APP下载

超表达OsPR1A增强了Xa21介导的水稻对白叶枯病的抗性反应

2022-01-14刘玉晴燕高伟张彤兰金苹郭亚璐李莉云刘国振窦世娟

中国农业科学 2021年23期
关键词:叶枯病抗病质粒

刘玉晴,燕高伟,张彤,兰金苹,郭亚璐,李莉云,刘国振✉,窦世娟✉

1河北农业大学生命科学学院,河北保定 071001;2北京生物制品研究所有限责任公司,北京 102600;3河北北方学院生命科学研究中心,河北张家口 075000;4中国农业科学院农业基因组研究所,广东深圳 518116

0 引言

【研究意义】水稻(Oryza sativa L.)是中国重要的粮食作物之一,也是全球一半以上人口的主粮[1]。但是,水稻经常会遭受细菌、真菌和病毒等病原体的侵害,其中,由革兰氏阴性菌黄单孢菌水稻变种(Xanthomonas oryzae pv. oryzae,Xoo)引起的水稻白叶枯病是严重影响水稻产量的细菌性病害之一,严重情况下可造成绝收[2]。目前,从根本上提高水稻产量的有效途径:一是培育和种植高产杂交水稻;二是提高水稻的抗性水平。水稻病程相关蛋白质 OsPR1A是最早被鉴定和克隆出来的重要水稻病程相关蛋白质[3],许多抗病基因都涉及OsPR1A的改变,它可能是多个抗病基因下游响应的共享元件,OsPR1A经常被作为抗性反应发生的标志基因。迄今为止,其生理学功能或生理生化机制研究甚少。本文通过获得OsPR1a-OX超表达转基因植株,为鉴定OsPR1A功能提供依据。【前人研究进展】目前,已知鉴定出 45个对Xoo具有抗性的基因[4],其中12个已经被克隆,分别命名为Xa1、Xa3/Xa26、Xa4、xa5、Xa7、Xa10、xa13、Xa21、Xa23、xa25、Xa27、xa41[5-6]。Xa21 是水稻中第一个被克隆的抗性基因,对多种 Xoo菌株均具有抗性[7-8]。Xa21编码跨膜受体激酶,胞内激酶结构域可以自我磷酸化[9],并诱导 MAPK信号转导途径中磷酸化事件,这些事件改变WRKY转录因子家族的亚细胞定位或DNA结合活性,从而将抗性信号传递给下游病程相关蛋白质(pathogenesis-related proteins,PRs),引发抗病反应[10-12]。Xa21介导的信号转导途径中多个元件已被鉴定,如负调控因子有OsWRKY62.1(XB10)[13]、XB15[14]、XB24[9]和OsBiP3[15]等,正调控因子有 XB3[16]、XB21[17]、XB25[18]、OsWRKY67[11]、XIK1[19]和 OsSERK2[20]等。OsWRKY6和 OsWRKY13超表达后可以诱导 OsPR1a表达,增强了水稻对白叶枯病的抗性[21-22]。OsWRKY62.1超表达后会抑制OsPR1a的表达,从而负调控水稻对白叶枯病的抗性[13]。OsWRKY67超表达后可上调病程相关基因(OsPR1a、OsPR1b、OsPR4、OsPR10a和OsPR10b)的表达,增强水稻对白叶枯病的抗性[10]。OsWRKY114超表达后可以激活 OsPR1a和几丁质酶的表达,来增强水稻对白叶枯病的抗性[23]。OsDR8-RNAi转基因植株会使OsPR1a表达下调,降低水稻对白叶枯病的抗性[24]。此外,还有一些其他的抗病元件通过调控OsPR1a的表达最终增强或降低水稻对其他病菌的抗病性,如OsWRKY4正调控JA/ET依赖的信号转导途径,促进OsPR1a、OsPR1b、OsPR5和OsPR10大量表达,从而提高了水稻对纹枯病的抗性[25]。OsAOS2超表达后会增强 OsPR1a、OsPR3和OsPR5的表达,并增强了水稻对稻瘟病的抗性[26]。由此可见,水稻病程相关蛋白质OsPR1A位于该信号转导途径的下游发挥作用,广泛参与了水稻对病原菌的抗性反应。利用免疫印迹(western blot,WB)技术发现OsPR1A的表达受Xoo的诱导[27]。通过温度调节控制水稻苗期的抗感反应体系[28],在27℃培养条件下,对水稻苗期4021接种Xoo,发现OsPR1A于接菌第2天被诱导表达,4021呈现抗病反应;TP309接种Xoo后,OsPR1A于接菌第8天后被诱导表达,TP309呈现感病反应[29]。说明在接菌后早期启动OsPR1A较高水平的表达对水稻抵抗白叶枯病菌至关重要。在31℃培养条件下,水稻幼苗期,TP309呈现感病反应,4021也表现为感病反应,这一体系对于鉴定 OsPR1a-OX超表达转基因植株的抗病性提供良好的对照基础。【本研究切入点】目前,对于OsPR1A的研究绝大部分是作为抗性反应发生的标志基因佐证其他基因或途径在抗性中的作用,缺乏直接的证据证实OsPR1A本身的生物学功能。前期已获得OsPR1a-RNAi转基因植株,研究发现,接种Xoo后第12天,OsPR1a-RNAi转基因植株叶片的病斑长度长于 4021植株,说明下调OsPR1A的表达降低了水稻对白叶枯病菌的抗性反应[29]。超表达植株与抗性的关系需进一步探究。【拟解决的关键问题】本研究以 Xa21介导的抗白叶枯病信号转导体系为依托,以抗感表型明显的水稻材料为对照(4021-Xoo P6为抗病组合,TP309-Xoo P6为感病组合),通过构建OsPR1a-OX载体,获得OsPR1A超表达转基因植株,调查其表型和农艺性状,明确OsPR1A表达时间和表达丰度与水稻抗感反应的关系,从而建立抗感模型,进一步探究OsPR1A在水稻抗病中的功能及其生理生化机制。

