APP下载

可调谐纳秒脉冲锁模光纤激光器

2021-10-18刘宇星姜盼秋汪平河

光电工程 2021年9期
关键词:锁模单脉冲泵浦

刘宇星,姜盼秋,汪平河

可调谐纳秒脉冲锁模光纤激光器

刘宇星,姜盼秋,汪平河*

电子薄膜与集成器件国家重点实验室,电子科技大学光电科学与工程学院,四川 成都 611731

采用非线性放大环形镜的被动锁模机制,通过加入手动可调滤波器及光纤光栅等实现单波长光谱输出,设计出一种可调谐纳秒脉冲光纤激光器。纳秒矩形脉冲由被动锁模掺铒光纤激光器产生,激光器的腔长为430 m,脉冲的重复频率为465 kHz。被动锁模光纤激光器中实现可调谐脉冲输出的关键器件包括宽带锁模器件和可调谐滤波器,其中宽带锁模器件是反射式的非线性放大环形镜。结果表明,当激光器工作在1560 nm,泵浦功率为400 mW时,脉冲宽度为10.58 ns,单脉冲能量为70.28 nJ。激光器的可调谐范围为1523.4 nm~1575 nm,比此前报道的可调谐范围要宽10 nm。

光纤激光器;可调谐;锁模;纳秒脉冲

1 引 言

可调谐被动锁模光纤激光器由于其广泛的应用领域,如生物医学和光纤传感等,引起了人们的广泛关注。可调谐被动锁模光纤激光器将被动锁模技术和波长选择器件结合在一起实现可调谐的脉冲输出。有许多种不同的波长选择器件被使用在可调谐锁模光纤激光器中,如可调谐带通滤波器(TBF)[1-2]、多模干涉(MMI)滤波器[3-4]、高双折射(HiBi)滤波器[5-7],光纤光栅滤波器[8-10],也有人使用模式选择耦合器来实现光纤高阶模式在腔内振荡的锁模光纤激光器[11]。被动锁模光纤激光器需要一个宽带饱和吸收器以获得宽波长范围的可调谐特性。传统的可饱和吸收器件有半导体饱和吸收镜(SESAM)[6,12]、非线性偏振旋转(NPR)[3-4,13]、非线性光学环形镜(NOLM)[14]、碳纳米管[2,9-10]。二维材料在过去几年中被证明是一种很有前途的宽带饱和吸收体[1,8,15-16]。近年来,有人报道了工作在1.5 μm波段调谐范围在70 nm以上的被动锁模光纤激光器,但脉冲能量很低[17-18]。

长腔锁模光纤激光器可以产生高能量的脉冲序列。被动锁模掺铒光纤激光器中有多种锁模机制,如传统孤子[19]、色散管理(DM)脉冲[20]、自相似脉冲[21]、耗散孤子(DS)[22]。由于孤子能量的量子化效应,传统孤子的脉冲能量被限制在~0.1 nJ。色散管理脉冲的单脉冲能量可达到~1 nJ,自相似脉冲的单脉冲能量可达到~10 nJ。在全正常色散光纤激光器中,耗散孤子的脉冲能量可达~100 nJ。在负色散区,工作在耗散孤子共振(DSR)区的光纤激光器可以产生高能脉冲[23-24]。提高腔长是提高脉冲能量的有效方法。最近,有人报道了腔长为1536 m单脉冲能量10 μJ的长腔锁模光纤激光器[25]。

本文报道了一种基于反射式非线性放大环形镜的可调谐长腔被动锁模光纤激光器。采用3 dB带宽约1 nm的可调谐带通滤波器获得可调谐脉冲输出。激光器的可调谐范围大于50 nm。本文首先对固定波长激光器的性能进行了详细的研究,然后探讨了激光器的可调谐特性。在整个调谐范围内,系统的信噪比、脉冲宽度、输出功率和单脉冲能量随中心波长的变化有小范围的波动。这种可调谐纳秒脉冲光纤激光器在生物医学和光纤传感等领域有着广阔的应用前景。

