葡萄无核基因分子标记的通用性鉴定
2021-12-07陈豆豆关利平贺亮亮宋银花章鹏刘三军
陈豆豆,关利平,贺亮亮,宋银花,章鹏,刘三军
葡萄无核基因分子标记的通用性鉴定
陈豆豆,关利平,贺亮亮,宋银花,章鹏,刘三军
中国农业科学院郑州果树研究所,郑州 450009
【目的】无核是鲜食葡萄的重要农艺性状,无核基因分子标记的准确性将影响无核葡萄早期选择的效果。本研究对前人开发的5个葡萄无核基因分子标记在183份葡萄材料中进行通用性鉴定,旨在明确各个分子标记的适用范围,为利用分子标记辅助无核葡萄育种提供参考依据。【方法】以96个葡萄品种(其中无核63个,有核33个)及‘红地球’ב黎明无核’87个F1单株(其中无核61株,有核26株)的叶片DNA为模板,利用已报道的5个葡萄无核基因分子标记(SCF27-2000、GSLP1-569、VMC7f2、p3_VvAGL11和5U_VviAGL11)的引物进行PCR扩增,采用1.5%琼脂糖凝胶电泳、毛细管电泳和8%聚丙烯酰胺凝胶电泳技术检测PCR产物,分析各个样品的无核特异条带,鉴定5个分子标记的准确率。【结果】SCAR标记GSLP1-569对96个葡萄品种的检测准确率为40.6%,无核检测率为63.6%。SCAR标记SCF27-2000对96个葡萄品种及87个F1杂交单株的检测准确率分别为71.9%和76.54%,无核检测率分别为70.5%和78.5%。SSR标记VMC7f2在96个葡萄品种中鉴定出8个等位基因,经卡方检验,189-bp等位基因与葡萄无核性状显著关联,其检测准确率为85.4%,无核检测率为85.5%。SSR标记p3_VvAGL11在96个葡萄品种中鉴定出7个等位基因,经卡方检验,187-bp等位基因与葡萄无核性状显著关联,其检测准确率为89.6%,无核检测率为90.7%,在F1杂交单株中其鉴定准确率为87.65%,无核检测率为91.1%,假阳性率为6.17%,假阴性率为6.17%。SSR标记5U_VviAGL11在96个葡萄品种中鉴定出17个等位基因,经卡方检验,306-bp等位基因与葡萄无核性状显著关联,其鉴定准确率为88.5%,无核检测率为90.6%,在F1杂交单株中检测准确率为88.89%,无核检测率为92.7%,假阳性率为4.94%,假阴性率为6.17%。【结论】SSR标记p3_VvAGL11和5U_VviAGL11在葡萄种质及遗传群体中无核分型的准确性及无核检测的效率较高,适用范围较广,在无核基因分子标记辅助选择中可以考虑优先使用。
葡萄;无核性;分子标记;通用性;鉴定
0 引言
【研究意义】无核葡萄是全世界葡萄育种的主要目标之一。由于葡萄童期较长,而无核表型只能在成年葡萄植株中筛选,且无核遗传机制尚不清楚,造成无核葡萄的育种进程很慢[1]。DNA标记技术为植物育种提供了广阔的应用前景,通过标记辅助选择(marker assisted-selection,MAS)可以提高植物育种的效率和精度[2],因此,筛选准确性高、通用性广的无核基因分子标记对于无核葡萄育种具有重要的意义。【前人研究进展】关于葡萄无核性状遗传规律,前人先后提出了多种假说[3-7]。目前普遍认为,种子败育无核性遗传主要由显性位点(seed development inhibitor,种子发育抑制)调控,位于18号染色体,调控3个独立互补的隐性基因[7-9]。MejÍa等[1]提出与位点接近的基因()是葡萄无核的主要功能候选基因,它属于D类MADS-box基因,参与胚珠的发育。这一点在ROYO等[10]的研究中得到证实,即种子形态调节基因中,导致Arg-197-Leu替代的点突变与种子败育完全相关。目前,基于葡萄无核主要位点尤其是无核基因开发了一系列分子标记,主要包括序列特征扩增区(sequence characterized amplified region,SCAR)[9,11-12]及简单重复序列(simple sequence repeats,SSR)两种标记类型[1,8,13-16]。SCAR标记是用特异引物进行扩增,操作简单,成本较低,结果稳定性好。前人通过集群分离分析法(bulk segregant analysis,BSA)开发了与位点连锁不平衡(linkage disequilibrium,LD)的SCAR标记SCC8-1080[9]、SCF27-2000[11]和GSLP1-569[12]。SCF27-2000与无核×无核(‘Ruby Seedless’בSultanina’)后代的无核性状高度相关(81%)[11],GSLP1-569标记也已被广泛用于分析无核性状[17-19]。但相关研究表明,GSLP1-569适合于对‘无核白’及其亲缘关系较近的无核品种的分子检测[17-18]。这些标记可以帮助预测无核后代,但也会因偶然出现的零等位基因或标记与位点之间的不完全连锁影响其预测能力[20]。SSR标记是以特异引物PCR为基础的分子标记技术,是一类由几个核苷酸为重复单位组成的串联重复序列,因其具有高多态性、多等位基因、共显性遗传等优势而被广泛应用[21]。SSR标记VMC7f2和p3_VvAGL11被认为是无核性状早期选择的良好候选标记[1,22]。VMC7f2标记位于所预测的ORF上游463 bp[1],QTL(quantitative trait locus)关联分析表明VMC7f2标记的198-bp等位基因与无核性状显著关联,可作为选择无核基因型的潜在标记[13,22]。但在不同遗传背景下对VMC7f2进行验证,其有效性会发生显著变化[1,15,23-24]。p3_VvAGL11是位于基因启动子区的特异性标记[1]。对p3_VvAGL11在不同遗传背景下的测试结果表明,仅出现极低的假阳性率(1.68%)且没有出现假阴性[2]。BENNICI等[25]的研究也表明最有效的标记是VMC7f2和p3_VvAGL11。OCAREZ等[16]在简单重复序列p3_VvAGL11的同一区域开发出新的SSR标记5U_VviAGL11,信息更丰富,更可靠。VMC7f2、p3_VvAGL11和5U_VviAGL11与位点的高度连锁不平衡,使它们成为无核标记辅助选择的主要候选标记,但也需要在其他遗传背景中进行验证。【本研究切入点】基于遗传图谱和BSA等方法开发的这5个无核基因分子标记,在不同遗传背景的鉴定效率尚不明晰,因此,需要对它们的通用性做进一步的鉴定。【拟解决的关键问题】本研究基于前人已开发的准确性较高的5个无核基因分子标记,通过在183份葡萄材料中进行通用性鉴定,旨在理清它们的适用范围及准确性,从中筛选出鉴定准确率高且检测方法简单的分子标记,为分子标记辅助无核葡萄育种提供技术支持。