1 材料与方法

1.1 水稻材料及培养条件

TP309为粳稻品种,4021为以TP309为背景,转入抗白叶枯病基因 Xa21的纯合转基因株系。OsPR1a-OX为超表达OsPR1a的4021。水稻大田种植在河北农业大学西校区的水稻试验田中进行。

苗期培养:在光照培养箱(31℃,15 h光照/9 h黑暗)中水稻种子浸种3 d,将露白的种子种植到已灭菌的营养土(蛭石∶营养土=1∶2)中,培养 14 d,备用。

1.2 水稻OsPR1a-OX转化载体的构建

首先,构建pUC57-3HA质粒,在pUC57质粒上引入 3HA-终止子序列,3HA上游带有 XbaⅠ和 KpnⅠ双酶切位点,下游带有SpeⅠ和HindⅢ双酶切位点。其次,构建含有目的基因的中间载体 pEASY-T1-OsPR1a-3HA,用 XbaⅠ和 HindⅢ限制性内切酶分别双酶切pEASY-T1质粒和pUC57-3HA质粒,用连接酶将 3HA-终止子序列连接到 pEASY-T1质粒上。将含有目的基因的质粒反转录,获得全长cDNA序列,并且在全长cDNA序列的上、下游设计引物,分别引入KpnⅠ和EcoRⅠ 2个酶切位点,进行PCR、琼脂糖凝胶电泳,用KpnⅠ和EcoRⅠ分别双酶切PCR产物(OsPR1a全长cDNA)和pEASY-T1-3HA质粒,用连接酶将目的基因的片段连接到 pEASY-T1-3HA质粒上,进行酶切验证。最后,构建终载体 pUBIC4300-T1-OsPR1a-3HA的转化质粒,验证条带正确后用 SpeⅠ和 KpnⅠ限制性内切酶分别双酶切pEASY-T1-OsPR1a-3HA质粒和pUBI-C4300质粒,用连接酶将 OsPR1a-3HA-终止子片段插入到pUBIC4300质粒上,连接转化后用SpeⅠ和KpnⅠ双酶切验证结果。

