性及微观结构的影响[J]. 农业工程学报,2022,38(18):103-112.doi:10.11975/j.issn.1002-6819.2022.18.011 http://www.tcsae.org

Lu Jiayu, Wang Hui, Ouyang Zan. Effects of low-salinity reclaimed wastewater irrigation on the hydraulic properties and microstructure of subtropical red soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(18): 103-112. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.18.011 http://www.tcsae.org

2022-07-27

2022-09-12

国家自然科学基金项目(41471185);湖南省战略性新兴产业科技攻关与重大科技成果转化项目(2020NK2003);湖南省水利科技项目重大项目(XSKJ2021000-02)

卢佳宇,博士生,研究方向为土壤物理与农业水土环境。Email:lujiayujy@126.com

王辉,博士,教授,博士生导师,研究方向为土壤物理与农业水土环境。Email:wanghuisb@126.com

猜你喜欢

红壤盐分土壤水分
磷素添加对土壤水分一维垂直入渗特性的影响
硅基膜材缓控释肥在红壤中的氮素释放特征研究
初探热脱附技术在有机污染红壤修复的应用
长期膜下滴灌棉田根系层盐分累积效应模拟
摄影欣赏
不同覆盖措施对枣园土壤水分和温度的影响
基于PLSR的陕北土壤盐分高光谱反演
植被覆盖区土壤水分反演研究——以北京市为例
土壤水分的遥感监测方法概述
长期施肥下红壤旱地土壤CO2排放及碳平衡特征