APP下载

人工智能算法的伦理危机与法律规制

2021-11-15郑智航

社会观察 2021年4期
关键词:规制权力算法

文/郑智航

引言

随着互联网、大数据、云计算等科学技术的发展,人力、脑力和算力融合得愈来愈紧密,以生活要素数据化和机器自动化决策为核心的人工智能算法得到了越来越广泛的应用。人工智能算法使得机器能够通过可读的指令程序,根据网络痕迹、位置信息、消费记录等数据,对人的行为进行评价和预测。这种自动化决策方式在人员招聘、教育培训、无人驾驶、投资咨询、司法判决、智能诊疗、新闻推荐等诸多领域得到了广泛运用,极大地降低了人们的决策成本,提高了工作效率。然而,人工智能算法独特的运行逻辑导致法律赖以生成与存在的社会结构性场景发生了重大变化,加剧了决策者与相对人之间的“数字鸿沟”,造成个人权利与算法权力之间的失衡,从而诱发了一系列的伦理问题。这些问题在一定程度上颠覆了传统的法律认知,增加了传统法律治理的难度。要想增强人工智能算法法律治理的有效性,克服“人工智能时代的法律功能危机”,就必须回到人工智能算法这一基本原点,探求人工智能算法伦理危机产生的结构性因素,并在此基础上分析既有法律治理手段存在的限度,从而为人工智能算法法律治理的转型升级探明方向。

人工智能算法的伦理危机

人工智能算法独特的运行逻辑正在深刻地改变着以往的生产方式和生活方式,并反客为主地对人的行为形成支配关系。人们可以借助于数据操纵与算法来实现控制人的目的。马长山认为:“掌握了数据,就意味着掌握了资本和财富;掌握了算法(Algorithm),就意味着掌握了话语权和规制权。”这种具有隐蔽性的算法权力会给人们带来系统性的不利后果,消解人的主体地位,侵犯公民的基本权利,诱发一系列的伦理危机。人工智能算法给以强调个人幸福和权利优先性为特点的现代伦理带来了巨大挑战,现代伦理以道德个人主义目的论方法论原则为指导,将个人幸福置于根本地位。这种方法论要求凸显人的主体性地位,并用主体性原则来构建现代社会。它将“人为目的”的道德观和权利优先性理念作为现代社会正义的基础,将人的外在行为所直接产生的现实效应或实质结果,或者由它带来的实际价值效应作为道德评价的依据。主体性、个体正义观和实质结果判断构成了现代伦理的基础。然而,人工智能算法对作为现代伦理支撑的主体性原则、社会正义观和实质结果主义提出了严峻挑战。这种挑战主要体现为人的主体性地位的消解、群组正义观代替个人正义观、人工智能在算法结果上的标签化效应等。

人工智能算法法律规制遇到的挑战

算法自动化决策在推动社会进步的同时,也带来一系列的社会问题和法律问题。人们试图通过既有的法律主体性制度来解决这些问题。这种法律主体性制度构想体现了进一步捍卫现代社会主体性伦理基础的努力,但是,它难以适应人工智能算法运行的基本逻辑。这种“生硬”的制度“嫁接”,既难以在法学理论上实现逻辑自洽,也难以对人工智能算法的健康发展进行有效上导。