含有水稻目的片段OsPR1a(LOC_Os07g03710)全长的cDNA序列的质粒购自日本农业生物资源研究所水稻基因组资源中心(Rice Genome Resource Center,National Institute of Agrobiological Sciences)。扩增目的片段使用的引物分别为 OsPR1a-OX-F:5’-GCGGTACC ATGGCGAGTTCGTCGAGCAGG-3’(下划线为 KpnⅠ酶切位点),OsPR1a-OX-R:5’-GCGAATTCTCAGTAGGGAGATTGGCCGAC-3’(下划线为EcoRⅠ酶切位点)。

1.3 水稻转化

利用农杆菌介导法将转化质粒 pUBI-C4300-T1-OsPR1a-3HA转入水稻受体4021中,通过甘露糖进行筛选,转化工作由武汉伯远生物科技有限公司完成。

1.4 菌株的培养及接菌方法

试验所用水稻白叶枯病菌的菌株为 Xoo Philippine Race 6(PR6)。将保存在-70℃超低温冰箱里的菌液,用接种针挑取菌液在土豆培养基上划线活化,培养温度为28℃,约活化3次后,用无菌水稀释成菌液进行涂板,培养 2 d后,用无菌水稀释菌液浓度为OD600=0.5。对培养14 d的水稻幼苗进行接菌处理,具体方法为:用灭菌的剪刀在距离叶尖约2 cm处,采用斜刀法剪切水稻叶片进行接菌,每棵水稻苗对第3个叶片进行接菌,每个处理接种100个单株左右。

1.5 病斑长度测量

水稻TP309、4021和OsPR1a-OX转基因水稻接菌后,27℃培养,分别在0、2、4、6、8、10和12 d时测量病斑长度,每个株系测4个叶片取平均值。在12 d时将水稻叶片压在玻璃板下拍照。试验重复3次。

1.6 水稻取材

取材方法(2 cm取材法):当病斑长度小于2 cm时,取水稻叶片的前2 cm;当病斑长度大于2 cm时,取病斑线(Xoo侵染与未侵染的分界线)上、下各1 cm之间的叶片。

取材时间:在接菌0、4和6 d时分别对TP309、4021和OsPR1a-OX转基因植株进行取材,叶片称量后放置到装有钢珠的离心管中,并迅速放置到液氮中,-70℃保存备用。

1.7 PCR鉴定

以水稻基因组 DNA作为模板,正向引物为P-OsPR1a-OX-F:5’-ATGGCGAGTTCGTCGAGCAG G-3’,反向引物为 P-HA-R:5’-CTGGAACGTCATATG GATAGG-3’。扩增结束后,每个样品的PCR产物取20 μL,用1%琼脂糖凝胶跑电泳并检测。

1.8 水稻样品全蛋白质的提取及WB检测

取出储藏在-70℃超低温冰箱里的样品,用高速震荡研磨仪将样品研磨成粉末状;每 0.1 克样品粉末中加入1 mL蛋白质提取缓冲液;涡旋混匀30 s,冰上放置2 min,重复5次;4℃ 12 000 r/min离心20 min;取上清液,加入上清液体积1/4的5×Loading Buffer,煮沸10 min,12 000 r/min离心3 min,蛋白质样品提取完成,-20℃储存备用。具体方法参考文献[30]。

(154)列胞耳叶苔 Frullania moniliata(Reinw.,Blume&Nees)Mont. 熊 源 新 等 (2006); 杨 志 平(2006);马俊改 (2006); 王小琴等 (2007); 洪文(2007,2008);姚发兴等(2003);李粉霞等(2011);余夏君等(2018)

