饲粮微量元素添加模式对肉仔鸡生长和胴体性能及肌肉品质的影响
2021-12-07张兰王良治黄艳玲廖秀冬张丽阳吕林罗绪刚
张兰,王良治,,黄艳玲,廖秀冬,张丽阳,吕林,罗绪刚
饲粮微量元素添加模式对肉仔鸡生长和胴体性能及肌肉品质的影响
张兰1,王良治1,2,黄艳玲1,廖秀冬2,张丽阳2,吕林2,罗绪刚3
1青藏高原动物遗传资源保护教育部重点实验室,西南民族大学,成都 610041;2中国农业科学院北京畜牧兽医研究所矿物元素营养研究室,北京 100193;3扬州大学动物科技学院,家禽矿物元素营养研究室,江苏扬州 225000
【目的】研究饲粮微量元素不同添加模式对肉仔鸡生长和胴体性能及肌肉品质的影响,探寻肉仔鸡饲粮中微量元素平衡模式,为饲粮中合理添加微量元素提供试验依据。【方法】采用单因子完全随机设计,选取240只1日龄AA肉仔鸡,按体重随机分为5组,每组6个重复,每个重复8只。在玉米-豆粕型基础饲粮中分别按不同模式添加微量元素:按照NRC(1994)肉鸡推荐量以无机形式添加微量元素(T1,1—42日龄铜、铁、锰、锌和硒添加量分别为8、80、60、40 和 0.15 mg·kg-1);按照中国鸡饲养标准(农业行业标准NY/T 33-2004)中肉鸡推荐量以无机形式添加微量元素(T2,1—21日龄铜、铁、锰、锌和硒添加量分别为8、100、120、100和0.3 mg·kg-1;22—42日龄添加量分别为8、80、120、80和0.3 mg·kg-1);按照课题组前期微量元素需要量研究结果以无机形式添加微量元素(T3,1—21日龄铜、铁、锰、锌和硒添加量分别为4、40、110、60和0.35 mg·kg-1;22—42日龄添加量分别为0、30、80、40和0.35 mg·kg-1);按照实验室前期结果以有机形式减量添加微量元素(T4,1—21日龄铜、铁、锰、锌和硒添加量分别为2、30、80、40和0.25 mg·kg-1;22—42日龄添加量分别为0、15、50、30和0.25 mg·kg-1);按照NY/T 33-2004中肉鸡推荐量以有机形式添加微量元素(T5,1-21和22-42日龄铜、铁、锰、锌和硒添加量同T2)。无机微量元素源分别为饲料级五水硫酸铜、一水硫酸亚铁、一水硫酸锰、一水硫酸锌和亚硒酸钠,有机微量元素源分别为饲料级蛋氨酸铜、甘氨酸铁、蛋氨酸锰、甘氨酸锌和酵母硒。试验期42d。【结果】微量元素添加模式对肉仔鸡平均日采食量、平均日增重均无显著影响(>0.05); T2组的22—42日龄料重比显著高于T1、T4和T5组(<0.05),而T2与T3组无显著差异(>0.05); T2组的1-42日龄料重比显著高于其他组(<0.05),而其他各组之间差异不显著(>0.05)。42日龄肉仔鸡胴体性能及胸肌和腿肌的L值、a*值、pH和滴水损失均不受微量元素添加模式影响(>0.05),但T5组的胸肌b*值显著高于T1和T3组(<0.05),而与T4组无显著差异(>0.05);T4组的腿肌剪切力显著低于T1和T5组(<0.05),肌肉嫩度相对较好。【结论】本试验条件下,在玉米-豆粕型饲粮中减量添加有机微量元素(T4, 1—21日龄铜、铁、锰、锌和硒添加量分别为2、30、80、40和0.25 mg·kg-1;22—42日龄添加量分别为0、15、50、30和0.25 mg·kg-1)对肉仔鸡生长性能和肌肉品质的作用效果较好。
微量元素添加模式;生长性能;胴体性能;肉品质;肉仔鸡
0 引言
【研究意义】微量元素(trace elements,TE)对于家禽的生长[1-2]、发育和繁殖[3-4]等各种生理过程[5]是必不可少的。铜[6-7]、铁[8-9]、锌[10-12]、锰和硒[13-15]等作为许多酶的辅助因子,在一些关键的代谢反应中起着非常重要的作用[16-19]。在商业生产中为了满足动物需要并提高动物成活率、生长性能、胴体性能、免疫机能和肉品质等,微量元素添加量通常高于NRC(1994)推荐量[20-21]。如NRC(1994)建议铜、锌和锰需要量分别为8、40和60 mg·kg-1,而商业生产中的补充量分别为125、120、和100 mg·kg-1 [22-23]。在动物体内高浓度的TE之间可能会发生拮抗作用,如过量的锌会抑制铜的吸收,铜锌超氧化物歧化酶(CuZn-SOD)活性减弱,导致机体抗氧化性能降低[24];过多的铁也会降低锰和锌在肠道的吸收[25-26];以二价铜离子(Cu2+)为辅助因子的铁离子转运蛋白具有铜离子依赖性,铜离子缺乏时也会导致机体缺铁[18]。因此导致微量元素利用率较低,大量微量元素随粪便排出体外,造成资源浪费和环境污染[27-29]。近些年对高效微量元素源的研究已成为热点。【前人研究进展】有研究结果显示有机微量元素(organic trace elements,OTE)的生物学利用率高于无机微量元素(inorganic trace elements,ITE)[30-31],且在饲粮中补充低浓度OTE,对家禽生产性能没有不良影响并可以降低粪便中TE排出量[32],缓解资源浪费和环境污染问题[27, 33]。【本研究切入点】目前的研究多集中在单一微量元素,对微量元素的不同添加模式,尤其是硒与铜、铁、锌、锰共同添加对肉仔鸡胴体性能和肉品质的影响还鲜有报道。另外,肉鸡对微量元素的需要量仍采用NRC(1994)推荐量[34],其中一些推荐量是基于20世纪50年代试验数据制定的[35]。而当今肉鸡品种不断优化,商业生产体系不断革新,一些推荐量可能不再适用。因此探究既有利于改善肉仔鸡生长性能、胴体性能及肌肉品质,又有利于微量元素高效利用的微量元素添加模式是非常有必要的。【拟解决的关键问题】本试验旨在研究微量元素不同添加模式对肉仔鸡生长性能、胴体性能和肌肉品质的影响,探寻肉仔鸡饲粮中微量元素平衡模式,为饲粮中合理添加微量元素提供试验依据。
1 材料与方法
1.1 试验设计与处理