1 材料与方法
试验于2019—2020年在中国农业科学院郑州果树研究所进行。
1.1 材料
试验材料共183份,包括96个葡萄品种(其中无核63个,有核33个,电子附表1),保存于中国农业科学院郑州果树研究所国家葡萄种质资源圃,87个F1(‘红地球’ב黎明无核’)杂交单株(表1)保存于中国农业科学院郑州果树研究所尉氏基地。
1.2 葡萄DNA提取
取183份葡萄材料的健康幼嫩叶片,液氮研磨,采用CTAB植物基因组DNA快速提取试剂盒(北京艾德莱生物科技有限公司)提取叶片基因组DNA。利用1%琼脂糖凝胶电泳和NanoDrop 1000 spectrophotometer(Themo Scientific)紫外分光光度计检测DNA浓度和纯度,然后将DNA浓度稀释到工作液浓度(约10 ng·μL-1),保存于-20℃,用于后续的PCR扩增。
1.3 选择的无核分子标记及PCR扩增条件
选用5个已报道的与葡萄无核性状相关的分子标记(表2),对183份试材进行标记验证。引物由生工生物工程(上海)股份有限公司合成,含有FAM和HEX两种荧光探针的SSR引物由北京阅微基因技术有限公司合成。
本试验在参考文献的基础上,对PCR反应体系进行优化。SCAR标记SCF27-2000及GSLP1-569的PCR反应体系20 μL:2×Taq Master Mix 10 μL,正、反向引物各1 μL(10 μmol·L-1),2 μL DNA模板(10 ng·μL-1),ddH2O补至20 μL。反应程序:94℃预变性5 min;94℃变性30 s,适宜Tm值退火30 s,72℃延伸2 min,35个循环;72℃延伸5 min,扩增产物4℃保存。
表1 ‘红地球’ב黎明无核’F1代杂交单株的表型鉴定
续表1 Continued table 1
SL:无核,即成熟浆果中无种子或仅有不明显的种痕;RS:残核,即成熟浆果中残核较明显,但种皮未木质化;SD:有核,即成熟浆果中的种子完全发育。其中6个子代因样品质量不佳无扩增条带,不予计数
SL: Seedless , there are no seeds or only imperceptible trace; RS: Rudimental seed, there are perceptible seed traces in the ripe berries, but seed coat is not lignified; SD: Seeded, the seeds in the ripe berries are fully developed. Six of the hybrids were not counted due to the poor quality of samples resulting in no amplification bands
表2 分子标记对应引物名称及信息
SSR标记的PCR反应体系10 μL:2×Taq Master Mix for PAGE 5 μL,正、反向引物各0.5 μL(10 μmol·L-1),2 μL DNA模板(10 ng·μL-1),ddH2O补至10 μL。反应程序:94℃预变性3 min;94℃变性30 s,适宜Tm值退火30 s,72℃延伸40 s,29个循环;72℃延伸5 min,扩增产物4℃保存。具体退火温度根据引物设计进行筛选。
1.4 PCR产物检测
SCAR标记SCF27-2000及GSLP1-569的PCR产物采用1.5%琼脂糖凝胶电泳25—30 min(恒压150 V),使用UV凝胶成像仪拍照记录。SSR标记的扩增产物采用荧光毛细管电泳及8%聚丙烯酰胺凝胶(PAGE)电泳进行双验证。
1.5 数据处理
根据VIHINEN[26]和BALDI等[27]计算5项指标:真阳性(true positive,TP)、真阴性(true negative,TN)、假阳性(false positive,FP)、假阴性(false negative,FN)、准确率(accuracy)。再根据马亚茹等[15]的方法计算无核检测率。假阳性即样本携带无核等位基因,不表达无核表型;而假阴性即不携带无核等位基因,但表达无核表型。准确率=(TP+TN)/(TP+FP+TN+FN),无核检测率=TP/(TP+FP)。为评估表型与分子数据之间的关联,利用软件SPSS 23.0对表型与SSR标记的等位基因及基因型之间进行卡方(χ2)独立性检验(<0.05)。
2 结果
2.1 SSR标记的PCR体系优化
利用4个无核葡萄品种(‘红宝石无核’‘黎明无核’‘瑞峰无核’‘中葡萄18号’)和4个有核葡萄品种(‘摩尔多瓦’‘红地球’‘玫瑰香’‘先锋’),对SSR标记(p3_VvAGL11、VMC7f2、5U_VviAGL11)进行PCR反应体系优化。如图1-A所示,标记p3_VvAGL11的最适退火温度在58℃时,不同品种的扩增产物表现多态性;如图1-B所示,标记5U_VviAGL11的退火温度在60℃时,得到清晰的多态性条带;如图1-C,标记VMC7f2的最适退火温度为61℃,扩增产物表现出清晰的多态性条带。
2.2 分子标记在96个葡萄品种中的通用性验证
2.2.1 SCAR标记GSLP1-569和SCF27-2000的通用性 在96个葡萄品种(其中无核63个,有核33个)中验证无核标记GSLP1-569和SCF27-2000的通用性。结果显示,GSLP1-569分别在14个无核品种与8个有核品种中扩增出569 bp的无核特异片段,而SCF27-2000分别在62个无核品种与26个有核品种中扩增出2 000 bp的无核特异片段。经统计,分子标记GSLP1-569和SCF27-2000在96个葡萄品种间的鉴定准确率分别为40.6%和71.9%,无核检测率分别为63.6%和70.5%(图2、图3)。由GSLP1-569无核标记检测出的14个无核品种包括‘巩义无核白’‘白无核’‘布朗无核’‘长穗无核白’‘火焰无核’‘美丽无核’‘宁夏无核白’‘无核白-阿富汗’‘早无核白’‘无核白’‘夏日阳光’‘郑艳无核’‘黑爱默无核’‘波尔莱特’,其中11个由‘无核白’衍生而来(附表1、图2)。除体细胞变异品种‘瑞锋无核’外,SCF27-2000可以准确鉴定98.4%的无核品种,表明其在无核×无核的适用范围更广(图3)。