用10% Tricine胶分离已提取好的水稻总蛋白质样品;电泳条件为80 V,20 min和160 V,90 min;分离完成后将蛋白质转移到PVDF膜上;OsPR1A一抗为anti-OsPR1A多克隆抗体,二抗为HRP标记的羊抗兔二抗;OsHSP82作为校准上样量内参蛋白,一抗为OsHSP82单克隆抗体[31],二抗为HRP标记的羊抗鼠二抗;二抗孵育结束后进行WB检测,首先将皮克级的显色液A液与B液进行1∶1的配制,摇匀,然后将发光液均匀地滴加到PVDF膜上,再将PVDF膜放到膜保护卡上,用Sage Capture软件检测OsPR1A蛋白质条带的信号。

2 结果

2.1 水稻OsPR1a-OX转化载体的构建

为了探究OsPR1A在Xa21介导的抗病途径中的功能,构建 OsPR1a-OX转化载体。首先,根据目的基因设计引物(上、下游引物的5’端分别引入限制性酶切位点KpnⅠ和EcoRⅠ),然后扩增目的条带,进行琼脂糖凝胶电泳(图1-a)。结果表明,扩增的目的条带大小与OsPR1a大小相符,为507 bp。其次,用限制性内切酶 KpnⅠ和 EcoRⅠ双酶切 PCR产物和pEASY-T1-3HA质粒,酶切产物纯化后进行连接转化,构建pEASY-T1-OsPR1a-3HA质粒,用KpnⅠ和EcoRⅠ进行双酶切验证(图 1-b)。结果表明,目的条带符合预期,大小为507 bp,将重组质粒测序,测序结果正确后,用限制性内切酶 KpnⅠ、SpeⅠ双酶切pEASY-T1-OsPR1a-3HA质粒,进行琼脂糖凝胶电泳,目的片段OsPR1a-3HA回收并连接到用KpnⅠ和SpeⅠ双酶切的 pUBI-C4300质粒中,然后将重组质粒pUBI-C4300-OsPR1a-3HA进行双酶切(KpnⅠ和 SpeⅠ)验证(图1-c)。结果表明,带有插入的目的基因的酶切产物大小为2 568 bp,即获得OsPR1a-OX转化质粒。

2.2 水稻OsPR1a-OX转基因植株的鉴定

获得转化质粒后,通过农杆菌介导法转入水稻受体4021中。T0代获得16个转基因株系,取其叶片分别提取基因组DNA和全蛋白质进行PCR和WB鉴定,筛选阳性转基因株系并收获种子,即为T1代。经过进一步筛选,在T2代获得OsPR1a-OX转基因纯合株系#704和#709。如图2所示,以4021作为负对照,其PCR结果和WB结果均没有条带即为阴性,2个转基因株系#704和#709中PCR结果和WB结果均有条带,说明OsPR1a-OX转基因株系#704和#709为超表达转基因纯合株系。

2.3 水稻OsPR1a-OX转基因植株的农艺性状

在成熟期调查 OsPR1a-OX植株的株高、穗长、分蘖数、结实率和籽粒的大小等农艺性状,并进行统计学分析(图3),与对照4021相比,OsPR1a-OX转基因植株#704和#709的株高较矮、穗长较短、结实率降低、分蘖数减少,并且统计学分析具有差异显著性,但籽粒比水稻4021的稍大,可能与结实率低有关。说明超表达OsPR1A影响了水稻的正常生长发育过程。

2.4 水稻OsPR1a-OX转基因植株接种Xoo后病斑长度的分析

为了探究OsPR1A在Xa21介导的抗白叶枯病的途径中的功能,31℃条件下培养水稻TP309、4021、#704和#709,2周后接种Xoo,并在接种0、2、4、6、8、10和12 d时测量病斑长度,并于12 d时拍照。如图4-a所示,接种2 d后叶片接菌部位开始出现病斑,随着接菌时间的延长,水稻不同材料的病斑长度呈现差别。TP309叶片的病斑长度随着接菌时间延长不断增加;4021叶片的病斑长度增加缓慢;OsPR1a-OX植株#704和#709叶片的病斑长度始终控制在较低水平。接种12 d时取样拍照,如图4-b所示,TP309呈全感状态,病斑长度平均为14.8 cm;4021呈半感状态,病斑长度平均为2.9 cm;而#704、#709的病斑长度平均为1.2 cm,显著短于4021。对接种12 d时不同水稻材料的病斑长度进行了统计学分析,发现转基因水稻#704、#709的病斑长度与对照4021相比具有显著性差异(P<0.05)(图 4-c)。结果表明,超表达OsPR1A后增强了 Xa21介导的水稻对白叶枯病的抗性反应。