本试验采用单因子完全随机设计。试验共设置5个处理组,分别为按照NRC(1994)肉鸡微量元素推荐量添加的无机微量元素组(T1)、按照中国鸡饲养标准(农业行业标准NY/T 33—2004)[36]中肉鸡微量元素推荐量添加的无机微量元素组(T2)、按照中国农业科学院北京畜牧兽医研究所矿物元素营养研究室前期微量元素需要量研究结果添加的无机微量元素组(T3)、按照前期试验结果减量添加的有机微量元素组(T4)和按照NY/T 33—2004中肉鸡微量元素推荐量添加的有机微量元素组(T5)。
1.2 动物与饲粮
试验于2019年3—4月在中国农业科学院北京畜牧兽医研究所昌平基地进行。选用240只1日龄AA肉公鸡,按体重随机分为5个处理组,每组6个重复,每个重复8只鸡,饲养于不锈钢镀塑鸡笼内,试验期42 d。肉仔鸡每天光照24 h,自由采食和饮水。试验鸡饲养管理和常规免疫按《AA肉仔鸡饲养管理手册》进行。试验过程中,每日观察并记录鸡只健康状况,记录死亡数。如有鸡只发病或死亡,立即解剖,观察分析病理死因,并结料。分别于试验第21和42天以重复(笼)为单元称鸡空腹体重和剩料量,计算平均日采食量(ADFI)、平均日增重(ADG)、料重比(F/G)。
参照美国NRC(1994)和中国鸡饲养标准(2004)的1—21日龄和22—42日龄肉仔鸡营养推荐量配制两阶段玉米-豆粕型基础饲粮(未添加铜、铁、锰、锌和硒)(表1),并按以上处理在基础饲粮中添加不同比例和形式的铜、铁、锰、锌和硒(各处理组饲粮添加水平和实测水平见表2)。无机微量元素源分别为饲料级五水硫酸铜、一水硫酸亚铁、一水硫酸锰、一水硫酸锌和亚硒酸钠;有机微量元素源分别为饲料级蛋氨酸铜、甘氨酸铁、蛋氨酸锰、甘氨酸锌和酵母硒。饲粮以粉料形式饲喂。
表1 基础饲粮的组成及营养水平(饲喂基础)
1)饲料级Feed grade;
2)每千克饲粮中添加:1-21日龄:VA 15 000 IU, VD34 500 IU, VE 24 IU, VK33 mg, VB13 mg, VB29.6 mg, VB63 mg, VB120.018 mg, Pantothenic acid calcium 15 mg, Niacin 39 mg, Folic acid 1.5 mg, Biotin 0.15 mg, Choline 700 mg, I (as potassium iodide) 0.35 mg. 22-42日龄:VA 10 000 IU, VD33 000 IU, VE 16 IU, VK32 mg, VB12 mg, VB26.4 mg, VB62 mg, VB120.012 mg, Pantothenic acid calcium 10 mg, Niacin 26 mg, Folic acid 1 mg, Biotin 0.1 mg, Choline 500 mg,I (as potassium iodide) 0.35 mg;
3)计算值Calculated values;
4)实测值Analyzed values
表2 试验饲粮中微量元素的添加水平和实测水平
1)饲粮实测水平包含了基础饲粮中微量元素含量和微量元素添加量;数值为3个平行测定值的平均值
1)The analyzed levels include the trace element concentrations in the basal diet and added amount; values are the means of triplicate determinations
1.3 胴体性能和肉品质测定
于43日龄早上称重后,每个重复选取2只接近平均体重的鸡采血后屠宰,分离胸肌、腿肌和腹脂,按全国家禽育种委员会的(NY/T823-2004)《家禽生产性能名词术语和度量统计方法》[37]计算屠宰率、全净膛率、胸肌率、腿肌率和腹脂率。屠宰测定之后,取左侧胸肌、腿肌样品,用TC-PⅡG型全自动色差仪立即测定胸、腿肌肉色L*值、a*值和b*值;屠宰后45 min,用pH-211型pH计测定胸、腿肌pH;4℃保存24 h后,测定胸、腿肌pH、滴水损失和剪切力。肉品质各指标测定方法均采用胡新旭等[38]报道的方法。
1.4 统计分析
使用SAS 9.0系统中的一般线性模型(GLM)程序对所得数据进行单因子方差(One-way ANOVA)分析;方差分析显著者,以最小显著差异(LSD)法比较各平均数间的差异显著性。以重复作为一个试验单元。以≤0.05作为差异显著性检验水平。
2 结果
2.1 微量元素添加模式对肉仔鸡生长性能的影响
由表3可见,微量元素添加模式对试验前期(1—21日龄)、试验后期(22—42日龄)和试验全期(1—42日龄)肉仔鸡的ADFI、ADG均无显著影响(>0.05),但对试验后期和试验全期肉仔鸡的F/G有显著影响(<0.05)。从试验后期来看,T2组的F/G显著高于T1、T4和T5组(<0.05),而与T3组之间无显著差异(>0.05),且T1、T4和T5组之间也无显著差异(>0.05);从试验全期来看,T2组的F/G显著高于其他处理组(<0.05),而其他处理组之间无显著差异(>0.05)。
2.2 微量元素添加模式对肉仔鸡胴体性能的影响
由表4可见,微量元素添加模式对肉仔鸡屠宰率、全净膛率、胸肌率、腿肌率和腹脂率均无显著影响(0.05)。
2.3 微量元素添加模式对肉仔鸡胸肌和腿肌肉品质的影响
由表5可见,微量元素添加模式对42日龄肉仔鸡胸肌pH、L*值、a*值、剪切力和滴水损失均无显著影响(>0.05),但对胸肌b*值有显著影响(<0.05)。与T1和T3组相比,T5组的b*值显著增高(<0.05),但T5组和T2、T4组无显著差异(>0.05),T1、T2、T3和T4组之间也无显著差异(>0.05)。
表3 微量元素添加模式对肉仔鸡生长性能的影响1)