2.2.2 SSR标记的鉴定结果 在96个葡萄品种中验证3个SSR标记的通用性。结果表明,分子标记p3_VvAGL11检测到8个等位基因,分别为163、165、173、177、179、181、185、187;VMC7f2标记检测到7个等位基因,分别为187、189、191、193、195、197、201;5U_VviAGL11标记检测到17个等位基因,分别为260、262、266、270、272、278、280、282、288、294、296、298、302、304、306、308、312(表3)。在p3_VvAGL11标记检测到的等位基因中,187-bp(χ2=65.333,=6.32E-16)和177-bp(χ2=8.637,=0.003)与种子表型显著关联,在63个无核(-)品种中,存在187-bp且表现为无核表型的个体有93.7%,存在187-bp的个体中90.7%表现为无核表型,表明187-bp与无核性状最相关;在33个有核(+)品种中,存在177-bp且表现为有核的个体占87.9%,表明177-bp与有核性状关联(表3)。分子标记p3_VvAGL11检测到13种基因型,其中177/187(χ2=46.061,=1.15E-11)、187/187(χ2=7.265,=0.007)和177/177(χ2=9.872,=0.002)与种子表型之间存在显著关联。基因型177/187在91.8%的无核和8.2%的有核个体中被检测到;187/187在100%的无核个体中被检测到,且在有核个体中缺失;177/177在84.2%有核和15.8%的无核植株中被检测到(表4)。由此可知,基因型177/187和187/187与无核性状显著相关,而177/177与有核性状显著相关。总体上,在具有分子标记p3_VvAGL11的强连锁不平衡中,等位基因187-bp的存在导致了无核表型,在96个葡萄品种中的鉴定准确率达89.6%,无核检测率为90.7%。
A:p3_VvAGL11标记在退火温度58℃;B:5U_VviAGL11标记在退火温度60℃;C:VMC7f2标记在退火温度61℃
图2 SCAR标记GSLP1-569对96个葡萄品种的验证
图3 SCAR标记SCF27-2000对96个葡萄品种的验证
表3 微卫星等位基因分布与所收集葡萄品种中无核的相关性
与无核等位基因关联的微卫星等位基因用粗体表示。*显著相关(<0.05),**极显著相关(<0.01)。下同
Microsatellite alleles linked to the seedlessallele in cultivar Sultanina are indicated in bold. *Significant correlation (<0.05), ** Extremely significant correlation (<0.01). The same as below
在VMC7f2标记的等位基因中,189-bp(χ2= 54.317,=1.71E-13)和191-bp(χ2=22.031,=0.0000)与种子表型显著关联,存在189-bp且表现为无核表型的个体占无核品种的93.7%,存在189-bp的个体中85.5%为无核品种,表明189-bp与无核性状关联最显著(表3)。分子标记VMC7f2检测到14种基因型,其中基因型187/189(χ2=4.085,=0.043)、189/191(χ2=52.092,=5.30E-13)、191/191(χ2=9.984,=0.0016)和195/195(χ2=4.085,=0.043)与种子表型显著关联(表4)。187/189在100%无核个体中被检测到,在有核品种中缺失;189/191在95.7%的无核个体和4.3%的有核个体中被检测到;191/191在92.3%的有核个体和7.7%的无核个体中被检测到;195/195在100%的有核个体中被检测到,但等位基因195-bp中与种子表型无相关性(表3、表4)。由此可知,基因型187/189和189/191与无核性状显著相关,而191/191与有核性状显著相关。总体上,在具有分子标记VMC7f2的强连锁不平衡中,等位基因189-bp的存在导致了无核表型,而191-bp可能与有核性状相关,在96个葡萄品种中其鉴定准确率为85.4%,无核检测率为85.5%。
表4 微卫星基因型分布与所收集品种中无核的相关性
在5U_VviAGL11标记检测的等位基因中,270-bp(χ2=4.085,=0.043)、278-bp(χ2=4.085,=0.043)、298-bp(χ2=7.005,=0.008)和306-bp(χ2=63.375,=1.71E-15)与种子表型显著相关(表3)。虽然等位基因270-bp和298-bp与无核性状关联,但由于只存在于少数无核品种中,不是最相关的无核等位基因;存在278-bp的个体100%为有核品种,表明其与有核性状关联;存在306-bp且表现为无核表型的个体占无核品种的92.1%,存在306-bp的个体中有90.6%为无核品种,表明等位基因306-bp与无核性状关联最显著。分子标记5U_VviAGL11检测到35种基因型,其中基因型294/306(χ2=14.521,=0.0001)、298/306(χ2=23.048,=0.000002)、270/306(χ2=4.085,=0.043)和306/308(χ2=4.085,=0.043)与种子表型显著关联。基因型294/306存在于94.1%的无核个体中;298/306存在于95.8%的无核个体中;270/306和306/308也存在于全部无核个体中(表4),由此可知,这4种基因型均与无核性状关联,其中基因型294/306和298/306与无核性状关联极显著。总体上,在具有分子标记5U_VviAGL11的强连锁不平衡中,等位基因306-bp的存在导致了无核表型,在96个葡萄品种中其鉴定准确率为88.5%,无核检测率为90.6%。
综上所述,分子标记p3_VvAGL11、VMC7f2和5U_VviAGL11可以分别利用其无核等位基因187-bp、189-bp和306-bp的存在与否对杂交群体进行分子标记辅助育种。