2 实验和原理

激光器结构如图1所示。锁模器件是一个反射式非线性放大环形镜,由50:50光耦合器(实测耦合比为48.6:51.4)、增益模块、404 m单模光纤(SMF)和两个偏振控制器(PC)组成。增益模块由980/1550波分复用(WDM)、980 nm激光二极管和12 m掺铒光纤(Nufern,EDFC-980-HP)组成。掺铒光纤在1530 nm处的吸收系数为(6.0±1.0) dB/m。掺铒光纤在1550 nm处的群速度色散为-12.2 ps/(nm×km)。SMF在1550 nm处的群速度色散为17 ps/(nm×km)。激光器的总腔长为430 m,除掺铒光纤外,所有的器件均由SMF组成。腔内的净色散为-8.87 ps2。将手动可调谐带通滤波器(TBF,Agiltron FOTF-02512123)插入腔中,TBF的两个端口分别连接到环形器的端口1和端口3。TBF的3 dB带宽约1 nm,可调谐范围从1510 nm到1580 nm。环形器的端口2连接到反射式非线性放大环镜上。光纤耦合器端口为2输出端口,输出光经10:90耦合器分光后分别输出到光谱仪和示波器。

图1 实验装置示意图。

WDM:波分复用器;EDF:掺铒光纤;OC:光耦;SMF:单模光纤;PC:偏振控制器

Fig. 1 Experimental device diagram.

WDM: wave division multiplexer; EDF: erbium-doped fiber; OC: optocoupled; SMF: single-mode fiber; PC: polarization controller

激光的输出光谱由光谱分析仪(AQ6370)测量,分辨率为0.02 nm。脉冲序列由10 G的光电探测器(KG-PR-10G-A,北京康冠技术有限公司)和数字示波器(TDS2024C,泰克公司)测量。激光器的频谱由3 GHz频谱分析仪(安捷伦E4402B)测量。

3 结果分析

对于工作在DSR区的光纤激光器,腔中的增益、损耗、色散、非线性和光谱滤波等因素影响会锁模状态[26-27]。本文首先研究了工作在单一固定波长时激光器的性能,如图2至图5所示。

通过调节腔内的PC可以实现锁模状态。锁模的阈值泵浦功率约为80 mW。图2显示了不同泵浦功率下的输出光谱。当泵浦功率从100 mW增加到400 mW,激光器输出的中心波长为1560 nm,3 dB带宽为0.84 nm,范围从1559.68 nm到1560.42 nm。随着泵浦功率的增加,光谱强度增加,中心波长保持不变。

图3是泵浦功率为400 mW时输出脉冲的波形图。脉冲序列的周期约为2.15 μs,重复频率为465 kHz。激光器腔长430 m,对应的腔频为465 kHz,因此激光器工作在基频锁模状态。当泵浦功率从100 mW增加到400 mW时,重复频率保持不变。插入小图显示了输出脉冲的频谱图,信噪比(SNR)为50.69 dB。波形图和频谱图表明激光器工作在稳定的锁模状态。

为了揭示脉冲演化的更多细节,我们研究了不同泵浦功率下的脉冲演化。图4显示了不同泵浦功率下的脉冲变化图。当泵浦功率以50 mW间隔从100 mW增加到400 mW时,脉冲宽度分别为3.88 ns、4.64 ns、6.36 ns、7.72 ns、8.76 ns、9.34 ns和10.58 ns。脉冲幅度保持不变,但脉冲宽度随泵浦功率的增加而增加,这符合DSR锁模脉冲的特性。

图2 不同泵浦功率下的激光器单波长光学光谱

图3 基本频率模式下DSR区域的示波器微量脉冲

图4 单波长模式锁定脉冲在不同的泵功率演变

长腔被动锁模光纤激光器的优点是可以提高激光输出脉冲的单脉冲能量。图5分别显示了不同泵浦功率下的输出功率和单脉冲能量。当泵浦功率以50 mW间隔从100 mW增加到400 mW时,输出功率分别为10.02 mW、13.83 mW、20.21 mW、25.15 mW、27.31 mW、28.91 mW和32.68 mW,对应的单脉冲能量分别为21.55 nJ、29.74 nJ、43.46 nJ、54.09 nJ、58.73 nJ、62.17 nJ和70.28 nJ (文中单脉冲能量均为功率与重复频率的比值)。