1)数值表示6个重复笼(n=6)的平均值。a,b同列数值具有不同字母肩标表示差异显著(<0.05),相同或无字母表示差异不显著。下同
1)Data represent the means of 6 cages (= 6). a,b Values with different superscript letters in the same column mean significant difference (<0.05), while with the same or no superscript letters mean no significant difference (>0.05). The same as below
表4 微量元素添加模式对肉仔鸡胴体性能的影响
由表6可见,微量元素添加模式对腿肌pH、L*值、a*值、b*值和滴水损失无显著影响(>0.05),但显著影响腿肌剪切力(<0.05)。T4的剪切力显著低于T1和T5(<0.05),但与T2、T3之间无显著差异(>0.05),T1、T2和T3之间的腿肌剪切力也无显著差异(>0.05)。
表5 微量元素添加模式对胸肌肉品质的影响
表6 微量元素添加模式对腿肌肉品质的影响
3 讨论
3.1 对肉仔鸡生长性能的影响
关于微量元素添加模式对肉仔鸡生长性能影响的研究,已有相关报道。濮振宇等[39]的研究表明,分别按照NRC(1994)和中国鸡饲养标准(NY/T 33-2004)中肉鸡推荐量在饲粮中添加无机铜、铁、锰和锌,肉鸡的前期、后期及全期ADG、ADFI和F/G均无明显差异。田佳等[28]研究也发现,饲粮无机微量元素铜、铁、锌、锰含量在NRC推荐量至2倍NRC推荐量范围内时,对22—42日龄肉鸡的ADG和F/G无显著影响。但本试验结果发现,我国农业行业标准(行标)无机组(T2)肉鸡22—42日龄和1—42日龄的F/G均显著高于NRC(1994)推荐量组。本试验结果与以上两个试验结果不一致的原因可能是本试验微量元素添加模式中除了铜、铁、锰、锌的添加量有变化外,硒添加量也有变化,而这两个试验的硒添加量均无变化。
近年来,人们对不同形态微量元素的生物学利用率研究较多,并发现动物对OTE的生物学利用率高于ITE[40-42]。BAO等[35]研究发现,减量添加OTE(Cu 4 mg·kg-1、Fe 40 mg·kg-1、Mn 40 mg·kg-1和Zn 40 mg·kg-1)与高水平添加ITE(Cu 5 mg·kg-1、Fe 70 mg·kg-1、Mn 80 mg·kg-1和Zn 50 mg·kg-1)相比,对肉鸡ADFI和ADG的影响均无显著差异,但显著降低了肉鸡F/G。M'SADEQ等[43]证实,饲粮减量添加OTE比高水平添加ITE能更好地提高肉鸡的饲料转化效率。VIEIRA等[33]也发现,有机微量元素组的肉仔鸡比无机微量元素组的肉仔鸡有更好的饲料转化率、更高的体增重(3.941 kg OTE3.881 kg ITE;<0.05)和更好的成活率(95.8 % OTE vs. 93.6 % ITE;<0.05)。以上研究结果与本试验结果一致,说明有机微量元素的生物学利用率更高,可以更好地改善肉鸡生长性能。ZHU等[44]研究了饲粮添加商业推荐水平的30 %的无机或有机微量元素(Cu、Fe、Mn和Zn)对罗斯肉鸡生产性能的影响,发现与商业推荐水平组相比,30 % OTE组对肉鸡生长性能没有显著影响,而30 % ITE组体增重显著降低,料重比显著增加。表明同等添加水平下OTE的吸收和利用率更高,可以更好地满足肉仔鸡生理功能的需要。本试验中OTE组(T5)的F/G显著低于同等添加水平的ITE组(T2)也再次验证了这一观点。另外有研究报道,有机螯合微量元素的杂环结构可以中和无机金属离子的正电荷,防止微量元素在胃肠道内与其他营养物质发生拮抗作用而提高微量元素及其他营养物质的吸收和利用率[45],表明有机微量元素可以减弱或克服微量元素与其他营养物质之间的拮抗作用,这也可能是有机微量元素生物学利用率高于无机微量元素的原因之一。微量元素在畜禽的生长性能、胴体性能等方面均发挥着重要的作用,其吸收和利用率的提高可进一步改善动物体各项机能。
3.2 对肉仔鸡胴体性能和肌肉品质的影响
SIRRI等[46]发现,饲粮中添加不同水平和形式的铜、锌和锰对肉鸡的屠宰率、胸肌率和腿肌率均无显著影响。王一冰等[47]的研究结果也表明,与NRC推荐量组相比,高于NRC推荐量添加铁、铜、锰、锌和硒对肉鸡的屠宰率、全净膛率、胸肌率、腿肌率和腹脂率均无显著影响。以上研究结果与本试验结果相一致,说明不同微量元素添加模式对肉鸡胴体性能的影响较小。肌肉品质可以通过测定肉色、pH,剪切力(嫩度)、滴水损失等多种指标进行评价。肉色是肌肉通过生理、生化和微生物反应而显现出来的一种易于识别的外部表现[48],是消费者了解肉品质的表观特征。肌肉a*值与肌肉肌红蛋白和血红素含量呈正相关[49];肌肉L*值表示肉质的苍白程度,它与滴水损失、pH等存在一定的相关性;肌肉b*值与肌内脂肪含量呈正相关[50]。在本试验条件下,微量元素添加模式对胸肌和腿肌的L*值、a*值、pH和滴水损失均无显著影响。减量有机组T4肉鸡的胸肌b*值与行标有机组T5相比差异不显著,而行标有机组T5与NRC无机组T1和之前期结果无机组T3相比,胸肌b*值显著增加。但Aksu等[51]研究发现,与无机微量元素组(8 mg·kg-1Cu、40 mg·kg-1Zn、60 mg·kg-1Mn)相比,复合有机微量元素组(Cu、Zn和Mn的添加水平是无机组的1/3、2/3或等量添加)ROSS肉鸡胸肌a*值显著降低,胸肌L*值显著增加,而各处理组的胸肌b*值差异不显著。造成这种差异的原因可能是试验使用肉鸡品种和微量元素添加水平与比例不同。肌肉剪切力是评价肌肉嫩度的一个重要指标,剪切力越小嫩度越好,肉质越细腻[52]。剪切力与肌肉蛋白水解酶相关,Goll等[53]发现,骨骼肌蛋白水解酶主要成分钙蛋白酶可以降解肌丝蛋白,使剪切力降低,肌肉嫩度改善。钙蛋白酶是Ca2+依赖蛋白,Ca2+有效水平是该酶发挥作用的关键。前期结果减量有机组T4腿肌剪切力最小,可能是由于该组有机微量元素的添加水平和比例较为适宜,有利于微量元素间协同作用的发挥而使肉仔鸡对饲粮中Ca2+的吸收和利用提高,增强钙蛋白酶的活性。此外,Ca2+还可以通过非酶机制增大蛋白质分子间的静电作用促进肌球蛋白的展开,提高溶解性而改善肌肉嫩度。但当有效Ca2+浓度过高时,会导致肌球蛋白结构失衡,疏水基团大量暴露,蛋白质通过疏水作用聚集,溶解度降低,系水力降低,蒸煮损失增加,嫩度降低[54]。这可能是行标有机组T5腿肌剪切力高于T4的原因,但具体原因还不太清楚,需要进一步的试验证实。
