APP下载

纳米金涂覆微纳光纤的倏逝场氨气检测研究

2021-10-18张伟建曾祥龙滕林苹

光电工程 2021年9期
关键词:涂覆氨气激光器

张伟建,曾祥龙,杨 傲,滕林苹,邾 毅

纳米金涂覆微纳光纤的倏逝场氨气检测研究

张伟建,曾祥龙*,杨 傲,滕林苹,邾 毅

特种光纤与光接入网重点实验室,特种光纤与先进通信国际合作联合实验室,上海先进通信与数据科学研究院,上海大学,上海 200444

本文基于TDLAS技术,采用设计制备的微纳光纤气体吸收池,搭建了一套全光纤的NH3浓度检测系统。NH3检测系统的核心部分气体传感通过1.51 μm的微纳光纤完成,该系统检测结果表明,NH3在20000 ppm~100000 ppm浓度范围内,解调的二次谐波幅值与对应浓度之间具有良好的线性关系(拟合方程相关系数=0.9962)。为了提高NH3浓度的检测性能,采用纳米金涂覆微纳光纤以增强光纤的倏逝场效应。根据实验结果,纳米金涂覆后的微纳光纤NH3浓度检测系统灵敏度有了很大提升,NH3浓度的检测下限可达到260 ppm。对不同浓度的NH3反复监测显示该检测系统稳定性良好,最大相对误差为5.38%,适用于长期稳定性的NH3监测,具有广泛的应用前景。

TDLAS技术;微纳光纤;纳米金涂覆;NH3浓度检测

1 引 言

氨气(NH3)广泛应用于工业生产、农业活动和生物系统等领域中,极大地促进了这些领域的发展进步。但NH3又是一种有毒性气体,一旦过量摄入对人体和动植物都有危害,我国明确将NH3列为8种恶臭污染物之一[1]。因此,采取科学有效的气体检测措施,及时准确地掌握NH3的排放和分布,对环境保护和生命健康安全都具有重要的现实意义。

可调谐半导体激光吸收光谱(Tunable diode laser absorption spectroscopy, TDLAS)技术基于分子吸收光谱理论,具有在线、实时、高灵敏、高分辨率和高精度[2]等优点。已经发展成为气体检测领域的主流技术,是国内外众多研究所、高校和企业争相钻研和开发的热点。如中国科学院安徽光学精密机械研究所对大气污染常见的CO、NH3、CH4等气体进行了实时监测[3-5],太原科技大学Guo等[6]人研制了一种便携式微量NH3激光传感系统,采用无标尺调制光谱技术,系统的最低检测极限达到ppm级别。然而,现有的检测系统所采用的气体吸收池为反射式空间光结构,价格昂贵,体积笨重,且需要高精度的准直器配合,不仅提高了实验成本,还失去了全光纤结构的特性和优势。

倏逝场型光纤气体传感作为光谱吸收法的另一种形式,具有易于集成光纤网络、成本低廉、性能优良、抗电磁干扰性好和分布式测量等优点,日益受到广泛关注。此外,倏逝场型光纤可以通过改变光纤结构,在包层一侧涂覆各种纳米材料等方法提高倏逝场区域气体传感的灵敏度。随着TDLAS技术的进一步发展,将TDLAS技术与其他光谱学和非光谱学技术的结合运用必然是一种趋势[7],也能更好地为人们的经济发展和生活健康提供支持和保障。

本文主要采用激光气体吸收光谱技术进行气体浓度检测,基于倏逝场原理,设计了全光纤的TDLAS氨气检测系统。使用熔融拉锥技术制备微纳光纤,气体对微纳光纤锥区中逸出倏逝光产生吸收,实现对目标气体浓度的检测。同时,根据气体吸收光强原理,采用更为灵敏的涂覆微纳光纤组成气体吸收池,涂覆材料为纳米金(gold-nanosphere, GNS)。纳米金通过倏逝场互相作用引发表面等离子共振(surface plasmon resonance, SPR)效应[8],涂覆后能够显著增强微纳光纤的倏逝场,提高NH3浓度的检测灵敏度,实现更低浓度NH3的测量,为未来NH3气体的泄露检测和在线监测提供了低成本、高灵敏度的解决方案。

