APP下载

热带珊瑚礁区红腹海参及绿刺参食物来源分析
——脂肪酸标志法

2021-10-19吴沛霖黄端杰马文刚王爱民

海洋科学 2021年9期
关键词:褐藻刺参海参

吴沛霖, 黄端杰, 马文刚, 高 菲, 王爱民, 许 强

(海南大学 海洋学院 南海海洋资源利用国家重点实验室, 海南 海口 570228)

近几十年来, 随着国际市场对海参产品需求量的持续提高, 海参捕捞在热带海域得到了迅速发展[1-2]。在市场需求和海参自身存在易于捕捞, 且资源恢复速度较慢等特点的影响下, 大多数具有较高经济价值的海参种类资源面临着被过度开发的问题[3-4]。世界各地热带海参资源也已经显现出枯竭的迹象[5-6]。因此, 迫切需要采取适当的种群保护和恢复措施,以确保这些物种的可持续利用。红腹海参(Holothuria edulis)及绿刺参(Stichopus chloronotus)分别属于楯手目(Aspidochirotida)的海参科(Holothuriidae)及刺参科(Stichopododae), 是印度洋-太平洋区域大部分地区分布非常广泛的海参种类[7-8]。它们多栖息于珊瑚礁浅水区域的海草床和砂质海底, 以及具有藻类和海草分布的岩礁区[9]。红腹海参和绿刺参皆为沉积食性海参, 它们以沉积物中的动植物有机质碎屑、小型底栖生物、微生物等为食, 在珊瑚礁生态系统的物质循环中发挥着重要的作用。但是目前对两种海参详细的食物组成及其季节差异知之甚少。与此同时, 我国热带海域海参资源衰退趋势日益严峻[10], 特别是海南岛周边海域的红腹海参和绿刺参资源日趋稀少, 对其摄食生态及食物来源的了解也有助于开展资源恢复工作。

生活在珊瑚礁中的热带海参, 它们通过摄食和埋栖等行为对其生活环境产生影响, 进而影响到动物的营养环境等[11], 对海洋生态系统产生十分重要的影响[12]。海洋动物所需的大多数脂肪酸都是从食物中获得的, 然后被相对保守地同化至消费者的组织中[13], 食物中的脂肪酸特征得以保留。而海洋食物网中的脂肪酸主要来源于海洋自养藻类的合成。每种海洋藻类因其不同的脂肪酸合成途径而具有自己的特征性脂肪酸[14-17]。Zhang等[18]人利用脂肪酸标志法调查研究了不同海域内刺参(Apostichopus japonicus)的脂肪酸组成和食物来源, 发现不同海域内的同种海参在食物来源上存在较大差异, Xu等[19]人的研究结果也证实了环境会对海参脂肪酸组成造成影响。因此, 海参的脂肪酸组成不同, 不仅受其自身生理生态特性、季节、纬度和个体生长发育阶段的影响[18-19], 还会受食物来源影响。

本研究以海南三亚蜈支洲岛珊瑚礁海域的红腹海参及绿刺参为研究对象, 分析了这2种海参夏季和冬季的脂肪酸组成情况, 并利用脂肪酸标志法探讨2种海参的食物来源异同, 揭示其种间及季节差异, 研究结果可为揭示红腹海参及绿刺参生态功能提供数据支持。

1 材料与方法

1.1 研究区域概况

蜈支洲岛位于海南岛南部(18°18′30′′N, 109°45′40′E)(图1), 面积1.48 km2[9], 是典型的近岸热带岛礁。该地区属于热带季风气候, 11月至4月为旱季, 5月至10月为雨季。在夏季和冬季, 该海域受季风的影响比较明显[20]。在夏季, 海南岛东南部沿海区域会出现上升流(QDU)[21]。实验区域位于蜈支洲岛北部(图1)。该海区覆盖着细沙、石块、珊瑚碎枝以及人工增殖礁。

图1 取样区域Fig. 1 Sampling area

1.2 样品采集及温度、盐度的测定

在2019年, 利用多参数水质分析仪(YSI-Model 6600v2, Xylem, 美国)监测了蜈支洲岛海域水深1 m处的水温和盐度。

红腹海参及绿刺参样品采集于2019年7月25日与12月21日, 采集地点位于蜈支洲岛北部海域(图1)。由潜水员在实验区域内采集红腹海参和绿刺参, 每种海参每次采集3~5头, 采集后半小时内运到实验室进行取样。每次采集的个体大小如表1所示。