在长腔被动锁模光纤激光器中,锁模脉冲的形成与腔内的色散、非线性、增益和损耗有关。理论和实验表明,具有反常色散的长腔锁模光纤激光器可以在DSR区工作,产生矩形脉冲。DSR锁模产生的矩形脉冲随泵浦功率而增加,且脉冲宽度增加而振幅保持不变[26]。2014年,Zheng等[28]人报道了被动锁模八字形光纤激光器中的高能类噪声矩形脉冲。最近,有理论提出类噪声脉冲的产生与腔中滤波器的带宽有关[27]。在本论文中使用的滤波器带宽在1 nm左右,滤波器的带宽太窄而不利于类噪声脉冲的产生,因此激光器工作在DSR区。

通过在1510 nm到1580 nm的波长范围内调节TBF的输出波长,被动锁模光纤激光器实现了可调谐的脉冲输出。该激光器能在1523.4 nm到1575 nm范围内保持稳定的锁模状态。阈值泵浦功率在80 mW左右,有一定的波动。为了分析该激光器的可调谐特性,详细研究了该激光器在1523.4 nm到1575 nm范围内六个不同中心波长下的激光器的输出特性,包括输出脉冲的频谱、脉冲演变、激光输出功率和单脉冲能量。

当泵浦功率为400 mW时,激光器的可调谐特性如图6至图9所示。

图6显示了中心波长在1523.4 nm、1527.0 nm、1540.0 nm、1553.0 nm、1565.0 nm和1575.0 nm处的输出光谱。这些光谱的3 dB带宽分别为1.05 nm、1.11 nm、1.01 nm、1.02 nm、0.82 nm和0.79 nm。

图5 (红色)不同泵功率的平均输出功率和(蓝色)单脉冲能量

图6 泵功率为400 mW激光输出的不同单波长光学光谱

图7 泵功率为400 mW时对应的SNR射频

图8 单波长模式锁定脉冲在不同中心波长的演化

六个不同波长处激光器输出脉冲的频谱图如图7所示,相应频谱的信噪比分别为50.25 dB、50.03 dB、48.50 dB、48.53 dB、50.69 dB和50.75 dB,基频为465 kHz。这表明在这些波长处,激光器都工作在基频状态,而且锁模状态都很稳定。图8显示了在六个不同波长处激光器输出脉冲的波形图。在六个波长处对应的输出脉冲的宽度分别为11.52 ns、10.16 ns、11.16 ns、15.2 ns、9.48 ns和10.84 ns。图9显示了在六个不同波长处激光器的输出功率和单脉冲能量。输出功率分别为28.60 mW、29.28 mW、30.59 mW、35.51 mW、31.76 mW和32.52 mW,单脉冲能量分别为61.51 nJ、62.97 nJ、65.78 nJ、76.37 nJ、68.30 nJ和69.94 nJ。

在整个调谐范围内,激光器输出脉冲的频谱图的信噪比一直保持50 dB左右,这说明激光器在调谐过程中始终保持稳定的锁模状态。由于掺铒光纤的增益随波长有一定的变化,因此激光器的脉冲宽度、输出功率和单脉冲能量都有一定的波动。

图9 (红色)不同波长的平均输出功率和(蓝色)单脉冲能量

对于长腔锁模光纤激光器而言,激光器的性能受到多种因素的影响。比如可调谐滤波器在腔内的位置对激光器的可调谐锁模范围有明显的影响,在实验过程中可以看到当可调谐滤波器位于非线性环形镜内时,可调谐锁模范围会减小,这可能与滤波器带来的损耗有关系。当调节腔内的偏振控制器时,除了可以得到基频的锁模以外,还可以得到高阶的谐波锁模。

长腔锁模光纤激光器可以产生高能量的脉冲序列。当激光器工作在DSR区时,通过增加泵浦功率,输出脉冲的能量会更高,脉冲宽度也会更大。宽带可饱和吸收体是可调谐被动锁模光纤激光器的关键器件之一。与碳纳米管、石墨烯等新型可饱和吸收体相比,反射式非线性放大环形镜具有成本低、制作方便、可调谐范围宽等优点。

