APP下载

纳米材料

2021-09-15

新材料产业 2021年4期
关键词:光催化石墨纳米

美国加州理工学院等开发新型高强度纳米结构材料

据报道,近期,一个由美国加州理工学院(Caltech)牵头的国际研究团队在《自然材料》杂志发表论文,介绍新开发的一种碳纳米结构材料,可有效吸收超音速微粒的冲击能量,同等质量下防护效果优于凯夫拉(Kevlar)复合纤维材料。麻省理工学院(MIT)和瑞士苏黎世联邦理工学院(ETH Zürich)参与了相关研究。

研究人员表示这种材料比头发丝还细,由相互连接的十四面体结构组成。这种十四面体结构又称为“开尔文细胞”(Kelvin Cells),由开尔文勋爵在1887年首次提出,指出这是填满三维空间同等体积下表面积最小的结构。Caltech研究人员利用双光子光刻技术在光敏聚合物中制备出这种材料,随后使用极高温使之变成热解碳。经过测试,同等质量下这种材料性能比钢高100%,比凯夫拉复合纤维材料高70%。(科技部)

麻省理工开发出可承受超音速冲击的超轻材料

麻省理工学院、加州理工学院等组成的联合团队最近的一项研究表明,其研发的根据精确的纳米尺度结构设计的“纳米结构”材料,很有潜力用来制造轻型装甲、防护涂层、防爆罩和作为其他抗冲击材料的候选。这种新型碳基材料既轻又硬,可能成为凯夫拉纤维和钢的替代品。

研究人员用纳米尺度的碳素支柱制造了一种超轻材料,使材料具有韧性和机械鲁棒性。他们首先使用双光子光刻技术制造了一种纳米结构的材料,这种技术使用快速、高功率的激光在光敏树脂中固化微观结构。研究人员构建了一个被称为四面体的重复图案——一种由微观支柱组成的晶格结构。在形成晶格结构后,研究人员将剩余的树脂洗掉,并将其放在高温真空炉中,将聚合物转化为碳,留下一种超轻的纳米结构碳材料。科学家通过用微粒以超音速发射来测试这种材料的弹性,发现这种比人类头发丝宽度还细的材料可以防止微粒穿透它,甚至在微粒速度超过音速2倍以上时仍然可以有效防止穿透。研究人员计算出,与钢、凯夫拉纤维、铝和其他同等重量的抗冲击材料相比,这种新材料在吸收冲击方面更有效。该研究发表在《自然·材料》上。(科技部)

“镀银”纳米粒子可将

抗生素精准送达病灶

俄罗斯国立研究型技术大学开发出一种纳米颗粒,能将抗生素精准输送到感染病灶,使抗生素的使用剂量减少到原来的1/6~1/7,从而减轻抗生素的副作用,并降低病原体耐药性的发展。相关研究表在《美国化学学会应用材料界面》杂志上。

众所周知,多年来,由于发病率上升、新感染的产生和抗生素的滥用,导致微生物对抗生素产生了耐药性,而研发一种新的抗生素需要到20年左右的临床试验。目前,药物疗法仍然是抗感染的主要方法。

解决该问题的方法之一是研发抗菌纳米杂化物。该方法有助于克服病原体的耐药性,且不会对患者产生副作用。医学研究人员认为,新型药物的主要优点是可以大大减少抗生素的剂量,减轻身体负担并减缓微生物耐药性的发展。

俄罗斯国立研究型技术大学的科研人员发现,基于六方氮化硼(h-BN)和银颗粒的新型纳米杂化物具有很高的杀菌和抗真菌活性,利用它可将抗生素输送到感染病灶。

克里斯蒂娜·古兹表示,新型纳米杂化物能够用比抗生素少得多的活性物质来消灭细菌和真菌种群。在某些情况下,剂量差异达到6~7倍。比如,庆大霉素抑制大肠杆菌U-122菌株的最低浓度为256mg/L,而有相同药性的纳米杂化物在40mg/L时就能达到类似效果。

据悉,新型药物已经通过了对50多种细菌和真菌培养物的实验室测试,目前,研究团队正在继续对新的纳米杂交物进行临床前测试。(科技日报)

坚韧可修复新材料

灵感源自蜻蜓翅膀

据报道,日前,南京理工大学教授傅佳骏和四川大学教授傅强、副研究员吴凯合作报道了一种以蜻蜓翅膀为灵感打造的坚硬而强韧的可修复材料。相关论文近日刊登于《物质》。

受到生物体能够自主修复自身结构、性能和特定功能的启发,研究人员开发出了一系列基于超分子相互作用(如氢键、配位键、离子键等)的可修复聚合物材料。由于非共价相互作用在分子层面能够可逆地断裂结合,该类材料不仅具在理论上有无限次修复能力,而且还能修复原有功能,如导电、传感、抗腐蚀等。