现代法律主体制度是建立在对人的哲学理解基础上的。它强调人除了具有认知、判断和选择等能力以外,还具备道德、良心、良知、伦理等要素。因此,法律主体制度是以人具有独立的人格为前提的,并将人作为一个不证自明的法律目的。运用法律主体制度来解决算法诱发的伦理问题与社会问题存在诸多障碍。首先,人类设计算法和发明作为算法载体而存在的人工智能体并不是为了创制一个目的性存在,而是要为人类生活服务。换言之,算法及作为算法载体而存在的人工智能体始终是一种工具性存在。尽管算法系统经历了从物理系统到仿生神经网络系统的发展,并不断迫近人类的神经认知系统,但是,它“没有上升到有生命的状态,不具备生命所要求的能够利用外界物质形成自己的身体和繁殖后代,按照遗传的特点生长、发育并在外部环境发生变化时及时适应环境的能力”。而人自然生命的目的神圣性是法律主体制度建立的基础。赋予作为算法载体而存在的人工智能法律主体地位,既会冒犯人的自然生命的目的神圣性,又颠倒了目的与工具的关系。其次,运用法律主体制度规制算法,无法实现权利义务统一性原则。权利与义务相统一原则是现代法律的一项基本原则,也是法律主体理论或制度的核心内涵。赋予作为算法载体的人工智能体法律主体地位,是一种授予权利的行为。但是,既有的法学理论无法回答人工智能体独立承担相应的法律责任的问题。最后,算法目前通过深度学习难以进化出人的自由意志和情感。现代法律主体制度深受康德自由意志学说影响,并将自由意志和情感作为法律主体的必备要件。随着科学技术的发展,算法的学习能力得到大幅度提高,并形成了一定的语言和思维能力。但是,要想在短期内进化出反思能力,具有同人类一样的自由意志与情感,则几乎不可能。

为了规制算法权力,揭开“算法黑箱”,人们愈来愈倾向于运用透明性原则,因为透明性原则能够弥补决策者与相对人之间形成的“数字鸿沟”,避免信息的过度不对称导致技术劣势一方依附于技术强势一方,从而演变成数字经济时代的精英统治。算法透明度主要包括算法源代码的透明性和开放性;公布用于作出相关算法决策的输入和输出过程;以简明易懂的方式公开输入到输出的中间过程,以便被决策对象充分知悉并认同算法的正当合理性等内容。它虽然在防止算法技术异化方面起到了一定的作用,但仍然会受到算法性质、公众认知能力和算法自身的可解释性等因素的影响。(1)就算法的性质而言,各国法院倾向于认为它是一种商业秘密。(2)就公众的认知能力而言,绝大多数非专业人士都不具备读懂算法语言的基本能力。透明性原则的核心是通过公众的知晓和理解来防止决策的失误和不公正。看懂和理解则是公众监督的前提。人们依凭看懂和理解的信息,并结合生活中的常识判断,能够得出一个较为客观公允的结论。然而,算法极强的专业性和嵌入性,极大地超越了普通人的常识判断范围,绝大多数非专业人士根本无法理解算法。换言之,人工智能算法是一个自我封闭的“孤岛”,要想理解算法,就必须具备相应的知识体系和认知能力。因此,运用透明性原则来规制算法的效果不会十分理想。(3)就算法自身的可解释性而言,它是运用透明性原则规制人工智能算法的前提。某一事物只有具有可解释性,才既能够在公众面前得到有效的开示,又能使专业技术人员对自身行为的正当性进行有效辩解。从本质上讲,算法是在特定的网络架构模式中,通过计算机语言进行具体编程而组合成一套源代码系统。简单的算法具有可控性,是可以解释的,但是,复杂的算法对于数据和硬件设施的依赖程度会很高,并且它们在不断地进行学习和自我进化。