4 结论
综合看来,本试验条件下,在玉米-豆粕型饲粮中减量添加有机微量元素(T4, 1—21日龄铜、铁、锰、锌和硒添加量分别为2、30、80、40和0.25 mg·kg-1;22—42日龄添加量分别为0、15、50、30和0.25 mg·kg-1)对肉仔鸡生长性能和肌肉品质的作用效果较好。
[1] SAMANTA B, GHOSH P R, BISWAS A, DAS SK. The effects of copper supplementation on the performance and hematological parameters of broiler chickens. Asian Australasian Journal of Animal Sciences, 2011, 24(7):1001-1006. doi: 10.5713/ajas.2011.10394.
[2] 吴信, 孟田田, 万丹, 谢春艳, 印遇龙. 硒在畜禽养殖中的应用研究进展. 生物技术进展, 2017, 7(5): 428-432. doi:10.19586/j.2095- 2341.2017.0092.
WU X, MENG T T, WAN D, XIE C Y, YIN Y L. Advance on application of selenium in livestock and poultry.Progress in Biotechnology, 2017, 7(5): 428-432. doi:10.19586/j.2095-2341.2017. 0092. (in Chinese)
[3] ROYCHOUDHURY S, NATH S, MASSANYI P, STAWARZ R, KACANIOVA M, KOLESAROVA A. Copper-induced changes in reproductive functions:andeffects. Physiological Research, 2016, 65(1): 11-22. doi:10.33549/physiolres.933063.
[4] 吴小玲, 石建凯, 张攀, 吴徳, 徐盛玉. 硒对母猪繁殖性能的影响及其作用机制. 动物营养学报, 2018, 30(2): 444-450. doi: 10.3969/j. issn.1006-267x.2018.02.006.
WU X L, SHI J K, ZHANG P, WU D, XU S Y. Effects of Selenium on reproductive performance of sows and its mechanism.Chinese Journal of Animal Nutrition, 2018, 30(2): 444-450. doi: 10.3969/j.issn.1006- 267x.2018.02.006. (in Chinese)
[5] OGNIK K, SEMBRATOWICZ I, CHOLEWIŃSKA E, JANKOWSKI J, KOZŁOWSKI K, JUŚKIEWICZ J, ZDUŃCZYK Z. The effect of administration of copper nanoparticles to chickens in their drinking water on the immune and antioxidant status of the blood. Animal Science Journal, 2018, 89(3): 579-588. doi:10.1111/asj.12956.
[6] LINDER M C. Ceruloplasmin and other copper binding components of blood plasma and their functions: an update. Metallomics, 2016, 8(9): 887-905. doi:10.1039/c6mt00103c.
[7] YAMADA H, YASUNOBU K T. Monoamine oxidase. II. Copper, one of the prosthetic groups of plasma monoamine oxidase.Journal of Biological Chemistry, 1962, 237(10): 3077-3082.
[8] WANG W, DI X, D'AGOSTINO R B, TORTI S V, TORTI F M. Excess capacity of the iron regulatory protein system. The Journal of Biological Chemistry, 2007, 282(34): 24650-24659. doi:10.1074/jbc. m703167200.