表1 不同月份采集海参的个体大小(mean±SD)Tab. 1 Individual size of sea cucumbers collected in different months (mean±SD)

由于消化道组织对食物脂肪酸组成的变化响应最快[22], 因此本研究选择海参肠道组织作为脂肪酸组成及标志物的分析对象。将采集到的红腹海参和绿刺参放置在暂养箱(40 cm×30 cm)中, 待海参状态稳定后, 立即注射3~5 mL的KCl溶液(0.35 mol/L)刺激红腹海参和绿刺参排出内脏[23]。将海参肠道从排出的内脏团中分离, 小心去除肠道含物, 利用蒸馏水清洗干净后, 放置于-20 ℃冰柜中冷冻保存备用。

1.3 样品预处理与脂肪酸测定

海参肠道样品经冷冻干燥48 h后, 研磨成粉末状。取约0.5 g左右的样品进行总脂提取, 过程参考Floch等[24]的方法。经二氯甲烷∶甲醇(2∶1)提取总脂后, 可保存至二氯甲烷中。在温和的氮气流下将提取的总脂蒸发至接近干燥, 然后加入2%的浓硫酸甲醇溶液并在氮气的保护下于80 ℃水浴中甲酯化2 h, 利用酯化反应制备脂肪酸甲酯(FAME)[25]。冷却后用正己烷萃取脂肪酸甲酯, 样品定容至1 mL后上机测定。脂肪酸组成利用气相色谱仪(Agilent Technologies 6890N)进行分析。以鱼肝油脂肪酸甲酯(Cod liver oil fatty acid methyl esters(C2294-5G), Sigma-Aldrich, 德国)作为标准, 通过比对保留时间对脂肪酸进行定性分析。脂肪酸的相对含量用峰面积归一法进行计算。

色谱条件如下:

毛细管色谱柱: DB-FFAP(30 m × 0.25 mm × 0.25 μm);

载气: 氦气(纯度为99.999%);

进样口温度: 250 ℃;

检测器温度: 250 ℃;

柱温: 初始温度为100 ℃, 并在100 ℃下保持5 min, 以4 ℃/min的速度升至240 ℃, 然后在240 ℃下保持15 min。

1.4 脂肪酸标志物的选择

综合以往的研究结果与海区内实际情况选用以下脂肪酸标志: 硅藻、鞭毛藻及原生动物、褐藻、绿藻、红藻、异养细菌以及陆源有机质等几类(详见第3节)。

1.5 统计分析

采用数据分析软件SPSS (PASW Statistics 23, 美国)进行数据分析, 利用独立样本t检验(Independent-Samples T Test)分析不同月份、不同物种是否有显著差异性。数据在进行分析前利用Levene检验进行均匀性检验。在 RStudio 1.3.1093软件中利用相关矩阵对不同月份、不同物种的脂肪酸标志物数据进行标准化, 然后进行主成分分析(PCA)。

2 结果

2.1 水温与盐度

2019年, 实验区域盐度为32.58至34.44, 温度为23.76 ℃至29.31 ℃。7月份时, 受海南岛东部上升流的影响, 海水温度下降了3 ℃(图2)。

图2 取样地点水温与盐度随时间的变化Fig. 2 Temporal variations in the water temperature and salinity of the study site

2.2 绿刺参及红腹海参的脂肪酸组成

本研究对绿刺参及红腹海参中14—22碳的脂肪酸进行了测定, 并分离出33种脂肪酸(表2), 发现2种海参在不同月份的脂肪酸相对含量均以多不饱和脂肪酸(PUFA)为主(图3)。2种海参TFA的含量在12月份较高, 但饱和脂肪酸(SFA)、单不饱和脂肪酸(MUFA)以及PUFA含量均表现出相反的季节差异。绿刺参的PUFA在12月份较高(P>0.05), SFA和MUFA含量较低(P>0.05), 红腹海参则相反。

图3 绿刺参肠道组织(a)与红腹海参肠道组织(b)脂肪酸组成相对含量月份变化Fig. 3 Fatty acid profiles of the gut of S. chloronotus (a) and H. edulis (b) in different months

表2 绿刺参、红腹海参肠道组织脂肪酸相对含量(%, mean±SD)Tab. 2 Relative content of fatty acids in the gut of H. edulis and S. chloronotus (%, mean ± SD)