2.3 F1代的验证分析
通过分析上述5个分子标记在96个葡萄品种中的通用性和准确率,进一步利用SCAR标记SCF27-2000及SSR标记p3_VvAGL11、5U_VviAGL11对‘红地球’ב黎明无核’的F1杂交单株进行鉴定。F1代中有效的无核表型(SL)21个,残核表型(RS)35个,有核表型(SD)25个(表1)。
SCF27-2000对F1代的鉴定结果(表5)显示,在90.48%的SL和91.43%的RS单株中检测到该标记,而在SD个体中扩增的相对频率(假阳性)下降到17.28%。存在2000-bp且表现为RS或SL表型的单株有78.5%(χ2=13.419,=0.0012),在F1杂交单株中,该标记的鉴定准确率为76.54%,假阴性率为6.17%。
SSR标记p3_VvAGL11在F1代的鉴定结果(表6)表明,等位基因187-bp与SL性状显著关联(χ2= 41.188,=1.14E-9),177-bp与SD性状有关,是从‘红地球’遗传的。无核等位基因187-bp在95.24%的SL和88.57%的RS植株中被检测到。存在187-bp且表现为RS或SL表型的杂交单株占91.1%。在F1杂交单株中,该标记的鉴定准确率为87.65%,假阳性、假阴性率分别为6.17%、6.17%。F1代中形成3种基因型,其中基因型163:177中有80%为SD性状,177:187和163:177:187中有91.1%为RS或SL性状,由此可知,无核等位基因187-bp为显性基因,符合位点的显性遗传模型。
SSR标记5U_VviAGL11对F1代的鉴定结果(表7)表明,等位基因306-bp与无核性状显著关联(χ2=44.959,=1.73E-10),306-bp分别存在于95.24%的SL和88.57%的RS植株中。存在306-bp且表现为RS或SL表型的杂交单株占92.7%。该标记的准确率为88.89%,假阳性、假阴性率分别为4.94%、6.17%。
此外,3个标记对No.61(RS)、No.62(RS)的鉴定结果一致,两个样品均不存在无核标记。综上,利用3个分子标记对‘红地球’ב黎明无核’的F1杂交单株鉴定时,5U_VviAGL11与p3_VvAGL11的准确率及无核检测率较高,且都有较低的假阳性和假阴性率,鉴定结果基本一致,因此均可用于无核葡萄育种的分子标记辅助育种。
3 讨论
葡萄是一种基因型高度杂合的多年生果树,童期较长,育种速度慢。尤其对于无核表型的筛选,通过传统手段只能等到植株成年才能进行选育,而利用分子标记对幼苗进行早期验证可以提高育种效率,加快育种进程。其中,选择适用且准确率高的分子标记是有效进行分子标记辅助育种的关键。前人利用BSA、基因组测序、QTL关联分析等方法先后开发了与无核主要位点连锁的分子标记[1,8,9,11-16,22,28-29]。由于每个分子标记开发的遗传背景不同,其鉴定准确率及通用性无法进行比较,且可操作性有差异,因此本试验选择其中5个与位点连锁紧密的分子标记在183份材料中进行鉴定。
表5 SCAR标记SCF27-2000对‘红地球’ב黎明无核’杂交后代的检测结果
表6 SSR标记p3_VvAGL11对‘红地球’ב黎明无核’杂交后代的检测结果
表7 SSR标记5U_VviAGL11对‘红地球’ב黎明无核’杂交后代的检测结果
图4 SSR标记p3_VvAGL11对‘红地球’ב黎明无核’杂交后代的检测
Fig. 4 Detection of SSR marker p3_Vv for the progenies of Red Globe × Dawn Seedless
3.1 分子标记在葡萄品种中的鉴定
屈田田等[30]和LI等[17]研究发现,SCAR标记GSLP1-569在检测‘无核白’的后代时显示出更高的准确性。本研究中,GSLP1-569检测出的14个无核品种中有11个品种均由‘无核白’衍生而来,表明GSLP1-569更适合对‘无核白’及其亲缘关系较近的无核品种进行无核鉴定,这与前人研究结果类似。对于SCAR标记SCF27-2000,AKKURT等[24]研究发现该标记更适于无核×无核杂交后代中的无核性状鉴定,LI等[17]的研究证实了这一点。在本研究中,SCF27-2000在无核品种中的鉴定准确率高达98.4%,进一步印证了前人的观点。CABEZAS等[22]利用QTL定位到与葡萄无核性状紧密连锁的SSR标记VMC7f2,且检测到198-bp等位点与无核表型显著关联,与MEJIA等[31]的研究结果相似。BENNICI等[25]的研究也表明,VMC7f2的198-bp与无核性相关,200-bp等位点与有核表型相关。本研究中,用VMC7f2在96个品种中检测到189-bp与无核性状显著关联,191-bp与有核表型相关,但与前人扩增片段长度有所偏差,因此在后期结果比对时需要加上标准样品,以避免仪器误差。分子标记座位与目标基因座位之间的遗传距离决定了分子标记辅助选择的准确率。前人研究[8,22,31]表明SSR标记VMC7f2为最接近位点的分子标记。本研究中,与SCAR标记GSLP1-569和SCF27-2000相比,VMC7f2在96个品种间鉴定的准确率(85.4%)及无核检测率(85.5%)均较高,说明VMC7f2更接近位点。在基因的启动子区域开发了与位点高度连锁不平衡的分子标记p3_VvAGL11,该标记鉴定的表型—基因型间有很高的一致性[2],使它成为无核分子标记辅助育种的主要候选标记之一。OCAREZ等[16]研究发现p3_VvAGL11的等位点194-bp与无核表型显著关联。本研究中,检测到187-bp与无核性状显著相关,且其鉴定的准确率(89.6%)及无核检测率(90.7%)较高。另有研究表明[25],p3_VvAGL11对于‘Melissa’‘Crimson Seedless’‘Sugraeighteen’‘Early Gold’‘Sugrathirteen’及‘Pink Muscat’均表现出较好的预测能力。本研究用p3_VvAGL11对葡萄材料的检测准确率为89.6%,这与前人的结果相一致,也表明了p3_VvAGL11的通用性强。