激光器的可调谐范围受到了滤波器的可调谐带宽、增益介质的增益带宽和锁模器件性能的影响。在本论文中,增益介质的增益峰值在1553 nm附近,通过采用具有更宽增益带宽的新型增益介质,有可能提高可调谐范围[29]。本论文中所使用的锁模器件为非线性环形镜,非线性环形镜的性能与光耦合器的耦合比有直接的关系,而光耦合器的耦合比是和波长有关的,因此它的锁模带宽也是有限的,这也是限制激光器可调谐范围的因素之一。

4 结 论

在本文中我们报道了一种长腔被动锁模光纤激光器。当在激光器腔中插入可调谐滤波器时,激光器可以实现可调谐锁模脉冲输出。当滤波器的输出波长为1560 nm,泵浦功率为400 mW时,激光器工作在DSR区,产生重复频率为465 kHz、脉宽为10.58 ns、单脉冲能量为70.28 nJ的矩形脉冲。当泵浦功率为400 mW时,锁模激光器的可调谐范围为1523.4 nm~1575 nm。在整个调谐范围内,激光器的信噪比、脉冲宽度、输出功率和单脉冲能量随中心波长的变化有较小的波动。可调谐纳秒脉冲光纤激光器在许多领域有着潜在的应用。

[1] Sun Z P, Popa D, Hasan T,. A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser[J]., 2010, 3(9): 653–660.

[2] Wang F, Rozhin A G, Scardaci V,. Wideband-tuneable, nanotube mode-locked, fibre laser[J]., 2008, 3(12): 738–742.

[3] Walbaum T, Fallnich C. Multimode interference filter for tuning of a mode-locked all-fiber erbium laser[J]., 2011, 36(13): 2459–2461.

[4] Zhang L, Hu J M, Wang J H,. Tunable all-fiber dissipative-soliton laser with a multimode interference filter[J]., 2012, 37(18): 3828–3830.

[5] Dherbecourt J B, Denoeud A, Melkonian J M,. Picosecond tunable mode locking of a Cr2+: ZnSe laser with a nonlinear mirror[J]., 2011, 36(5): 751–753.

[6] Ouyang C, Shum P, Wang H H,. Wavelength-tunable high-energy all-normal-dispersion Yb-doped mode-locked all-fiber laser with a HiBi fiber Sagnac loop filter[J]., 2011, 47(2): 198–203.

[7] Zhang Z X, Xu Z W, Zhang L. Tunable and switchable dual-wavelength dissipative soliton generation in an all-normal-dispersion Yb-doped fiber laser with birefringence fiber filter[J]., 2012, 20(24): 26736–26742.

[8] He X Y, Liu Z B, Wang D N. Wavelength-tunable, passively mode-locked fiber laser based on graphene and chirped fiber Bragg grating[J]., 2012, 37(12): 2394–2396.

[9] Wang J, Yan Y X, Zhang A P,. Tunable scalar solitons from a polarization-maintaining mode-locked fiber laser using carbon nanotube and chirped fiber Bragg grating[J]., 2016, 24(20): 22387–22394.

[10] Wang J, Yao M, Hu C Z,. Optofluidic tunable mode-locked fiber laser using a long-period grating integrated microfluidic chip[J]., 2017, 42(6): 1117–1120.

[11] Yao H, Shi F, Huang Y P,. Mode-locked Yb-doped fiber laser based on mode coupler[J]., 2020, 47(11): 200040.

[12] Zou F, Wang Z K, Wang Z W,. Widely tunable all-fiber SESAM mode-locked Ytterbium laser with a linear cavity[J]., 2017, 92: 133–137.

[13] Luo J L, Ge Y Q, Tang D Y,. Mechanism of spectrum moving, narrowing, broadening, and wavelength switching of dissipative solitons in all-normal-dispersion Yb-fiber lasers[J]., 2014, 6(1): 1500608.

[14] Li X H, Wang Y S, Zhao W,. All-normal dispersion, figure-eight, tunable passively mode-locked fiber laser with an invisible and changeable intracavity bandpass filter[J]., 2011, 21(5): 940–944.