续表

2种海参的SFA主要由16∶0和18∶0组成, 均占SFA含量的50%以上。2种海参的18∶0含量在12月份时较低(P>0.05)。绿刺参16∶0的含量是7月份高于12月份, 与红腹海参相反, 红腹海参明显7月份时较低(P>0.05)。2种海参MUFA的主要成分20∶1(n-9)和22∶1(n-9)含量均是7月份较高。

绿刺参与红腹海参的PUFA含量较高, 占TFA的40%以上。在2种海参组织中含量最高的脂肪酸为C20∶4(n-6), 在12月份时较高(P>0.05)。在7月份时, DHA[C22∶6(n-3)]含量在绿刺参中最高(6.5%),红腹海参DHA的含量为5.92%; 在12月份时, 绿刺参与红腹海参的DHA含量均明显低于7月份(P>0.05)。红腹海参与绿刺参组织中的EPA[C20∶5(n-3)]含量在12月份最高, 7月份较低。

2.3 绿刺参及红腹海参的脂肪酸标志物季节差异

红腹海参与绿刺参的硅藻脂肪酸标志物C16∶1/C16∶0比值均小于1(图4a), 这表明硅藻不是两种海参的食物来源组成部分。根据表3, EPA还可以作为红藻的特征脂肪酸。因此, 12月份时两种海参体内有较高的EPA含量可能摄入环境中更多的红藻有机质碎屑。7月份时红腹海参的EPA含量较低, 且存在较大的个体差异(图4b)。

图4 绿刺参与红腹海参脂肪酸标志的月份变化Fig. 4 Fatty acid biomarkers of S. chloronotus and H. edulis in different months

红腹海参与绿刺参的鞭毛藻及原生动物脂肪酸标志物DHA含量分别为5.92%和6.5%。同时绿刺参和红腹海参中DHA的含量存在明显的季节差异, 且2种海参都表现出7月份较高, 12月份较低(图4c)。

红腹海参和绿刺参组织中的褐藻脂肪酸标志物C20∶4(n-6)含量较其他生物标志物均具有较高水平,分别为12.03%~12.18%和15.17%~17.31%, 且无明显的季节差异。这表明褐藻类食物来源在不同月份均是2种海参的重要食物来源(图4d)。

绿刺参与红腹海参体内的绿藻脂肪酸标志物C18∶1(n-7)/C18∶1(n-9)比值在不同季节均大于1(图4e), 且无明显的季节差异(P>0.05), 这表明绿藻也是2种海参的食物来源之一。另一种绿藻脂肪酸标志18∶3(n-3)在2种海参体内表现出相似的季节差异, 7月份的含量较低。12月份时绿刺参的18∶3(n-3)含量较高, 也表现出较大的个体差异。

Odd FAs & Br FAs与C18∶1(n-7)是异养细菌的脂肪酸标志物。绿刺参体内的Odd FAs & Br FAs与C18∶1(n-7)的含量在不同季节均无明显的差异(P>0.05)(图4g, 4h)。红腹海参体内的Odd FAs & Br FAs与C18∶1(n-7)的含量均为12月份较高, 且Odd FAs& Br FAs含量有明显的季节差异(P<0.05)。

C18∶2(n-6)+C18∶3(n-3)是陆源有机质的脂肪酸标志物。与7月份相比, 12月份2种海参体内的含量均较高, 且大于2.5(图4i), 这表明陆源有机质在12月份时是2种海参的食物来源。7月份红腹海参和12月份绿刺参的陆源有机质脂肪酸标志含量均存在个体差异。

在2种海参食物来源组成中, 褐藻、绿藻、红藻均是重要的食物来源, 同时还有异养细菌、陆源有机质、鞭毛藻以及原生动物等。2种海参表现出摄食大型藻类有机质碎屑的情况, 同时也有对其他食物来源的需求。

2.4 脂肪酸标志物种间及季节差异性分析

以2种海参肠道中8种脂肪酸标志物[C20∶4(n-6)、C20∶5(n-3)、C22∶6(n-3)、C18∶1(n-7)、C18∶3(n-3)、C18∶1(n-7)/C18∶1(n-9)>1, Odd FAs&Br FAs, C18∶2(n-6)+ C18∶3(n-3)]的含量或比值为变量, 对不同季节采集的海参样品数据进行主成分分析, 以期得出2种海参食物组成的种间与季节差异(图5)。研究结果发现, 不同季节的2种海参形成显著的聚类区系。7月份时, 绿刺参以鞭毛藻及原生动物为主要食物来源; 12月份绿刺参的食物来源较为广泛, 涵盖鞭毛藻及原生动物、异养细菌褐藻和红藻等。红腹海参7月份的食物来源显现出典型的褐藻和红藻类特征, 而12月份则主要为异养细菌和绿藻特征。