2.5 水稻OsPR1a-OX转基因植株接种Xoo后OsPR1A蛋白质的表达特征

通过 OsPR1a-OX转基因植株来进一步探究OsPR1A在水稻抗白叶枯病反应中的作用。在31℃培养条件下,调查了TP309、4021、#704和#709水稻植株在接菌0、4和6 d时OsPR1A的表达丰度,并采用2 cm取材法收集水稻叶片材料。如图5所示,在接菌0 d时,水稻TP309和4021中OsPR1A均不表达,#704和#709中本底表达丰度比较高;接种 4和 6 d时OsPR1A在TP309中均没有诱导表达,4021中出现诱导条带,并随时间延长有所增加,#704和#709中OsPR1A始终处于较高恒定水平表达状态。可见,OsPR1A接菌后的早期诱导表达或组成型本底表达对水稻抗白叶枯病发挥着重要作用。

3 讨论

PR蛋白质是由植物病原体和防御相关信号分子诱导的一类蛋白质的总称[32]。PR首先被发现在被感染烟草花叶病毒的烟草植物中,另外,在番茄、水稻和拟南芥等中也有发现,它们往往在抗病反应的下游发挥作用,具有攻击病原物、降解病原物细胞壁、蛋白酶的抑制剂和防御素等功能[3,33-35]。目前,水稻PR蛋白质根据它们的蛋白质序列相似性、酶活性和其他生物学特性分为17个家族[36-38]。OsPR1a是水稻PR1家族成员中第一个被报道的成员,编码一种酸性的低分子量的蛋白质,属于丝氨酸羧肽酶[3]。OsPR1a在水稻防御和胁迫应答中发挥重要作用,例如,当受到机械伤害、光信号、蛋白磷酸酶抑制剂(CN和EN)、茉莉酸(jasmonic acid,JA)、水杨酸(salicylic acid,SA)、脱落酸(abscisic acid,ABA)、过氧化氢(hydrogen peroxide,H2O2)、稻瘟病菌(Magnaporthe grisea)、白叶枯病菌和纹枯病菌(Rhizoctonia solani)处理后均可诱导其转录水平表达,因此,在水稻中经常被作为一个抗病标记基因[3,25-26,39]。

病程相关蛋白中类丝氨酸羧肽酶家族的存在不单单是为防卫反应而准备的,在植物正常生活中也需要它们定量的表达。类丝氨酸羧肽酶在植物中具有广泛的生理学功能,参与种子萌发有关的蛋白质降解[40]、调节水稻籽粒大小和水稻产量[41-42]、油菜素类固醇受体(brassinosteroid-insensitive 1,BRI1)信号途径[43]、具有酰基转移酶活性参与次级代谢产物的生物合成[44-45]以及参与除草剂代谢[46]等。GS5编码丝氨酸蛋白酶,可以正调控水稻粒重的数量性状,超表达GS5可促进水稻颖壳细胞的横向分裂,进而增大颖壳的宽度,继而加快谷粒的充实和胚乳的生长速度,最终增大种子的大小以及增加谷粒的重量,从而提高水稻的产量[41]。OsSCP46编码丝氨酸羧肽酶,可能通过参与ABA信号转导来实现参与水稻种子灌浆和萌发过程[47]。在本研究中类丝氨酸羧肽酶家族成员 OsPR1A,超表达植株表现为籽粒变大,但结实率降低,同时表现为株高较矮、穗长较短以及分蘖数减少(图3)。由此可见,维持 OsPR10A表达量的平衡对于保证水稻的正常生长发育和抗性需求至关重要。