2 TDLAS原理

TDLAS是一种窄带吸收光谱技术,主要利用可调谐半导体激光器的窄线宽和激光波长随电流和温度的改变而变化的特性,实现分子的吸收线精准测量,防止其他气体的干扰[9]。TDLAS也是一种常见的红外吸收光谱技术,它在气体光谱吸收的基础上,结合波长调制技术提高信噪比,最终通过锁相放大器提取与气体浓度有关的谐波信号。在提取的谐波信号中,偶次谐波的峰值位于吸收线中心位置,信号输出较大,且低次谐波幅值明显大于高次谐波幅值,因此一般采用二次谐波信号反演气体浓度。

根据Lambert-Beer定律[10],当强度为0的一束光穿过一定浓度的某种气体的吸收池时,气体分子会对不同频率的入射光进行选择性吸收,入射光强度会有衰减,此时透射光强为

波长调制技术使激光器在频率调制的同时,也受到了强度强制[11]。当激光器的注入电流叠加上三角波信号和频率为的正弦波信号时,激光器输出的瞬时光强和频率为

式中:0为激光器的平均光强,()为三角波信号,和分别为光强调制幅度和频率,0为激光器的中心频率,m为激光器输出频率的调制幅度。

由Lambert-Beer定律可知,经过气体吸收后的光强为

经过运算减省后,得到二次谐波的幅值:

3 实验方法

3.1 NH3吸收峰选取

想要设计并实现高灵敏度、高精度、低检测极限的TDLAS系统,气体吸收峰的选取十分重要。目前实验中广泛使用且最具权威性的数据库是HITRAN(high-resolution transmission molecular absorption database)数据库[12-13]。

图1给出了HITRAN数据库中CO2,H2O和NH3在1510 nm~1515 nm范围内的吸收峰。在波长为1512 nm附近的NH3谱线吸收强度较强,吸收峰强度数量级为10-21,且H2O和CO2的谱线强度很低与NH3相差几个数量级,检测误差小,最终选择波长为1512.24 nm的NH3吸收谱线作为实验的中心吸收峰。

3.2 实验装置

NH3浓度检测的实验装置如图2所示,信号发生器(signal generator, RIGOL DG1062Z)产生的低频三角波信号(800 mV, 200 mHz)和高频正弦波信号(200 mV, 5 kHz)叠加在一起通过激光控制器(laser controller, ILX LDC-3724)加载在分布式反馈激光器(distributed feedback laser,DFB-LD)上,共同实现对输出波长的调谐与调制。激光器输出中心波长为1512 nm的可调谐激光经过微纳光纤气体吸收池,被一定浓度的NH3吸收后,光强在NH3的吸收波长处会有损耗,从而引起接收端光强发生变化。光强的变化由光电探测器(photodetector,PD)转换为电信号,电信号连接锁相放大器(lock-in amplifier,Stanford SR830)。锁相放大器解调出与NH3浓度密切相关的二次谐波信号,最终通过数据采集处理模块(oscilloscope,Tektronix MSO4104 and PC)进行分析处理。

如图3(a),3(b)和3(c)所示,DFB激光器的输出波长与注入电流和工作温度成线性关系。注入电流增大,输出波长增大;工作温度升高,输出波长增大。对应关系近似为注入电流增加10 mA,激光器输出波长红移0.07 nm;温度升高1 ℃,激光器输出波长红移0.1 nm。

图1 CO2, H2O和NH3在1512 nm附近的吸收峰

图2 微纳光纤气体吸收池式TDLAS氨气检测系统示意图

图3 激光器输出特性。(a) 驱动电流从30 mA至70 mA的激光器输出光谱,温度为25 ℃;(b) 激光器随工作温度的变化输出光谱,电流为50 mA;(c) 不同温度和不同电流时,输出波长对应曲线;(d)不同驱动电流对应的激光器输出功率与加载电压

从电流和温度对波长偏移的影响可以看出,温度更适合当一个稳定的量,固定温度后只改变注入电流,输出波长变化将更精确。实验中初始工作温度设置为25 ℃,初始注入电流为50 mA,其对应的输出波长约为1512.24 nm。如图3(d),此时激光器输出功率为5 mW,加载电压为1 V,且激光器的输出功率和加载电压随注入电流而发生线性变化。