图5 绿刺参及红腹海参不同月份脂肪酸标志物主成分分析因子载荷图Fig. 5 PCA of food resources component in H. edulis and S.chloronotus in different months

3 讨论

海参的食物组成会受到海区天然饵料环境的影响, 例如, 大型藻类的有机碎屑, 微型藻类, 以及细菌等等通常具有不同的物理结构和生物化学组成, 这都会影响海参的食物偏好[26-28]。以往的研究表明, 红腹海参可栖息于沙底, 活珊瑚以及礁石上, 它们对于生境的选择没有明显的偏向性[9]。绿刺参偏向选择活珊瑚及礁石等硬质底的生境,其肠道内含物中也多以泥砂为主, 混有大型藻类有机质碎屑、细菌、原生动物等[29]。本研究根据海区实际情况, 以及以往的研究结果选择了几类脂肪酸标志物对海南三亚海域的红腹海参及绿刺参食物来源分析发现(表3), 它们的食物来源可能包括鞭毛藻及原生动物、褐藻、绿藻、红藻以及异养细菌等。

表3 作为食物来源标志的脂肪酸和脂肪酸比值Tab. 3 Fatty acids and fatty acid ratios that were used as markers for a food source

3.1 绿刺参食物来源组成

根据特征脂肪酸分析发现, 绿刺参脂肪酸组成中表现出明显的鞭毛藻及原生动物、绿藻、褐藻、红藻、异养细菌以及陆源有机质的特征。在7月份时, 鞭毛藻及原生动物在绿刺参的食物来源中占据较大比例。12月份时, 绿刺参食物组成复杂, 包括鞭毛藻及原生动物、异养细菌、褐藻和红藻等。红藻、褐藻、陆源有机质等在绿刺参的食物来源中占据的比例与7月份相比较高(P>0.05), 鞭毛藻及原生动物脂肪酸标志则明显低于7月份(P<0.05)。DHA是鞭毛藻及原生动物类的脂肪酸标志物[32], 同时,也可以指示原生动物[33]等。以前的研究表明[29], 沉积物有机质主要由底栖微藻、原生动物及有机质碎屑组成。绿刺参为沉积食性, 同时其食物来源在不同季节均包括鞭毛藻及原生动物。因此, 绿刺参体内的DHA可能更多的来自沉积物中的原生动物。在12月份时, 根据现场调查[41]的结果, 各类大型藻类会由于水温的下降变得繁盛。大型藻类产生的大量生物碎屑最终可能被沉积食性的底栖动物(包括海参)摄取[42-43]。因此, 其他食物来源变得更加丰富可能是原生动物对海参的贡献明显低于7月份的原因。沿海地区是海洋和陆地环境之间的动态过渡区域。该区域大型底栖无脊椎动物受到陆地来源的影响非常明显[44]。另一方面, 选择不同外源性食物的海洋动物会取决于食物来源的可获得性和自体食物的偏好[45]。陆地有机物的输入是复杂的, 它不构成海参稳定的食物来源。这可能是绿刺参体内陆源有机质的脂肪酸标志物具有季节差异的原因。

3.2 红腹海参食物来源组成

在7月份时, 红腹海参的食物来源显现出典型的褐藻和红藻类来源有机物特征。12月份时, 红腹海参的食物来源组成中异养细菌与绿藻占据较大比例。红腹海参体内的褐藻脂肪酸标志物20∶4(n-6)的相对含量(12.03%~12.18%)在实验期间内比其他脂肪酸标志含量较高。绿藻脂肪酸标志[18∶1(n-7)]/[18∶1(n-9)]比值在不同月份均大于1, 表现出典型的绿藻脂肪酸特征。绿藻的生物量在不同季节没有明显的变化[41], 可作为海参稳定的食物来源。红腹海参以多种来源的有机物为食, 包括有机颗粒物和生物碎片, 其中含有大量异养细菌, 它们也是红腹海参的重要食物来源。