[9] CRICHTON R R, CHARLOTEAUX W M. Iron transport and storage. European Jounal of Biochemity, 1987, 164 (3), 485-506. doi:10. 1146/annurev.bi.49.070180.002041.
[10] COLEMAN J E. Zinc proteins: enzymes, storage proteins, transcription factors, and replication proteins. Canada Communicable Disease Report, 1992, 61: 897-946. doi:10.1146/annurev.bi.61.070192. 004341.
[11] 李琳, 丁峰, 潘介春, 张树伟, 黄幸, 王金英, 王颖, 李浩然, 徐炯志, 彭宏祥, 何新华. 植物锌指蛋白转录因子家族研究进展. 热带农业科学, 2020, 40(2): 65-75. doi:10.12008/j.issn.1009-2196.2020. 02.011.
LI L, DING F, PAN J C, ZHANG S W, HUANG X, WANG J Y, WANG Y, LI H R, XU J Z, PENG H X, HE X H. Research progress on family of plant zinc-finger protein transcription factors. Chinese Journal of Tropical Agriculture, 2020, 40(2): 65-75. doi:10.12008/ j.issn.1009-2196.2020.02.011 (in Chinese)
[12] BOGENHAGEN D F, WORMINGTON W M, BROWN D D. Stable transcription complexes of5S RNA genes: a means to maintain the differentiated state. Molecular Plant Pathology, 1982, 28(2): 413-421. doi:10.1016/0092-8674(82)90359-2.
[13] LABUNSKYY V M, HATFIELD D L, GLADYSHEV V N. Selenoproteins: Molecular pathways and physiological roles. Physiological Reviews, 2014, 94(3): 739-777. doi: 10.1152/physrev. 00039.2013.
[14] 雷新根, 赵华, 周继昌. 哺乳动物硒蛋白研究进展//中国畜牧兽医学会动物营养学分会学术研讨会, 2008: 23-32. doi: 0.19586/j.2095- 2341.2017.0092.
LEI X G, ZHAO H, ZHOU J C. Research advances on mammalian selenoproteins//Animal Nutrition Branch of China Institute of Animal Husbandry and Veterinary Medicine, 2008: 23-32. doi: 0.19586/j. 2095-2341.2017.0092. (in Chinese)
[15] 汤小朋, 陈磊, 熊康宁, 杭红涛. 硒蛋白—哺乳动物谷胱甘肽过氧化物酶家族研究进展. 生命的化学, 2019(6): 1076-1081. doi: 10.13488/j.smhx.20190168.
TANG X P, CHEN L, XIONG K N, HANG H T. Research progress of selenoprotein-mammalian glutathione peroxidases family. Chemistry of Life, 2019(6): 1076-1081. doi: 10.13488/j.smhx.20190168. (in Chinese)
[16] 任孝军, 刘若兰, 牛欢, 李艳纯, 谭国强, 吕建新. 锌的生物学功能及高浓度锌对铁硫蛋白的影响. 中国细胞生物学学报, 2017(5): 639-648.
REN X J, LIU R L, NIU H, LI Y C, TAN G Q, (LÜ/LV/LU/LYU) J X. Biological functions of zinc and the impact of high zinc levels on iron-sulfur proteins. Chinese Journal of Cell Biology, 2017(5): 639-648. (in Chinese)
[17] 高庆, 张克英, 陈代文. 日粮微量元素对基因表达的影响. 中国畜牧兽医, 2004, 31(3): 12-15. doi:10.3969/j.issn.1671-7236.2004.03. 005.
GAO Q, ZHANG K Y, CHEN D W. Influence of trace minerals in ration on gene expression. China Animal Husbandry & Veterinary Medicine, 2004, 31(3): 12-15. doi:10.3969/j.issn.1671-7236.2004.03. 005. (in Chinese)
[18] 朱志兀, 姚琳. 铜离子稳态平衡分子机理研究进展. 生命科学, 2012(8): 847-857. doi: 10.13376/j.cbls/2012.08.022.
ZHU Z W, YAO L. Research progress in investigating the molecular mechanism of copper homeostasis. Chinese Bulletin of Life Sciences, 2012(8): 847-857. doi: 10.13376/j.cbls/2012.08.022. (in Chinese)
[19] NACAMULLI D, MIAN C, PETRICCA D, LAZZAROTTO F, BAROLLO S, POZZA D, MASIERO S, FAGGIAN D, PLEBANI M, GIRELLI M E, MANTERO F, BETTERLE C. Influence of physiologicaldietary selenium supplementation on the natural course of autoimmune thyroiditis. Clinical Endocrinology, 2010, 73(4): 535-539.
[20] ZHAO C Y, TAN S X, XIAO X Y, QIU X S, PAN J Q, TANG Z X. Effects of dietary zinc oxide nanoparticles on growth performance and antioxidative status in broilers. Biological Trace Element Research, 2014, 160(3): 361-367. doi:10.1007/s12011-014-0052-2.
[21] 薛梅, 昝林森. 日粮中锌含量和来源对肉鸡生产性能、氧化还原和免疫状态的影响. 中国饲料, 2019(20): 75-80. doi:10.15906/j.cnki. cn11-2975/s.20192017.
XUE M, ZAN L S. Effects of dietary zinc contents and sources on growth performance, oxidation-reduction and immune status of broilers. China Feed, 2019(20): 75-80. doi:10.15906/j.cnki.cn11-2975/ s.20192017. (in Chinese)
[22] DOZIER W A, DAVIS A J, FREEMAN M E, WARD T L. Early growth and environmental implications of dietary zinc and copper concentrations and sources of broiler chicks. British Poultry Science, 2003, 44(5): 726-731. doi:10.1080/00071660310001643714.