在人工智能算法中,数据与算法的关系极为密切,以至于“数据喂养着人工智能”成为一个基本的共识。计算机只有吸收大量的数据,算法才能运行起来,并得到学习和进化。而算法又能够将数据加以转化和控制,从而形成一种“准公权力”,这是算法异化的一个重要原因。因此,人们认为运用数据权的保护模式能够有效地解决人工智能算法的伦理危机。具体来讲,运用数据权来约束人工智能算法存在三个难题。第一,数据权的内容和归属界定困难。权利内容清晰和归属明确是权利有效行使的前提,而算法运用的数据非常复杂。它近似于一个仓库,可以分为数据运营层、数据仓库层和数据产品层等层级。不同的数据层对数据的管理和使用方式也不同,相应地涉及具体的权利内容也较为模糊。另一方面,平台数据的权利主体难以通过对法律条文和法律教义的分析来明确,也难以基于正当性与后果主义的分析来界定,因为平台数据既可以被认为是个人所有、平台所有、个人与平台共有,也可以被认为是互联网空间的公共数据。第二,算法技术可以绕开数据权主体。随着算法学习能力的不断增强,它愈来愈能够对海量的无结构数据(包括百度搜索记录、淘宝购物记录、手机全球定位系统即GPS信息等各种电子痕迹)进行分析和处理。个人身份的已识别或可识别状态往往成为数据分析的结果而不是起点。特别是到了数据仓库层和数据产品层,算法所处理的数据距离数据源中的原始数据愈来愈远,因为算法在最接近原始数据的数据运营层就进行了去噪、去重、提脏、业务提取、单位统一、砍字段等多项工作。因此,算法技术绕开了数据权主体,致使“从数据是否已包含个人身份信息入手来规制算法无法达到保护个人权益的目的”。第三,数据权是一种以个人为中心的救济模式,难以应对算法权力的复杂性。从本质上讲,运用数据权制约算法权力的思路是一种以单个的个体为中心来对抗“准公权力”的思路。这种思路忽视了算法权力的技术性和资本性两大基本特性。

算法权力的技术性增加了普通民众的认知难度。算法权力的资本性,决定了普通民众难以用数据权来制约算法权力。算法设计者和研发者往往是一支庞大的专业团队,并且拥有雄厚的财力支持。无论是法官还是律师,都难以应对专业化的算法问题。这种认知上和财力上的悬殊,使个人数据权难以对抗日益膨胀的算法权力。

人工智能算法法律规制的基本路径

人工智能算法独特的运作逻辑致使运用法律主体制度、透明性原则和数据权等方式化解人工智能算法的伦理危机和社会危机的思路难以奏效。因此,应当调整传统法律制度的规制理念,构建符合人工智能算法运作基本逻辑的规制路径。

受效率主导逻辑的支配,算法设计者和开发者往往将注意力集中在吸上甚至迎合用户上。这种偏好原则可能将用户锁定在“信息茧房”中,从而忽视了用户的数字福祉(digital well-being)。这种数字福祉的范围要大于数据权的范围,体现在算法及作为算法载体而存在的人工智能体在认识、动机、结果、组织评价等多方面满足善的要求。它能够在社会提出的伦理原则或指导方针与算法设计者或开发者提出的目标技术之间进行一种反思性的平衡,并应该在特定数据技术的开发、部署和使用等各个关键阶段都发挥核心作用。随着网络技术和算法技术的发展,人们愈来愈强调算法设计者和开发者应当依循“经由设计的数字福祉(digital well-being by design)”理念,将对用户数字福祉的保障和促进融入产品和服务的设计中去。这种算法中嵌入数字福祉的做法在医疗保健、教育和就业、治理和社会发展、媒体和娱乐等领域愈来愈得到运用。特别是数据技术所具有的积极计算能力,促进了道德规范在算法设计过程中的嵌入,因为它建立在积极心理学研究的基础上。