3.3 两种海参食物来源的异同

红腹海参的食物来源组成与绿刺参相似, 涵盖了鞭毛藻及原生动物、异养细菌、褐藻、绿藻、红藻、陆源有机质等。7月份时, 红腹海参与绿刺参体内各类食物来源的脂肪酸标志的含量或比值均无明显的种间差异(P>0.05), 但根据主成分分析发现, 绿刺参是以沉积物中的鞭毛藻及原生动物为主要食物来源,红腹海参则是以褐藻及红藻有机质碎屑为重要的食物来源。红腹海参与绿刺参体内的红藻、褐藻、陆源有机质等脂肪酸标志的含量或比值均是12月份高于7月份, 鞭毛藻及原生动物则显著低于7月份。12月份时, 绿刺参的食谱较为丰富, 以鞭毛藻及原生动物、异养细菌、褐藻和红藻等有机质来源为主要食物来源, 红腹海参则主要为异养细菌和绿藻。根据Li等人[41]对蜈支洲岛海域藻类调查, 结果显示: 在实验区有大量的绿藻、褐藻以及红藻镶嵌分布。同时, 红藻类是实验海域内生物量及种类最为丰富的藻类,主要包括紫杉状海门冬(Asparagopsis Taxiformi)、巢沙菜(Hypnea pannosa)、矮型石叶藻(Lithophyllum pygmaeum)等。褐藻类为低温类群, 在冬春季水温较低时繁盛, 其中主要藻类包括加勒比海褐藻(Lobophora variegata), 半叶马尾藻(Sargassum hemiphyllum)等。由于沉积食性生物可以通过摄食大型藻类脱落碎屑获得有机质来源, 因此, 实验海域内大型藻类产生的有机质碎屑很有可能是绿刺参的重要食物来源组分, 红腹海参很可能也是通过这种方式获得了较多的藻类食物来源。异养细菌也是海参的重要食物来源[18,46]。Moriarty等[47]认为绿刺参和黑海参(Holothuria atra)对细菌的同化效率(32%~44%)要高于沉积物中的有机质, 同时, 其结果也表明海参肠道中较高的胞壁酸值是由于海参消化了大量细菌, 而不是由于摄入较多的底栖微藻。

根据实验结果, 在不同月份中2种海参个体间存在的脂肪酸标志含量差异, 可能与热带海参在自然生境中活动范围较小, 常呈现不均匀或斑块分布[48-49],不同个体生存区域提供的饵料会有一定的差异有关。因此, 所采海参不同个体间食物来源的可获得性会有所不同, 导致海参的体内脂肪酸标志含量存在个体差异。

尽管脂肪酸标志法已广泛运用到海洋营养关系的研究中[22], 但该方法仍是无法对海洋生物的食物来源进行精确地定量定性, 只能对可能食物来源进行示踪。为改进或弥补这些缺点, 一方面, 可以根据实验区域内野外调查的结果, 合理地选择脂肪酸标志物, 并根据特定生物特定时期的代谢特点选择合适的组织进行脂肪酸组成分析[50]。另一方面, 可以联合运用脂肪酸标志法和DNA条形码技术[51]或稳定同位素技术[52]提升对食物来源分析的精度。

4 结论

在自然条件下, 鞭毛藻及原生动物、褐藻、红藻、大型绿藻、异养细菌, 以及陆源有机质等均是红腹海参与绿刺参的潜在食物来源。但不同季节, 2种海参的主要食物来源存在差异。7月份时, 鞭毛藻及原生动物在绿刺参的食物来源组成中占据较大比例;12月份, 绿刺参食物组成复杂, 主要以鞭毛藻及原生动物、异养细菌、褐藻和红藻等为食物来源。大型藻类是红腹海参在不同季节的主要食物来源。7月份, 红腹海参的主要食物来源组分为红藻和褐藻,异养细菌和绿藻是12月份时红腹海参食物组成中主要组分。本研究结果可为揭示海参摄食活动产生的生态功能提供数据支持, 以及为热带海参经济种的大规模底播增养殖提供参考。

猜你喜欢

褐藻刺参海参
感谢海参
褐藻胶寡糖的制备、分离及表征研究进展
夏眠的刺参
海洋细菌来源低温褐藻胶裂解酶的分泌表达和酶学性质研究*
夏眠的刺参
褐藻中岩藻多糖检测方法的研究
3 种不同体色刺参体壁营养成分的比较研究*
光照对白刺参、青刺参和紫刺参生长、消化及免疫的影响
古今八珍之葱烧海参
海参易变弯,掺了糖