[23] BURRELL A L, DOZIER W A, DAVIS A J, COMPTON M M, FREEMAN M E, VENDRELL P F, WARD T L. Responses of broilers to dietary zinc concentrations and sources in relation to environmental implications. British Poultry Science, 2004, 45(2): 255-263. doi:10. 1080/00071660410001715867.
[24] 符臻鸣, 杨海明, 顾海洋, 刘金河. 锌在蛋鸡生产中的研究进展. 家畜生态学报, 2019(11): 6-11, 44. doi:10.3969/j.issn.1673-1182. 2019.11.002.
FU Z M, YANG H M, GU H Y, LIU J H. Research progress on zinc in laying hens production. Journal of Domestic Animal Ecology, 2019(11): 6-11, 44. doi:10.3969/j.issn.1673-1182. 2019.11.002. (in Chinese)
[25] STANDISH J F, AMMERMAN C B, PALMER A Z, SIMPSON C F. Influence of dietary iron and phosphorus on performance, tissue mineral composition and mineral absorption in steers. Journal of Animal Science, 1971, 33(1): 171-178. doi:10.2527/jas1971. 331171x.
[26] 方升林. 过量铁对机体损伤效应及其诱导细胞死亡的机制研究[D]. 杭州: 浙江大学, 2018.
FANG S L. The damage effects of excessive Iron and the mechanism of iron-induced cell death [D]. Hangzhou: Zhejiang University, 2018. (in Chinese)
[27] WANG Z N, CERRATE S, YAN F L, SACAKLI P, WALDROUP P. Comparison of different concentrations of inorganic trace minerals in broiler diets on live performance and mineral excretion.International Journal of Poultry Science,2008, 7(7): 625-629.
[28] 田佳, 刘国华, 蔡辉益, 常文环, 张姝, 刘伟. 22~42日龄肉鸡铜、铁、锌、锰不同用量组合的研究. 动物营养学报, 2016, 28(11): 3660-3668. doi:10.3969/j.issn.1006-267x.2016.11.036.
TIAN J, LIU G H, CAI H Y, CHANG W H, ZHANG S, LIU W. Research on different combination contents of Cu, Fe, Zn and Mn for boilers aged from 22 to 42 days. Chinese Journal of Animal Nutrition, 2016, 28(11): 3660-3668. doi:10.3969/j.issn.1006-267x.2016.11.036. (in Chinese)
[29] ZHOU D M, HAO X Z, WANG Y J, DONG Y H, CANG L. Copper and Zn uptake by radish and pakchoi as affected by application of livestock and poultry manures. Chemosphere, 2005, 59(2): 167-175. doi:10.1016/j.chemosphere.2004.11.008.
[30] ZHUO Z, FANG S L, HU Q L,HUANG D, FENG J. Digital gene expression profiling analysis of duodenum transcriptomes in SD rats administered ferrous sulfate or ferrous glycine chelate by gavage. Scientific Reports, 2016, 6: 37923.doi: 10.1038/srep37923.
[31] 沐建煜.铁在动物生产中的应用进展.饲料研究,2020,43(2):119-123. doi: 10.13557/j.cnki.issn1002-2813.2020.02.030.
Mu J Y. Application progress of iron in animal production.Feed Research, 2020,43(2):119-123.doi: 10.13557/j.cnki.issn1002-2813.2020.02.030.(in Chinese)
[32] XIE C, ELWAN H A M, ELNESR S S, DONG X, FENG J, ZOU X T. Effects of ironchelate on laying performance, antioxidant activities, serum biochemical indices, iron concentrations and transferrin mRNA expression in laying hens. Journal of Animal Physiology and Animal Nutrition, 2019, 103(2): 547-554. doi:10.1111/jpn.13061.
[33] VIEIRA R, FERKET P, MALHEIROS R, HANNAS M, CRIWELLARI R, MORAES V, ELLIOTT S. Feeding low dietary levels of organic trace minerals improves broiler performance and reduces excretion of minerals in litter.British Poultry Science, 2020, undefined: 1-9.doi: 10.1080/00071668.2020.1764908.
[34] NRC. Nutrient requirements of poultry (9th Ed). Washington, DC:National Academy Press, 1994.
[35] BAO Y M, CHOCT P, BRUERTON K I. Effect of organically complexed copper, iron, manganese, and zinc on broiler performance, mineral excretion, and accumulation in tissues. Journal of Applied Poultry Research, 2007, 16:448–455. doi: 10.1093/japr/16.3.448.
[36] 中华人民共和国农业部.鸡饲养标准(NY/T 33-2004). 北京: 中国农业出版社, 2004.
The Ministry of Agriculture of the People's Republic of China. Breeding standard of chicken (NY/T 33-2004). Beijing: China Agriculture Press, 2004. (in Chinese)
[37] 中华人民共和国农业部. 中华人民共和国农业行业标准NY/T823-2004《家禽生产性能名词术语和度量统计方法》. 中国禽业导刊, 2006, 23(15):45-46.
The Ministry of Agriculture of the People's Republic of China. Agricultural standards of the People's Republic of China. Terms and methods of measurement and statistics for poultry production performance (NY/T823-2004). Beijing: China Agriculture Press, 2005. (in Chinese)
[38] 胡新旭, 范仕苓, 张建云, 陈文雅, 马秋刚, 计成. 生长前后期日粮添加肌肽对肉仔鸡生产性能、屠宰性能、肉品质和抗氧化性能的影响. 第十四届全国家禽科学学术讨论会论文集, 北京:中国农业科学技术出版社, 2009, 876-886.