[15] Zhang H, Tang D Y, Knize R J,. Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser[J]., 2010, 96(11): 111112.

[16] Shang C, Zhang Y B, Qin H Y,. Review on wavelength-tunable pulsed fiber lasers based on 2D materials[J]., 2020, 131: 106375.

[17] Meng Y C, Salhi M, Niang A,. Mode-locked Er: Yb-doped double-clad fiber laser with 75-nm tuning range[J]., 2015, 40(7): 1153–1156.

[18] Nyushkov B, Kobtsev S, Antropov A,. Femtosecond 78-nm tunable Er:Fibre laser based on drop-shaped resonator topology[J]., 2019, 37(4): 1359–1363.

[19] Xia H D, Li H P, Lan C Y,. Ultrafast erbium-doped fiber laser mode-locked by a CVD-grown molybdenum disulfide (MoS2) saturable absorber[J]., 2014, 22(14): 17341–17348.

[20] Zhang Z X, Mou C B, Yan Z J,. Sub-100 fs mode-locked erbium-doped fiber laser using a 45°-tilted fiber grating[J]., 2013, 21(23): 28297–28303.

[21] Zhang Z X, Öktem B, Ilday F Ö. All-fiber-integrated soliton-similariton laser with in-line fiber filter[J]., 2012, 37(17): 3489–3491.

[22] Grelu P, Akhmediev N. Dissipative solitons for mode-locked lasers[J]., 2012, 6(2): 84–92.

[23] Li X H, Liu X M, Hu X H,. Long-cavity passively mode-locked fiber ring laser with high-energy rectangular-shape pulses in anomalous dispersion regime[J]., 2010, 35(19): 3249–3251.

[24] Wang P H, Tang Y B, Peng H L,. A long cavity passive mode-locking fibre laser with the reflective non-linear optical loop mirror[J]., 2017, 64(2): 122–126.

[25] Semaan G, Braham F B, Fourmont J,. 10 μJ dissipative soliton resonance square pulse in a dual amplifier figure-of-eight double-clad Er:Yb mode-locked fiber laser[J]., 2016, 41(20): 4767–4770.

[26] Cheng Z C, Li H H, Wang P. Simulation of generation of dissipative soliton, dissipative soliton resonance and noise-like pulse in Yb-doped mode-locked fiber lasers[J]., 2015, 23(5): 5972–5981.

[27] Du Y Q, Shu X W. Pulse dynamics in all-normal dispersion ultrafast fiber lasers[J]., 2017, 34(3): 553–558.

[28] Zheng X W, Luo Z C, Liu H,. High-energy noiselike rectangular pulse in a passively mode-locked figure-eight fiber laser[J]., 2014, 7(4): 042701.

[29] Fukuchi Y, Hirata K, Ikeoka H. Extra-broadband wavelength-tunable actively mode-locked short-cavity fiber ring laser using a bismuth-based highly nonlinear erbium-doped fiber[J]., 2014, 324: 141–146.

A tunable nanosecond pulse mode-locking fiber laser

Liu Yuxing, Jiang Panqiu, Wang Pinghe*

State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science andEngineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China

Single-wavelength mode locking pulse evolution at different pump power

Overview:The tunable passive mode locked fiber laser has attracted a lot of interest because of its wide field applications, such as biomedical research and fiber optical sensing. The tunable passive mode locked fiber laser incorporate the passive mode locking technique and wavelength-selective devices in the cavity. Recently, the passive mode locked fiber lasers at 1.5 μm with a tuning range over 70 nm are demonstrated, but the pulse energy is low. The long cavity mode locked fiber laser can produce the pulse train with high pulse energy. A mode locked fiber laser with 1536 m cavity length and 10 μJ pulse energy was reported.

In this paper, we present a tunable long-cavity passive mode-locked fiber laser based on reflective nonlinear amplifying loop mirror (NALM). The reflective NALM serves as the mode locker, which is made up of a 50: 50 optical coupler (the measured ratio is 48.6: 51.4), an erbium-doped fiber amplifier, 404 m single mode fiber and two polarization controllers. The net dispersion in the cavity is -8.87 ps2. A manual tunable bandpass filter (TBF) is inserted into the cavity. The tunable range of the TBF is from 1510 nm to1580 nm.