气体吸收池的传感单元由微纳光纤构成,微纳光纤是指直径为纳米或亚微米级别的波导纤维,实验中使用的微纳光纤由普通单模光纤采用熔融拉锥法拉制而成。正常状态下得到的微纳光纤为一种对称性锥形结构,典型的微纳光纤结构如图4(a)。光纤运用熔融拉锥法处理时,纤芯和包层同时变细,在加热区域中心处,光纤形成锥腰均匀区域,而未被拉伸的标准光纤(尾纤区域)与锥腰均匀区域之间为光纤的过渡区域,一般该区域呈锥形结构。当光纤被拉锥成一定细度,光沿着光纤传输至锥腰均匀区域,纤芯有部分能量透入到外介质中,构成光纤—外界物质两层圆柱形光波导结构[14]。当光沿着微纳光纤进行传输时,部分能量透入至倏逝场中,极大地增强了光场与外界物质的相互作用,进而可以设计并实现通过微纳光纤的倏逝场作用对其周围的微量物质进行检测。

将微纳光纤作为一种气体传感的敏感性元件,构建微纳光纤式的气体吸收池,利用倏逝场逸出的光对气体的吸收效应来检测气体浓度。为了得到微纳光纤制备时拉制时间、均匀区域直径和光纤传输损耗三者之间的关系,光纤拉锥前通入1.5mm的窄带激光,初始功率设置为10 mW,拉锥每间隔5 s记录一组功率数据,监测结果如图4(b)所示。可以看出,在拉锥参数相同的条件下,光纤拉制时间越长,锥腰的均匀区域直径越小,对应的传输损耗越大,实验中微纳光纤均匀区域长度为2 cm,均匀区域直径为1.51mm,如图4(c)所示。

3.3 纳米金涂覆微纳光纤

微纳光纤作为气体传感单元,其灵敏度取决于倏逝场所占的光功率比。通过在微纳光纤上涂覆纳米材料可以增大微纳光纤的倏逝场效应,进而提高检测灵敏度。

为了提高NH3的检测灵敏度,实现更低浓度的NH3检测,采用光沉积的方法将配置好的纳米金溶液滴在微纳光纤的均匀区域,均匀区域部分光场对纳米金溶液加热使悬浮在溶液中的颗粒产生强对流,最终吸附至锥区。可以观测到,沉积纳米金后微纳光纤均匀区域的倏逝场光强明显增强,如图5(a)和5(b)所示。利用扫描电镜拍摄光纤锥区沉积的纳米金,纳米金平均尺寸为50 nm~60 nm,如图5(c)所示。

图4 (a) 微纳光纤结构图;(b) 微纳光纤拉制时间、锥区均匀区域直径与传输损耗之间的对应关系;(c) 微纳光纤直径

图5 微纳光纤在(a) GNSs涂覆之前和(b) GNSs涂覆之后的倏逝场辐射;(c) 微纳光纤表面沉积GNSs的SEM图像,插入的是一段沉积GNSs的微纳光纤

4 结果与讨论

4.1 微纳光纤气体吸收池检测结果

使用微量取液器汲取浓度为25%的氨水溶液,取液器汲取的氨水体积分别为10 μL,20 μL,30 μL,40 μL,50 μL,可以使气室内的氨气浓度形成梯度分布。同时为了使氨水中的氨气更快更彻底地挥发出来,制备吸收池时会在玻璃气室内进出气口的正下方放一张无尘纸,当氨水从取液器滴入气室内准确地落在无尘纸上时,可以有效地增大氨水与气室内空气接触的表面积。完成氨水滴入操作后,将玻璃气室的两个进出气口用黑色橡胶套堵住,氨气自然挥发改变了气室内的氨气浓度。

对于以体积为单位的气体,可根据式(7)计算气室中氨水溶液的体积转换为氨气的浓度[15]:

实验条件为常温,气室内部温度基本维持在25 ℃,即298.15 K,L=0.8817 g/mL,L=35.045 g/mol,=300 mL。根据式(7),假设气室内部氨水完全挥发,则滴入体积为10 μL,20 μL,30 μL,40 μL,50 μL的25%浓度氨水,转换为氨气的浓度依次约为20000 ppm,40000 ppm,60000 ppm,80000 ppm,100000 ppm。不同NH3浓度下解调的二次谐波信号幅值如图6(a)所示,显然当NH3浓度越高,解调后的二次谐波幅值越大。进一步地,我们将得到的数据进行线性拟合,如图6(b)所示,以表示解调后的二次谐波幅值,表示NH3的浓度。二次谐波幅值与气体浓度之间呈现良好的线性关系,其拟合方程相关系数=0.9962,拟合表达式为

4.2 涂覆后微纳光纤气体吸收池检测结果

同样地,使用更小微量的取液器汲取氨水体积分别为1 μL,2 μL,3 μL,4 μL,5 μL(对应浓度依次约为2000 ppm,4000 ppm,6000 ppm,8000 ppm,10000 ppm)注入纳米金涂覆后微纳光纤气体吸收池进行检测,不同NH3浓度下解调的二次谐波信号如图7(a)所示,进一步地对NH3浓度与二次谐波幅值展开线性拟合,如图7(b)所示。二次谐波幅值与气体浓度之间呈现良好的线性关系,其拟合方程相关系数=0.9991,拟合表达式为

对比图6和图7的检测结果,显然涂覆后的微纳光纤气体吸收池检测系统对NH3浓度检测具有更高的灵敏度,能够检测更低浓度的NH3。为了测量涂覆后微纳光纤气体吸收池对NH3的检测下限,用6000 ppm浓度进行周期扫描实验,采集得到两个周期的三角波吸收信号,与其对应的二次谐波信号如图7(c)所示。二次谐波信号幅值均值为0.688 V,与无吸收处的噪音幅值均值之比68.8,即为NH3检测系统的信噪比[16]。根据一般最小检测幅值为噪声幅值的3倍的原则进行估算[17],得到涂覆后微纳光纤气体吸收池TDLAS系统的最低检测下限约为260 ppm。

图7 (a)GNSs涂覆后微纳光纤气体吸收池不同NH3浓度时的二次谐波信号;(b)二次谐波信号幅值与NH3浓度的实测数据和线性拟合曲线;(c)浓度为6000 ppm的NH3的吸收波形及其对应的二次谐波(小图为无吸收处的噪音)

为了进一步评估系统的稳定性,结合拟合表达式(9),实验测了10组数据反演NH3浓度,结果如表1所示。从表中可以看出,最大相对偏差为5.38%。表明系统稳定性较好,可以满足一般NH3检测系统长期稳定监测的需求。

表1 系统稳定性测量结果

5 总 结

本文通过实验提出了一种基于TDLAS技术的倏逝场NH3浓度检测的方法。将制备的微纳光纤气体吸收池应用于TDLAS气体检测系统,在2 cm的吸收路径上实现了不同浓度NH3的检测。实验结果证明,NH3解调的二次谐波幅值与对应浓度之间具有良好的线性关系。为了优化NH3检测性能,将微纳光纤进行纳米金涂覆处理,涂覆后的微纳光纤检测系统对NH3浓度的检测灵敏度明显增强,最低检测下限为260 ppm,同时纳米金涂覆后的检测系统稳定性较好,能够满足NH3长期稳定的监测需求。

[1] Bao J L, Li W F, Zou K H. Research status of health risk of odor pollution[J]., 2012, 25(4): 5–7.

包景岭, 李伟芳, 邹克华. 浅议恶臭污染的健康风险研究[J]. 城市环境与城市生态, 2012, 25(4): 5–7.

[2] Song X M, Liu J G, Zhang Y J,. Study of remote sensing the flux of carbon dioxide gas with tunable diode laser absorption spectroscopy[J]., 2011, 31(3): 803–807.

[3] Kan R F, Liu W Q, Zhang Y J,. Large scale gas leakage monitoring with tunable diode laser absorption spectroscopy[J]., 2006, 4(2): 116–118.

[4] Yao L, Liu W Q, Liu J G,. Research on open-path detection for atmospheric trace gas CO based on TDLAS[J]., 2015, 42(2): 0215003.