HU X X, FAN S L, ZHANG J Y, CHEN W Y, MA Q G, JI C. Effect of dietary supplement of carnosine on the production performance, carcass traits, meat quality and antioxidative property of broiler chicks during the starter and grower period. Proceedings of the 14th National Symposium on Poultry Science. Beijing: China Agricultural Science and Technology Press, 2009, 876-886. (in Chinese)
[39] 濮振宇, 辛洪亮, 余超, 王砀砀, 雷新宇, 姚军虎, 杨小军. 微量元素添加模式对肉鸡生长性能、微量元素代谢和血浆抗氧化性能的影响. 动物营养学报, 2016, 28(8): 2367-2377. doi:10.3969/j.issn. 1006-267x.2016.08.007.
PU Z Y, XIN H L, YU C, WANG D D, LEI X Y, YAO J H, YANG X J. Effects of supplemental patterns of trace minerals on growth performance, trace mineral metabolism and plasma antioxidant ability in broilers. Chinese Journal of Animal Nutrition, 2016, 28(8): 2367-2377. doi:10.3969/j.issn.1006-267x.2016.08.007. (in Chinese)
[40] LI S, LUO X, LIU B, YU S, KUANG X, SHAO X, CRENSHAW T D. Use of chemical characteristics to predict the relative bioavailability of supplemental organic manganese sources for broilers. Journal of Animal Science, 2004, 82: 2352-2363. doi:10.2527/2004.8282352x.
[41] GUO R, HENRY P R, HOLWERDA R A, CAO J, LITTELL R C, MILES R D, AMMERMAN C B. Chemical characteristics and relative bioavailability of supplemental organic copper sources for poultry. Journal of Animal Science, 2001, 79(5): 1132-1141. doi:10. 2527/2001.7951132x.
[42] CAO J, HENRY P R, GUO R, HOLWERDA R A, TOTH J P, LITTELL R C, MILES R D, AMMERMAN C B. Chemical characteristics and relative bioavailability of supplemental organic zinc sources for poultry and ruminants. Journal of Animal Science, 2000, 78(8): 2039-2054. doi:10.2527/2000.7882039x.
[43] M'SADEQ S A, WU S B, CHOCT M, SWICK R A. Influence of trace mineral sources on broiler performance, lymphoid organ weights, apparent digestibility, and bone mineralization. Poultry Science, 2018, 97(9): 3176-3182. doi:10.3382/ps/pey197.
[44] ZHU Z, YAN L, HU S, AN S, LV Z, WANG Z, WU Y, ZHU Y, ZHAO M, GU C, ZHANG A. Effects of the different levels of dietary trace elements from organic or inorganic sources on growth performance, carcass traits, meat quality, and faecal mineral excretion of broilers. Archives of Animal Nutrition, 2019, 73(4): 324-337. doi:10.1080/ 1745039x.2019.1620050.
[45] MILES R D, HENRY P R. Relative trace mineral bioavailability. Ciência Animal Brasileira, 2006, 1(2): 73-93.
[46] SIRRI F, MAIORANO G, TAVANIELLO S, CHEN J, PETRACCI M, MELUZZI A. Effect of different levels of dietary zinc, manganese, and copper from organic or inorganic sources on performance, bacterial chondronecrosis, intramuscular collagen characteristics, and occurrence of meat quality defects of broiler chickens. Poultry Science, 2016, 95(8): 1813-1824. doi:10.3382/ps/pew064.
[47] 王一冰, 王薇薇, 苟钟勇, 李龙, 林厦菁, 范秋丽, 叶金玲, 崔小燕, 蒋守群. 饲粮微量元素不同用量组合对黄羽肉鸡生产性能、胴体指标及肉品质的影响. 中国农业大学学报, 2020,25(3): 60-70.
WANG Y B, WANG W W, GOU Z Y, LI L, LIN X J, FAN Q L, YE J L, CUI X Y, JIANG S Q. Effects of different combinations of dietary trace elements on the growth performance, carcass trait and meat quality of yellow-feathered broilers. Journal of China Agricultural University, 2020,25(3): 60-70. (in Chinese)
[48] 李菁菁, 邓中勇, 杨朝武, 任鹏, 蒋小松, 王也, 刘益平. 旧院黑鸡屠宰性能及肉品质测定. 四川农业大学学报, 2017, 35(2): 256-259. doi:10.16036/j.issn.1000-2650.2017.02.018.
LI J J, DENG Z Y, YANG C W, REN P, JIANG X S, WANG Y, LIU Y P. The slaughtering performance and meat quality of Jiuyuan black fowls. Journal of Sichuan Agricultural University, 2017, 35(2): 256-259. doi:10.16036/j.issn.1000-2650.2017.02.018. (in Chinese)
[49] FANATICO A C, PILLAI P B, EMMERT J L, OWENS C M. Meat quality of slow-and fast-growing chicken genotypes fed low-nutrient or standard diets and raised indoors or with outdoor access. Poultry Science, 2007, 86(10): 2245-2255. doi:10.1093/ps/86.10.2245.
[50] BARBUT S. Problem of pale soft exudative meat in broiler chickens. British Poultry Science, 1997, 38(4): 355-358. doi:10.1080/ 00071669708418002.
[51] AKSU T, AKSU M İ, YORUK M A, KARAOGLU M. Effects of organically-complexed minerals on meat quality in chickens. British Poultry Science, 2011, 52(5): 558-563. doi:10.1080/00071668.2011. 606800.
[52] 徐日峰, 张煜, 胡建民, 杨建成. 影响鸡肉品质因素的研究进展. 江苏农业科学, 2013, 41(2): 183-184, 189. doi:10.3969/j.issn.1002- 1302.2013.02.071.
XU R F, ZHANG Y, HU J M, YANG J C. Research progress of factors affecting meat quality. Jiangsu Agricultural Sciences, 2013, 41(2): 183-184, 189. doi:10.3969/j.issn.1002-1302.2013.02.071. (in Chinese)
[53] GOLL D E, OTSUKA Y, NAGAINIS P A, SHANNON J D, SATHE S K. Role of muscle proteinases in maintenance of muscle integrity and mass. Food Biochemistry, 1983, 7(3):137-177. doi: 10.1111/j.1745- 4514.1983.tb00795.x.