与p3_VvAGL11相似,5U_VviAGL11标记也位于基因的启动子区域,其等位点306-bp与无核性状极显著相关,虽然本研究中也观察到270-bp和298-bp与无核相关,但这可能是假基因型效应,由于携带270-bp的4个无核品种,也都携带无核等位点306-bp;携带298-bp的25个无核品种有23个均携带306-bp。OCAREZ等[16]在209个葡萄品种中进行分子标记5U_VviAGL11的验证,发现其准确性为0.953,阳性预测值为0.836,阴性预测值为1.0,表现出较低的假阳性。同样,在本研究中,5U_VviAGL11在96个葡萄品种的无核鉴定中准确率为88.5%,无核检测率为90.6%,也表明该标记的通用性强。综上,标记p3_VvAGL11和5U_VviAGL11位于基因的启动子区域,推荐为首选的无核性鉴定标记。分子标记p3_VvAGL11和5U_VviAGL11在96个葡萄品种检测中具有有效性,证实了无核性状与之间密切关联,这2个标记在无核育种中有潜在的应用价值。另外,对于体细胞突变品种—‘瑞峰无核’,5个无核分子标记均不能鉴定出来,这与KARAAGAC等[23]关于体细胞突变无核品种‘chasselas apyrene’的研究结果一致,推测体细胞突变导致的无核与‘无核白’的无核性机理可能不同,那么开发分子标记区分体细胞突变体与亲本无性系也将是今后的一个研究方向。
3.2 分子标记在杂交后代中的鉴定
由于分子标记为遗传标记,所以对杂交群体进行MAS时,要基于父母本的基因型,选择适用的分子标记。本研究中,杂交组合的无核亲本‘黎明无核’中不存在分子标记GSLP1-569,因此该标记不适于对供试的杂交组合F1代检测。SSR标记VMC7f2在‘黎明无核’(189:197)中虽然有无核等位基因189-bp,且与‘红地球’(191:191)间具有多态性,但等位基因189-bp和191-bp所对应的带型相距太近,采用聚丙烯酰胺凝胶电泳时不易区分。所以本试验利用分子标记SCF27-2000、p3_VvAGL11和5U_VviAGL11对F1杂交单株进行无核性状检测,重点评估其预测能力。
BENNICI等[25]的研究表明分子标记SCF27-2000表现出较高的假阳性(17.4%),在本研究中,SCF27-2000也显示出较高的假阳性率(17.28%),与前人研究结果类似。有研究发现[21],SCF27-2000分子标记在无核性鉴定中表现出较低的准确率,是由于在供试样品中出现零等位基因,且该分子标记与位点之间不完全连锁。另外,本研究利用F1杂交单株进一步证实p3_VvAGL11的187-bp和5U_VviAGL11的306-bp等位基因与无核性状显著关联。本研究中,p3_VvAGL11在F1杂交群体的无核性鉴定表现出较低的假阳性率(6.17%),这与OCAREZ等[16]在571个F1代和BERGAMINI等[2]在475个基因型进行无核性鉴定的结果一致。BENNICI等[25]在97个F1基因型的鉴定结果表明,分子标记p3_VvAGL11的无核性预测能力最强,是最有效的无核分子标记。本研究利用p3_VvAGL11进行无核性鉴定时,出现的假阳性率较低,鉴定的准确率及无核检测率高,说明p3_VvAGL11是良好的无核基因候选标记。此外,利用5U_VviAGL11对F1杂交单株进行无核性鉴定,该标记的准确率为88.89%,与p3_VvAGL11标记基本一致,前者的假阳性率略低于后者。总体而言,通过对杂交群体的无核性鉴定,发现分子标记p3_VvAGL11和5U_VviAGL11的无核鉴定准确率较高,且采用传统的电泳方法即可实现对这两个标记的检测,便于操作,成本低,是可靠的无核基因分子标记。
4 结论
SSR标记p3_VvAGL11的187-bp、5U_VviAGL11的306-bp以及VMC7f2的189-bp与无核性状显 著相关。以p3_VvAGL11和5U_VviAGL11的准确率和无核检测率高,假阳/假阴性率低,且应用成本低,是可靠的无核分子标记,可应用于无核葡萄育种。
附表1 96个葡萄品种的信息
Supplementary Table 1 The information of 96 grape cultivars
续附表1 Continued supplementary table 1
编号 Code葡萄品种Grape cultivars种类Species种子表型SeedsphenotypeP3_VvAGL115U_VviAGL11VMC7f2 52红无籽露Hongwuzilu(6-5-1)Vv无核Seedless187:187306:306189:189 53范讷萨无核VanessaVv-Vl无核Seedless177:187298:306189:191 54保一Baoyi未知无核Seedless177:187306:308189:191 55波尔莱特 PerletteVv无核Seedless177:187298:306189:191 56京可晶JingkejingVv无核Seedless177:187298:306189:191 57紧穗无紫露Jinsuiwuzilu未知无核Seedless181:187306:308189:195 58粒丽特LilitVv无核Seedless187:187306:306189:189 59无核玫瑰Meigui SeedlessVv无核Seedless179:187288:306189:189 60瓦特康无核Watekang WuheVv无核Seedless177:187294:306189:191 61蜜无核Honey Seedless(3N)Vv-Vl无核Seedless187:187270:306187:189 62京紫晶JingzijingVv无核Seedless177:187294:304189:191 63奇妙无核Fantasy SeedlessVv无核Seedless177:187298:306189:191 64无核白1号Wuhebai No.1Vv有核Seeded165:177278:298195:195 65无核白3号Wuhebai No.3Vv有核Seeded165:181278:308195:195 66京亚JingyaVv-Vl有核Seeded177:177262:298187:191 67摩尔多瓦MoldovaVv-Vl有核Seeded173:187282:306189:201 68藤稔 FujiminoriVv-Vl有核Seeded177:177260:298187:191 