前期研究表明,携带Xa21的水稻在幼苗期对Xoo不具有抗病性,只有在成熟期抗性才被完全激活[48]。但近期宋文源课题组发现在 27℃条件下培养水稻幼苗,接种Xoo后激活了Xa21介导的抗性;而当转移到 31℃条件下培养,Xa21介导的抗性又会丧失[28]。说明 Xa21介导的抗白叶枯病不仅具有发育时期依赖性还具有温度依赖性。本课题组前期研究发现,大田种植条件下,水稻 4021(非亲和互作)接种 Xoo后OsPR1A被诱导表达,并且在接菌144 h时OsPR1A的表达丰度高于TP309(亲和互作)[27]。在27℃培养条件下,对水稻幼苗TP309和4021接种Xoo,TP309呈现感病反应,4021呈现抗病反应,且在 4021中OsPR1A被提前诱导表达[29],表明OsPR1A在病菌侵染早期的诱导表达对水稻抗病至关重要。OsPR1a-RNAi转基因植株接种Xoo后会降低Xa21介导的对白叶枯病的抗性反应[29]。本研究发现 OsPR1a-OX转基因植株的病斑长度短于4021和TP309(图4),说明OsPR1A在Xa21介导的免疫反应中发挥正调控作用,可增强水稻对白叶枯病的抗性。

OsPR1A属于类丝氨酸羧肽酶,一般作为分泌蛋白,定位在细胞外间隙,参与对抗病原菌的反应,但其生理生化机制研究甚少,如亚细胞定位、酶学分析和参与的代谢组分析等探究 OsPR1A的生理生化功能,为研究抗病反应机制奠定坚实的基础。

Xa21介导的抗性有几个限制因素:一是发育时期依赖性,田间情况下是成株期抗性,幼苗期不抗;二是温度依赖性,苗期在27℃表现抗性,31℃表现感病;三是具有Xoo小种依赖性,没有RaxX的Xoo是不抗的[49]。除Xa21介导的Xoo抗性中,还有多个Xoo抗病基因,其中许多抗病基因都涉及OsPR1A的改变,所以OsPR1A可能是多个抗病基因下游响应的共享元件,是重要的病程相关蛋白质。OsPR1A没有病原菌结合特异性,可能是更具广谱及长效抗性的基因资源。如果确定了在不同抗病途径都发挥作用,则通过调控该基因的表达进行水稻品种的改良,可能实现一定程度的广谱抗性,即非抗病基因依赖、非病原菌小种依赖、非温度和发育时期依赖的非专化抗性,进一步增强水稻的抗病性,拓宽水稻的抗病谱,为基于基因整合的广谱抗病育种提供分子水平的指导。

4 结论

构建了OsPR1a-OX载体,获得了OsPR1a-OX转基因植株;超表达OsPR1A后增强了Xa21介导的水稻对白叶枯病的抗性;超表达OsPR1A也会影响水稻的正常发育过程,主要表现为株高变矮、分蘖数显著减少、穗长显著变短、结实率显著降低和籽粒变大。

猜你喜欢

叶枯病抗病质粒
农杆菌转化法中的“Ti质粒转化载体系统”的简介
——一道江苏高考题的奥秘解读和拓展
全基因组测序后质粒的组装与鉴定研究进展*
我国小麦基因组编辑抗病育种取得突破
mcr-1阳性类噬菌体质粒与F33∶A-∶B-质粒共整合形成的融合质粒的生物学特性分析
多年生稻白叶枯病抗性评价
水稻白叶枯病的发生及防治
开发新方法追踪植物病害的全球传播(2020.6.7 iPlants)
植物细胞内存在“自杀神器”
红掌帚梗柱孢叶枯病菌的鉴定
韶关市水稻白叶枯病的发生特点及防治措施