[54] 李明奇, 贺稚非, 李少博, 李冉冉, 李洪军. 氯化钙-无花果蛋白酶-猕猴桃蛋白酶复合嫩化剂体系改善兔肉嫩度和保水性的工艺优化. 食品与发酵工业, 2019, 45(18): 120-129. doi:10.13995/j.cnki. 11-1802/ts.021040.
LI M Q, HE Z F, LI S B, LI R R, LI H J. Optimization of calcium chloride, ficin and kiwifruit protease tenderization system to improve the tenderness and water holding capability of rabbit meat. Food and Fermentation Industries, 2019, 45(18): 120-129. doi:10.13995/j.cnki. 11-1802/ts.021040. (in Chinese)
Effects of Dietary Supplemental Pattern of Trace Eloments on the Growth Performance, Carcass Traits and Meat Quality of Broilers
ZHANG Lan1, WANG LiangZhi1,2, HUANG YanLing1, LIAO XiuDong2, ZHANG LiYang2, LÜ Lin2, LUO XuGang3
1Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Reservation and Utilization of Ministry of Education Southwest Minzu University, Chengdu 610041;2Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193;3Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, Jiangsu
【Objective】This experiment was conducted to determine the effects of dietary supplemental pattern of trace elements on growth performance, carcass traits and meat quality of broiler chicks, so as to provide the experimental basis for the reasonable addition of trace elements to broiler diets.【Method】A single-factor completely randomized design was adopted in this experiment. A total of 240 one-day-old Arbor Acres (AA) broiler chicks were randomly allotted by body weight to 1 of 5 treatments with 6 replicate cages of 8 birds per cage. The trace elements were added to the corn-soybean basal diet as follows: the inorganic trace elements according to NRC (1994) recommendation for broiler chicks (T1: the added levels of copper (Cu), Iron (Fe), manganese (Mn), zine (Zn) and selenium (Se) were 8 , 80, 60, 40 and 0.15 mg·kg-1during 1-42 days, respectively), the inorganic trace elements according to the recommendation for broiler chicks in Chinese Feeding Standard of Chicken (NY/T 33-2004) (T2: the added levels of Cu, Fe, Mn, Zn and Se were 8, 100, 120, 100 and 0.3 mg·kg-1for 1-21 days old, respectively; and 8, 80, 120, 80 and 0.3 mg·kg-1for 22-42 days old, respectively), the inorganic trace elements according to the previous results of trace elements requirements from our lab (T3: the added levels of Cu, Fe, Mn, Zn and Se were 4, 40, 110, 60 and 0.35 mg·kg-1during 1-21 days, respectively; and 0, 30, 80, 40 and 0.35 mg·kg-1during 22-42 days, respectively), the decrement levels of organic trace elements according to the previous results of from our lab (T4: the added levels of Cu, Fe, Mn, Zn and Se were 2, 30, 80, 40 and 0.25 mg·kg-1during 1-21 days, respectively; and 0, 30, 80, 40 and 0.25 mg·kg-1during 22-42 days, respectively), and the organic trace elements according to the recommendation for broiler chicks in NY/T 33-2004 (T5: the added levels of Cu, Fe, Mn, Zn and Se during 1-21 and 22-42 days were the same as those in T2), respectively. The inorganic trace element sources (feed grade) were Cu sulfate pentahydrate, Fe sulfate monohydrate, Mn sulfate monohydrate, Zn sulphate monohydrate and sodium selenite, and the organic trace element sources (feed grade) were Cu mothionine, Fe glycine, Mn methionine, Zn glycinate and Se yeast, respectively. The experiment lasted for 42 days.【Result】The results showed that those different supplemental patterns of trace elements had no significant effects (0.05) on the average daily feed intake and average daily gain. Broilers from T2 had higher (<0.05) feed to gain ratio during 22-42 days than those from T1, T4 and T5, and no difference was detected between T2 and T3 (0.05). Broilers from T2 had higher (<0.05) feed to gain ratio during 1-42 days than those from other groups, and there were no differences (>0.05) among other groups. The different supplemental patterns of trace elements had no significant effects on (>0.05) the carcass traits, L* and a* values, pH values and drip losses of breast and thigh muscles. The breast muscle b* value of broilers from T5 was higher (<0.05) than that of broilers from T1 and T3, and no difference was observed (>0.05) between T5 and T4. The shear force of thigh muscle from T4 was lower (<0.05) than that from T1 or T5, and the muscle tenderness was relatively well. 【Conclusion】Under this experimental conditions, the group with decrement supplement of organic trace elements based on our previous results (T4: the added levels of Cu, Fe, Mn, Zn and Se were 2, 30, 80, 40 and 0.25 mg·kg-1during 1-21 days, and 0, 30, 80, 40 and 0.25 mg·kg-1during 22-42 days, respectively) was better than other groups in improving the growth performance and meat quality of broiler chicks.
dietary supplemental pattern of trace elements; growth performance; carcass traits; meat quality; broiler
2020-10-13;
2021-04-12
国家重点研发计划(2017YFD0500501)、国家自然科学基金(31501977)、青藏高原动物遗传资源保护与利用重点实验室、西南民族大学中央高校基本科研业务费专项(2021PTJS20)、国家现代农业产业技术体系岗位专家专项(CARS-41)、中国农业科学院科技创新工程专项(AST1P-IAS08)
张兰,Tel:18437987790;E-mail:1820528476@qq.com。通信作者黄艳玲,E-mail:swunylh@163.com。通信作者吕林,E-mail:lvlin1225@163.com
(责任编辑 林鉴非)