69红地球Red GlobeVv有核Seeded177:177294:298191:191 70京秀JingxiuVv有核Seeded177:177308:308191:191 71里扎马特RizamatVv有核Seeded181:187302:306189:193 72玫瑰香Muscat HamburgVv有核Seeded163:177272:294191:197 73美人指Manicure FingerVv有核Seeded177:187296:306189:191 74牛奶NiunaiVv有核Seeded165:177278:298195:195 75葡萄园皇后Queen of VineyardVv有核Seeded177:177294:298191:191 76圣诞玫瑰Christmas RoseVv有核Seeded177:177298:298191:191 77红巴拉多Red BaladiVv有核Seeded177:177296:308191:191 78香妃XiangfeiVv有核Seeded177:177294:302191:191 79意大利ItaliaVv有核Seeded177:177294:308191:191 80金手指Golden FingerVv-Vl有核Seeded177:187294:306189:189 81黑巴拉多Black BaladiVv有核Seeded177:187296:306189:189 82阳光玫瑰Shine-MuscatVv-Vl有核Seeded177:179288:294189:189 83北醇BeichunVa-Vv有核Seeded177:177266:294187:187 84黑比诺Pinot NoirVv有核Seeded177:177294:308191:191 85神州红Shenzhou RedVv有核Seeded177:177296:308191:191 86水晶红ShuijinghongVv有核Seeded165:177278:296191:195 87夏至红Xiazhi Hong Vv有核Seeded177:177294:298191:191 88先锋Pioneer(4N)Vv-Vl有核Seeded177:177262:298187:191 89莎巴珍珠Pearl of CsabaVv有核Seeded177:185294:312189:189 90维多利亚VictoriaVv有核Seeded165:177280:294195:195 91谢花红Muscat Mathiasz JanosneVv有核Seeded177:179288:302189:191 92京丰JingfengVv有核Seeded177:187298:306189:189 93郑州早红ZhengzhouzaohongVv有核Seeded177:177294:294191:191 94小白玫瑰Muscat Blanc a Petits GrainsVv有核Seeded179:185288:312189:189 95绯红CardinalVv有核Seeded177:177294:302191:191 96康可ConcordVl有核Seeded165:177282:294193:193
表格中所指无核即浆果成熟时只留下不明显的种痕或者种皮未木质化的残核。Vv:欧亚种;Vv-Vl:欧美杂种;Vl:美洲种;Va-Vv:山欧杂种。
The seedlessness in the table is that there are only imperceptible seed traces or rudimental seed without lignified seed coat.Vv:,Vv-Vl means, Vl means, Va-Vv means.
[1] MEJÍA N, SOTO B, GUERRERO M, CASANUEVA X, HOUEL C, MICCONO M D L Á, RAMOS R, LE CUNFF L, BOURSIQUOT J M, HINRICHSEN P, ADAM-BLONDON A F. Molecular, genetic and transcriptional evidence for a role of VvAGL11 in stenospermocarpic seedlessness in grapevine. BMC Plant Biology, 2011, 11: 57.
[2] BERGAMINI C, CARDONE M F, ANACLERIO A, PERNIOLA R, PICHIERRI A, GENGHI R, ALBA V, FORLEO L R, CAPUTO A R, MONTEMURRO C, BLANCO A, ANTONACCI D. Validation assay of p3_VvAGL11 marker in a wide range of genetic background for early selection of stenospermocarpy inL. Molecular Biotechnology, 2013, 54(3): 1021-1030.
[3] LEDBETTER C A, BURGOS L. Inheritance of stenospermocarpic seedlessness inL. Journal of Heredity, 1994, 85(2): 157-160.
[4] STOUT A B. Progress in breeding for seedless grapes. Proceeding American Society for Horticultural Science, 1939, 37: 627-629.
[5] SANDHU A S, JAWANDA J S, UPPAL D K. Inheritance of seed characters in hybrid population of intercultivar crosses of grapes (L.). Journal of Research-Punjab Agricultural University, 1984, 21(1): 39-44.