传统的法律规制手段还是建立在国家与社会、公权力与私权利的二元结构基础上的。它强调国家以自主性为核心的“专断性权力”和个人基本权利所具有的排除公权力侵害的防御功能。具体到算法规制领域,它主要体现为试图建立一套以结果责任认定为核心的政府事后监管模式和以个人为中心的权利救济模式。这些方式和手段虽然在一定程度上能够起到纠正算法偏差的作用,但是对于嵌入算法技术过程中的更为隐蔽的算法偏差的作用并不大。这需要我们重新认识国家与社会、公权力与私权利、行政权力与技术权力的关系,并建立一种“政府—平台—商户(消费者)、公权力—社会权力—私权利的三元结构”。三元结构中的国家与社会、公权力与私权利不再是简单的消极对抗关系,政府权力也不应该是一种高专断性权力。人工智能算法构造了一个信息社会,信息成为权力的中心,产生一种信息权力,这种信息权力制约和阻碍着以科层制为核心的政府权力的运作,并在事实上改变了政府权力的运作形态和人们对权力的认识。算法平台具有的经营权、财产权和知识产权等一系列私权利会在这种信息优势和技术优势下演变为一种“准公权力”。政府在算法规制过程中,也需要借助算法平台、程序员和人工智能专家的信息优势和技术优势,实现合作性治理。因此,算法平台企业、程序员和人工智能专家不仅是政府监管的对象,也是政府监管的参与者、决策者和执行者。国家有关算法规制法律规范的制定和执行都离不开他们的积极参与,而且这种参与的深度和力度要远远超过二元结构中的公众参与。

人工智能算法法律规制基本理念的转变必然带来法律规制路径的变化。具体来讲,人工智能算法的法律规制应当强调元规制治理,突出数据控制者的自我控制义务;加强政府、平台和社会三方的合作治理,通过第三方参与实现对算法的协同治理;完善算法责任分担机制,建立算法安全风险的保险制度;等等。

就算法的元规制治理而言,应当强调通过激励机制来促使数据控制者针对问题进行内控式的自我规制。在此过程中,数据控制者应当通过数据保护影响评估和“经由设计的数据保护”等方式来履行数据保护义务。数据保护影响评估是对算法进行的一种事先规制。它强调数据控制者对软件产品是否符合适用的法规标准、指南、计划、规格和过程进行独立评估。为了强化评估的作用,只有那些通过专家、公共机构和受算法决策影响的社区代表审查评估的算法,才能在一组实体之间共享或在公共站点上发布。在具体评估过程中,不但应当评估基于目的使用算法的必要性和相称性,而且应当评估算法可能带来的侵害自主权、差别性待遇、财产损失等风险。算法拥有者应当根据评估结果提出处理风险的预想方案。

随着政府—平台—商户、公权力—社会权力—私权利三元结构治理理念的确立,除了政府需要改变过去单向度的“命令加控制”的管控方式外,还需要构建算法规制的合作治理路径。在这种合作治理中,政府监管机构应当通过“提高标准化程度和自动化程度”,使用“司法测试和新技术”来敦促算法相关企业遵守法律法规和其他内控性质的规范。社会第三方力量应当提供全自动的算法风险分析和控制技术。算法平台和企业应当严格履行防范算法风险的义务,不断调整信息技术系统,制定个性化的内部算法风险管理流程。

算法系统的复杂性对传统的以因果关系为基础的法律责任体系形成了严峻挑战。当某个产品汇聚多种算法系统时,要想找到损害结果与损害行为之间的因果关系,难度会更大。在未来相当多的情况下,通过传统产品责任来解决智能算法及智能系统致人损害问题愈来愈不可能。吴汉东预测,未来社会以过错责任为基础建立的“风险分配”责任体系,将在某些领域不复存在。例如,对于算法上发的交通事故的认定,归责事由只有结果的“对与错”,而无主观上的“故意”或“过失”。倘若让算法及其智能系统的开发者或经营者承担无过错责任,就势必增加产品的生产成本,阻碍算法技术的发展。因此,笔者主张逐步建立算法安全风险的保险机制。作为算法载体而存在的人工智能体的生产者或所有者应当购买一定份额的保险,以分担算法上发的安全风险。

猜你喜欢

规制权力算法
论外空活动跨界损害责任的法律规制
Travellng thg World Full—time for Rree
中国社会组织自我规制的原因浅析
新常态经济规制及其制约机制完善
浅析我国行政规制的法制完善
省级政府金融权力榜
民营金融权力榜
学习算法的“三种境界”
算法框图的补全
算法初步知识盘点