At first, the laser at 1560 nm is investigated in detail. The laser operates in DSR region and generates rectangular pulses with 465 kHz repetition rate. Figure shows the pulse evolution at different pump powers. When the pump power increases from 100 mW to 400 mW at 50 mW interval, the pulse durations are 3.88 ns, 4.64 ns, 6.36 ns, 7.72 ns, 8.76 ns, 9.34 ns and 10.58 ns, respectively. The single-pulse energy is 70.28 nJ when the pump power is 400 mW. The tuning characteristics of the passive mode locked fiber laser is investigated by adjusting TBF’s transmission wavelength. When the pump power is 400 mW, the laser can keep stable mode-locking status at the range from 1523.4 nm to 1575 nm. The threshold pump power has a little fluctuation around 80 mW. During the whole tuning range, the SNR of the laser is ~50 dB, which proves that the laser keeps stable mode-locking status during the tuning course. The pulse duration, the output power and single pulse energy have a little fluctuation because that the gain of the EDF changes with the wavelength. The tunable nanosecond pulse fiber laser has a lot of potential applications in many fields.

Liu Y X, Jiang P Q, Wang P HA tunable nanosecond pulse mode-locking fiber laser[J]., 2021, 48(9): 210195; DOI:10.12086/oee.2021.210195

A tunable nanosecond pulse mode-locking fiber laser

Liu Yuxing, Jiang Panqiu, Wang Pinghe*

State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science andEngineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China

A tunable nanosecond pulse fiber laser is demonstrated in the paper. The laser adopts the passive mode locking mechanism of the nonlinear amplifying loop mirror and a manually adjustable filter and fiber grating are added to achieve single-wavelength spectral output. The passive mode locked erbium-doped fiber laser with 430 m cavity length generates the nanosecond rectangle pulse at 465 kHz repetition rate. The tunable passive mode locked fiber laser incorporates a broad bandwidth mode locking device and a tunable filter in the cavity. The broad bandwidth mode locker is the key device for the tunable pulse output, which is based on a reflective nonlinear amplifying loop mirror. The result shows that the pulse duration and the single-pulse energy are 10.58 ns and 70.28 nJ respectively when the laser works at 1560 nm and has 400 mW pump power. The tunable range is from 1523.4 nm to 1575 nm.Keywords: fiber laser; tunable; mode-locking; nanosecond pulse

刘宇星,姜盼秋,汪平河. 可调谐纳秒脉冲锁模光纤激光器[J]. 光电工程,2021,48(9): 210195

Liu Y X, Jiang P Q, Wang P HA tunable nanosecond pulse mode-locking fiber laser[J]., 2021, 48(9): 210195

TN248;TN713

A

10.12086/oee.2021.210195

2021-06-07;

2021-07-13

国家重点研发计划项目(2016YFF0102003,2016YFF0102000)

刘宇星(1993-),男,硕士,主要从事光学相干层析成像技术和光纤激光器方面的研究。E-mail:1427759032@qq.com

汪平河(1976-),男,博士,教授,主要从事光学相干层析成像技术和光纤激光器的研究。E-mail:wphsci@uestc.edu.cn

the National Key R&D Program of China (2016YFF0102003, 2016YFF0102000)

* E-mail: wphsci@uestc.edu.cn

猜你喜欢

锁模单脉冲泵浦
主动有理数谐波锁模脉冲幅度均匀化方波调制实验研究
FDA对比幅法单脉冲测向的角度欺骗
基于覆石墨烯锥型光纤可饱和吸收体的掺铥光纤激光器
对比法建立注塑机锁模机架优化设计方案
一类带有慢变参数的sine-Gordon方程的单脉冲异宿轨道
基于980nm泵浦激光器的恒温驱动设计
LD面阵侧面泵浦Nd:YAG光场均匀性研究
N d:Y A G电光调Q泵浦固体激光器输出特性研究
太阳光泵浦固体激光阈值的理论分析
超声微注塑机合模-锁模-顶出机构的设计与分析