[6] SATO A, YAMANE H, YAMADA M, YOSHINAGA K. Inheritance of seedlessness in grapes. Journal of the Japanese Society for Horticultural Science, 1994, 63(1): 1-7.
[7] BOUQUET A, DANGLOT Y. Inheritance of seedlessness in grapevine (L.). Vitis, 1996, 35(1): 35-42.
[8] COSTANTINI L, BATTILANA J, LAMAJ F, FANIZZA G, GRANDO M S. Berry and phenology-related traits in grapevine (L.): from quantitative trait loci to underlying genes. BMC Plant Biology, 2008, 8: 38.
[9] LAHOGUE F, THIS P, BOUQUET A. Identification of a codominant scar marker linked to the seedlessness character in grapevine. Theoretical and Applied Genetics, 1998, 97(5): 950-959.
[10] ROYO C, TORRES-PÉREZ R, MAURI N, DIESTRO N, CABEZAS J A, MARCHAL C, LACOMBE T, IBÁÑEZ J, TORNEL M, CARREÑO J, MARTÍNEZ-ZAPATER J M, CARBONELL-BEJERANO P. The major origin of seedless grapes is associated with a missense mutation in the MADS-box gene VviAGL11. Plant Physiology, 2018, 177(3): 1234-1253.
[11] MEJIA N, HINRICHSEN P. A new, highly assertive scar marker potentially useful to assist selection for seedlessness in table grape breeding. Acta Horticulturae, 2003, 603(603): 559-564.
[12] 王跃进, Lamikanra Olusola. 检测葡萄无核基因DNA探针的合成与应用. 西北农林科技大学学报(自然科学版), 2002, 30(3): 42-46.
WANG Y J, OLUSOLA L. Application and synthesis on the DNA probe for detecting seedless genes in grapevine. Journal of Northwest Sci-Tech University of Agriculture and Forestry (Natural Science Edition), 2002, 30(3): 42-46. (in Chinese)
[13] PELLERONE F I, EDWARDS K J, THOMAS M R. Grapevine microsatellite repeats: Isolation, characterisation and use for genotyping of grape germplasm from Southern Italy. Vitis Journal of Grapevine Research, 2001, 40(4):179-186.
[14] MERDINOGLU D, BUTTERLIN G, BEVILACQUA L, CHIQUET V, ADAM-BLONDON A F, DECROOCQ S. Development and characterization of a large set of microsatellite markers in grapevine (L.) suitable for multiplex PCR. Molecular Breeding, 2005, 15(4): 349-366.
[15] 马亚茹, 冯建灿, 刘崇怀, 樊秀彩, 孙海生, 姜建福, 张颖. 葡萄无核性状的SSR新分子标记开发及应用. 中国农业科学, 2018, 51(13): 2622-2630.
MA Y R, FENG J C, LIU C H, FAN X C, SUN H S, JIANG J F, ZHANG Y. Development and application of SSR new molecular marker for seedless traits in grape. Scientia Agricultura Sinica, 2018, 51(13): 2622-2630. (in Chinese)
[16] OCAREZ N, JIMENEZ N, NUNEZ R, PERNIOLA R, MARSICO A D, CARDONE M F, BERGAMINI C, MEJIA N. Unraveling the deep genetic architecture for seedlessness in grapevine and the development and validation of a new set of markers for-Based Gene-Assisted Selection. Genes, 2020, 11(2): 151.
[17] LI Z Q, LI T M, WANG Y J, XU Y. Breeding new seedless grapes using in ovulo embryo rescue and marker-assisted selection. In Vitro Cellular & Developmental Biology - Plant, 2015, 51(3): 241-248.
[18] LI T M, LI Z Q, YIN X, GUO Y R, WANG Y J, XU Y. Improved in vitroL. embryo development of F1progeny of 'Delight' × 'Ruby seedless' using putrescine and marker-assisted selection. In Vitro Cellular & Developmental Biology-Plant, 2018, 54(3): 291-301.
[19] LI S S, LI Z Y, ZHAO Y N, ZHAO J, LUO Q W, WANG Y J. New disease-resistant, seedless grapes are developed using embryo rescue and molecular markers. 3 Biotech, 2019, 10(1): 4.
[20] KORPAS A, BARÁNEK M, PIDRA M, HRADLÍK J. Behaviour of two SCAR markers for seedlessness within Central European varieties of grapevine. Vitis, 2009, 48(1): 33-42.
[21] KUBOTA S, LIU Q, KESSUWAN K, OKAMOTO N, SAKAMOTO T, NAKAMURA Y, SHIGENOBU Y, SUGAYA T, SANO M, UJI S, NOMURA K, OZAKI A. High-throughput simple sequence repeat (SSR) markers development for the kelp grouper () and cross-species amplifications for Epinephelinae species. Advances in Bioscience and Biotechnology, 2014, 5(2): 117-130.
[22] CABEZAS J A, CERVERA M T, RUIZ-GARCÍA L, CARREÑO J, MARTÍNEZ-ZAPATER J M. A genetic analysis of seed and berry weight in grapevine. Genome, 2006, 49(12): 1572-1585.
[23] KARAAGAC E, ALBA M. VARGAS, ANDRES M T D, CARRENO I, IBANEZ J, CARRENO J, MARTINEZ-ZAPATER J M, CABEZAS J A. Marker assisted selection for seedlessness in table grape breeding. Tree Genetics & Genomes, 2012, 8(5): 1003-1015.
[24] AKKURT M, ÇAKıR A, SHIDFAR M, ÇELIKKOL B P, SÖYLEMEZOĞLU G. Using SCC8, SCF27 and VMC7f2 markers in grapevine breeding for seedlessness via marker assisted selection. Genetics and Molecular Research, 2012, 11(3): 2288-2294.