姚路, 刘文清, 刘建国, 等. 基于TDLAS的长光程环境大气痕量CO监测方法研究[J]. 中国激光, 2015, 42(2): 0215003.

[5] Li M X, Liu J G, Kan R F,. Design of real-time measurement of atmospheric CO and CH4based on tunable diode laser spectroscopy system[J]., 2015, 35(4): 0430001.

李明星, 刘建国, 阚瑞峰, 等. 基于可调谐半导体激光吸收光谱的CO和CH4实时检测系统设计[J]. 光学学报, 2015, 35(4): 0430001.

[6] Guo X Q, Zheng F, Li C L,. A portable sensor for in-situ measurement of ammonia based on near-infrared laser absorption spectroscopy[J]., 2019, 115: 243–248.

[7] Tombez L, Zhang E J, Orcutt J S,. Methane absorption spectroscopy on a silicon photonic chip[J]., 2017, 4(11): 1322–1325.

[8] Cui Y, Shum P P, Wang G H,. Size effect of gold nanoparticles on optical microfiber refractive index sensors[C]//, 2011: 371–374.

[9] Peng Z M, Ding Y, Lu C,. Calibration-free wavelength modulated TDLAS under high absorbance conditions[J]., 2011, 19(23): 23104–23110.

[10] Paynter R W. Modification of the Beer–Lambert equation for application to concentration gradients[J]., 1981, 3(4): 186–187.

[11] Xu L G, Liu N W, Zhou S,. Dual-frequency modulation quartz crystal tuning fork enhanced laser spectroscopy[J]., 2020, 28(4): 5648–5657.

[12] Zhu M W, Zhang F, Li W W,. The impact of various HITRAN molecular spectroscopic databases on infrared radiative transfer simulation[J]., 2019, 234: 55–63.

[13] Rothman L S, Gordon I E, Babikov Y,The HITRAN2012 molecular spectroscopic database[J]., 2013, 130: 4–50.

[14] Tong L M, Lou J Y, Mazur E. Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides[J]., 2004, 12(6): 1025–1035.

[15] Li Y H, Gong J, He G H,. Enhancement of photoresponse and UV-assisted gas sensing with Au decorated ZnO nanofibers[J]., 2012, 134(2–3): 1172–1178.

[16] Li J D, Du Y J, Peng Z M,. Measurements of spectroscopic parameters of CO2transitions for Voigt, Rautian, galatry and speed-dependent voigt profiles near 1.43µm using the WM-DAS method[J]., 2019, 224: 197–205.

[17] Pogány A, Wagner S, Werhahn O,. Development and metrological characterization of a tunable diode laser absorption spectroscopy (TDLAS) spectrometer for simultaneous absolute measurement of carbon dioxide and water vapor[J]., 2015, 69(2): 257–268.

Research on evanescent field ammonia detection with gold-nanosphere coated microfibers

Zhang Weijian, Zeng Xianglong*, Yang Ao, Teng Linping, Zhu Yi

Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai 200444, China

The schematic diagram of the TDLAS ammonia detection system with a microfiber gas absorption cell

Overview:Tunable diode laser absorption spectroscopy (TDLAS) is a highly sensitive laser absorption spectrum measurement technology, which determines the information of target gas by detecting the absorption intensity of the spectrum. With high selectivity, high sensitivity, rapid detection and high precision, it has been widely used in the real-time and online detection of atmospheric trace and polluted gases. However, most of gas absorption cells used in the existing detection system are based on the reflected spatial light structure, which requires the cooperation of the collimator with high precision. The structure of gas absorption cells is complex, expensive and bulky. On the other side, the optical fiber gas sensor based on fiber evanescent field is a neoteric kind of technology, and thus it takes light to measure the signal of the carrier and can adapt to various environments. Moreover, the evanescent field based optical fiber by coating various nanomaterials can improve the sensitivity of gas sensing, which has attracted wide attention.