近年来,研究人员專注于开发具有高强度、高模量的可修复材料,这类材料在智能建筑、航空航天、汽车工业等高科技领域具有广阔的应用前景。然而,目前报道的基于超分子相互作用的刚性可修复材料都表现出脆性断裂的特征。简言之,这类材料的断裂韧性很低,导致材料在使用过程中出现灾难性的断裂,从而引发严重的安全事故。

有鉴于此,研究人员通过定构加工的思路,在硬而脆的可修复聚合物基体中植入三维互联的仿蜻蜓翅膀微结构骨架,解决了刚性可修复材料脆性断裂的问题。与初始的材料相比,制备的仿生复合材料的综合力学性能有了显著提升,其刚度提高了3.8倍,强度提高了25倍,应变提高了7.9倍,断裂韧性则提高了54.3倍。

此外,制备的仿生复合材料还具有快速的光控可修复性能、优异的热稳定性以及良好的的电磁屏蔽能力,是一种多功能集成的坚韧复合材料,具有广阔的应用前景。(中国科学报)

新型纳米薄片  可提高二氧化碳的光催化转化

据报道,7月19日,云南大学材料与能源学院郭洪教授团队近期在新能源存储材料领域取得突破性进展,他们研发出一种纳米薄片,可通过光催化将二氧化碳转化为碳氢化合物。国际著名期刊《化工学报》发表了相关研究成果。

近年来,化石燃料的过度使用已经引起了全球的能源危机及环境问题,极大地阻碍了人类社会的可持续发展。

“过量二氧化碳排放,导致严重的环境和能源问题。通过光催化作用转化二氧化碳,是目前公认的解决能源短缺和过量二氧化碳排放问题的最有效策略之一。”论文通讯作者郭洪教授介绍。但是,由于羰基裂解能高,光催化转化二氧化碳也远没有在实际应用中得到普及。此前的研究表明,二维纳米材料因其特殊的形态结构,具有高还原性。

为促进实现碳达峰、碳中和的可持续发展目标,在课题组前期研究基础上,郭洪结合材料中空结构形貌构筑双金属位点和富硫空位的优点,设计了一种超薄纳米片异质结构,这种结构具有更好的可见光光催化剂活性,显著提高了光催化还原二氧化碳生成碳氢化合物的选择性和活性。

这种纳米薄片中,硫空位的引入产生的双金属位点,使催化剂具备了电化学还原二氧化碳反应中对产物碳氢化合物较高的选择性;而石墨相氮化碳的中空球壳结构,则可以通过增大可见光在腔体内的反射次数,提高可见光的利用率,从而对催化剂的性能进行优化。通过原位红外与密度泛函理论计算,明确了电化学还原二氧化碳反应中对碳氢化合物有显著选择性的机制。

这项研究,为开发低成本与持久循环稳定性、高活性和选择性的二氧化碳催化转化提供了一种新策略。(科技日报)

四川省高品质石墨烯材料研究与应用取得新进展

据报道,在四川省重大科技专项支持下,西南交通大学、大英聚能科技有限公司和德阳中碳新材料科技有限公司等单位通过产学研用协同攻关,突破了高品质石墨烯环保、批量生产关键技术,研发了高性能石墨烯基导热材料、石墨烯基防腐涂料和石墨烯基复合膜材料产品。其中,石墨烯基导热材料热导率处于国内领先水平,力学性能优异,已推广应用到长虹、天邑等多家企业;石墨烯基复合膜材料抗拉强度与优质碳素钢相当。大英聚能科技有限公司已建立高品质石墨烯生产示范线,德阳中碳新材料科技有限公司已建立石墨烯基导热材料生产示范线,相关产品已上市销售,势头良好。(潇湘晨报)

猜你喜欢

光催化石墨纳米
神奇纳米纸
Marvelous mural 神奇的壁画
橡皮为什么能擦铅笔字?
“饿死”肿瘤的纳米机器人
半导体光催化材料钨酸铋的研究进展
二氧化钛光催化产生超氧自由基的形态分布研究
石墨烯助力传统产业改造提升
石墨烯理疗U型枕
湖南省石墨烯产业基地布局郴州
《光催化:环境净化与绿色能源应用探索》