[25] BENNICI S, DI GUARDO M, DISTEFANO G, LA MALFA S, PUGLISI D, ARCIDIACONO F, FERLITO F, DENG Z N, GENTILE A, NICOLOSI E. Influence of the genetic background on the performance of molecular markers linked to seedlessness in table grapes. Scientia Horticulturae, 2019, 252: 316-323.
[26] VIHINEN M. How to evaluate performance of prediction methods? Measures and their interpretation in variation effect analysis. BMC Genomics, 2012, 13(4): S2.
[27] BALDI P, BRUNAK S, CHAUVIN Y, ANDERSEN C A F, NIELSEN H. Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics, 2000, 16(5): 412-424.
[28] REVERS L F, WELTER L J, IRALA P B, Silva D, Garrido L R. Co-localization of QTLS for seedlessness and downy mildew resistance in grapevine. Acta Horticulturae, 2014, 1046: 449-456.
[29] GUO D L, ZHAO H L, LI Q, ZHANG G H, JIANG J F, LIU C H, YU Y H. Genome-wide association study of berry-related traits in grape [L.] based on genotyping-by-sequencing markers. Horticulture Research, 2019, 6: 11.
[30] 屈田田, 张剑侠, 骆强伟, 王跃进. 无核葡萄抗寒抗病胚挽救育种应用研究. 果树学报, 2017, 34(2): 157-165.
QU T T, ZHANG J X, LUO Q W, WANG Y J. A study on the application of seedless grapevine breeding for cold-hardness and disease-resistance using embryo rescue. Journal of Fruit Science, 2017, 34(2): 157-165.(in Chinese)
[31] MEJIA N, GEBAUER M, MUNOZ L, HEWSTONE N, MUNOZ C, HINRICHSEN P. Identification of QTLs for seedlessness, berry size, and ripening date in a seedless x seedless table grape progeny. American Journal of Enology & Viticulture, 2007, 58(4): 499-507.
Commonality Identification of Molecular Markers Linked to Seedless Genes in Grape
CHEN DouDou, GUAN LiPing, HE LiangLiang, SONG YinHua, ZHANG Peng, LIU SanJun
Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009
【Objective】Seedlessness is an important agronomic trait in table grape breeding studies. The accuracy of molecular markers linked to seedless genes will substantially influence the early selection of seedless grapes. In this study, five previously reported seedless molecular markers against 183 genotypes were assessed to determine their efficacy for the selection of seedless plants and to provide alternative strategies for the breeding of seedless grapevines based on marker-assisted selection. 【Method】Leaf samples for DNA extraction were obtained from 96 grape cultivars (63 seedless and 33 seeded cultivars) and 87 F1hybrids (61 seedless and 26 seeded hybrids) from a cross between ‘Red Globe’ and ‘Dawn Seedless’. The previously reported primer pairs for five markers (SCF27-2000, GSLP1-569, VMC7f2, p3_VvAGL11, and 5U_VviAGL11) were used for PCR amplification. The presence of markers in cultivars and hybrid genotypes was detected by running the PCR products on 1.5% agarose gels, 8% polyacrylamide gels, or by fluorescence capillary electrophoresis. 【Result】The primer for the SCAR marker GSLP1-569 amplified a 569-bp segment in the 96 grape cultivars, which showed 40.6% accuracy and 63.6% efficiency in the detection of seedless cultivars. The primers for the SCAR marker SCF27-2000 amplified a 2000-bp segment in the 96 grape cultivars and 87 F1hybrids, with an accuracy of 71.9% and an efficiency of 76.54% for detection of the seedless trait in the 96 cultivars, and an accuracy of 70.5% and efficiency of 78.5% in the 87 F1hybrids.Among the 96 assessed cultivars, the SSR marker VMC7f2 identified eight alleles, a 189-bp allele of which was found to be most significantly associated with seedlessness based on a Chi-square (χ2) independence test, and detected seedless genotypes with an accuracy of 85.4% and an efficiency of 85.5%. Among the 96 cultivars, the SSR marker p3_VvAGL11 identified seven alleles, among which, a 187-bp allele was found to be most significantly associated with seedlessnessand detected seedless genotypes with an accuracy of 89.6% and efficiency of90.7%. Among the F1hybrids, the accuracy and efficiency of this marker were 87.65% and 91.1%, respectively, whereasit showed false-positive and false-negative rates of 6.17% and 6.17%, respectively. Among the 96 grape cultivars, the SSR marker 5U_VviAGL11 identified 17 alleles, of which, a 306-bp allele was found to be most significantly associated with the detection of seedlessness, identifying seedless genotypes with an accuracy of 88.5% and an efficiency of 90.6%. Among the F1hybrids, the accuracy and efficiency of 5U_VviAGL11 were 88.89% and 92.7%, respectively, with false-positive and false-negative rates of 4.94% and 6.17%, respectively. 【Conclusion】The SSR markers 5U_VviAGL11 and p3_VvAGL11showed higher accuracy and efficiency with respect to the detection of grape germplasm and genetic population. These markers should be given priority for future molecular marker-assisted selection based on seedless genes in the grapevine.
L.; seedlessness; molecular marker; commonality; identification
2021-01-25;
2021-04-08
河南省科技攻关项目(202102110196)、国家现代农业产业技术体系(CARS-30-17)、中国农业科学院创新工程“葡萄资源及育种”(CAAS-ASTIP-2020-ZFRI)
陈豆豆,E-mail:chendoudou21@163.com。通信作者刘三军,E-mail:liusanjun@caas.cn
(责任编辑 赵伶俐)