In this paper, combined with TDLAS technology and gas sensing based on the evanescent field fiber, a set of all-fiber NH3concentration detection system was built. The light source is a distributed feedback laser at around 1512 nm and the laser controller is modulated to select the unique absorption spectrum of NH3to reduce the interference of carbon dioxide, vapor and other trace gases. A small gas absorption cell consists of a tapered microfiber with a 1.51mm diameter. The microfiber was pulled into a cone by hydrogen and oxygen flame technology, and the second harmonic signal was finally extracted by a lock-in amplifier. The experimental results verified the feasibility of the evanescent field gas absorption cell, which is applied in the TDLAS system to detect ammonia gas. There was a good linear relationship between the amplitude of the second harmonic and the corresponding concentration in the range of 20000 ppm~100000 ppm of NH3. To improve the detection performance of NH3concentration, gold-nanosphere (GNS) coated microfiber was used to enhance the effect of fiber evanescent fields. Compared with the measurement results of the evanescent field and GNSs coated microfiber, the detection sensitivity of the coated evanescent field significantly improved. Meanwhile, the TDLAS detection system based on GNSs coated microfibers as the evanescent-field based fiber gas absorption cell has good stability with the maximum relative error of 5.38%, and the detection limit of NH3concentration can reach 260 ppm. The system has a wide application prospect in the field of ammonia detection.

Zhang W J, Zeng X L, Yang A,Research on evanescent field ammonia detection with gold-nanosphere coated microfibers[J]., 2021, 48(9): 200451; DOI:10.12086/oee.2021.200451

Research on evanescent field ammonia detection with gold-nanosphere coated microfibers

Zhang Weijian, Zeng Xianglong*, Yang Ao, Teng Linping, Zhu Yi

Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai 200444, China

In this paper, based on TDLAS technology, an all-fiber NH3concentration detection system was built by using the designed microfiber gas absorption cell. The core part of the NH3detection system was sensed by a 1.51mm microfiber. The test results of the system indicate that there is a good linear relationship between the second harmonic amplitude and the corresponding concentration for NH3in the concentration range of 20000 ppm~100000 ppm (correlation coefficient of fitting formula=0.9962). To improve the detection performance of NH3concentration, the gold-nanosphere (GNS) coated microfiber is used to enhance the evanescent field effect. According to the experimental results, the sensitivity of the microfiber coated GNSs NH3concentration detection system has been greatly improved and the lower detection limit of NH3concentration can reach 260 ppm. Repeated monitoring of different concentrations of NH3shows that the detection system is stable with a maximum relative error of 5.38%, which makes it suitable for long-term stable NH3monitoring and has wide application prospects.

technology of TDLAS; microfiber; gold-nanosphere coating; NH3concentration detection

张伟建,曾祥龙,杨傲,等. 纳米金涂覆微纳光纤的倏逝场氨气检测研究[J]. 光电工程,2021,48(9): 200451

Zhang W J, Zeng X L, Yang A,Research on evanescent field ammonia detection with gold-nanosphere coated microfibers[J]., 2021, 48(9): 200451

TN248

A

10.12086/oee.2021.200451

2020-12-04;

2021-07-15

国家自然科学基金资助项目(91750108);上海市科学技术委员会资助项目(20JC1415700,16520720900);上海市高等学校特聘教授(东方学者)项目;高等学校学科创新引智计划(111)(D20031)资助

张伟建(1994-),男,硕士,主要从事TDLAS技术检测气体方面的研究。E-mail:shdxzwj@shu.edu.cn

曾祥龙(1977-),男,博士,教授,主要从事非线性超快光学、特种光纤及其传感技术的研究。E-mail:zenglong@shu.edu.cn

National Natural Science Foundation of China (91750108), Science and Technology Commission of Shanghai Municipality (20JC1415700,16520720900), and Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning (111)(D20031)

* E-mail: zenglong@shu.edu.cn

猜你喜欢

涂覆氨气激光器
低温球形颗粒表面喷雾冷冻涂覆液膜的生长规律
基于PID控制的一体化恒温激光器系统设计
激光器发明60周年
分形粗糙表面涂覆目标太赫兹散射特性
氨气还原氧化铜的微型实验
一体化半导体激光器的ANSYS热仿真及结构设计
基于注入锁定法激光器的研究
丝兰属植物提取物降低养鸡场氨气排放的试验
微通道下费托合成催化剂层涂覆厚度的数值研究
瓦克研发出供电子产品使用的易涂覆型导热胶粘剂