花青素对神经退行性疾病保护作用的研究进展
2021-09-10杨丽嫔朱珍珠雷红刘琴
杨丽嫔 朱珍珠 雷红 刘琴
摘 要:对近年来花青素在神经退行性疾病中的研究进展进行综述,并从抑制氧化应激、缓解神经炎症、缓解兴奋性毒性和抑制蛋白异常聚集等方面对花青素的神经保护作用机制进行探讨,为进一步了解和研究花青素类化合物在神经退行性疾病中的预防作用提供科学依据。
关键词:花青素;神经;退行性疾病;神经保护;分子机制
老龄化趋势导致神经退行性疾病发病率逐年增加。2018年美国公布的阿尔茨海默症的患病人数为570万,预计随着老龄化趋势的增加,到2050年将达到1 380万[1]。在中国,一项根据人口老龄化趋势的模型研究则预测,到2050年中国的阿尔茨海默症的患病人数将增长到4 250万,远超美国[2]。神经退行性疾病除了严重影响患者的生活质量外,同时为社会带来了巨大的医护压力和经济负担。目前全世界每年用于治疗痴呆症的总成本超过1万亿美元,预计到2030年将达到2万亿美元[3]。尽管如此,到目前为止大多数的神经退行性疾病尚无十分有效的治疗方法,因此人们把目光投入到该类疾病的预防研究中。
花青素属于黄酮类化合物,广泛存在深色的果蔬和谷物中。花青素具有较强的抗氧化性,同时具有抗衰老、抗炎、抑菌、保护视力等多种生理功能,能降低机体内的氧化应激[4-5]和炎症[6]水平。花青素可以通过血脑屏障到达大脑组织,对神经具有保护作用[7-9],因此越来越多的科学家对花青素在神经退行性疾病中潜在的预防作用研究产生了兴趣。本文对近年来花青素类化合物对神经退行性疾病相关的神经损伤的保护作用研究进行综述,旨在为深入研究花青素类化合物对神经退行性疾病的预防作用,为明确富含花青素的食物的健康促进作用提供基础。
1 花青素的结构及来源
花青素是一类广泛存在于植物中的天然色素。酸性条件下(pH<2.0)花青素主要以黄盐阳离子的结构稳定存在,随着pH增加会呈现出假碱、查尔酮、醌式等不同的结构的转变,颜色也会由红色转变成紫色、橙色、无色和蓝色等不同的颜色[10]。花青素骨架结构主要有矢车菊色素、天竺葵色素、飞燕草色素、芍药色素、牵牛花色素、锦葵色素等六种[11]。自然界中花青素很少以游离态存在,通常是以结合单糖或低聚糖形成花色苷的结构存在[12-13]。在所有的花青素中,矢车菊色素的分布最广[14-16],如黑米、黑豆、黑莓、紫包菜、桑葚中的花青素主要为矢车菊素类。天竺葵色素主要分布在草莓、树莓等浆果中,而蓝莓中则富含飞燕草色素、牵牛花色素和锦葵色素等多种花青素。由于花青素具有较强的抗氧化、抗衰老作用,因此,食用富含花青素的深色的果蔬和谷物常被认为对健康具有促进作用。
2 神经退行性疾病的发病机制
神经退行性疾病是与中枢神经系统紧密相关的疾病,以神经元发生退行性病变为基础,属于慢性且不可逆的神经系统疾病,该疾病的发病人群主要为中老年群体[17]。在多种神经退行性疾病中,以阿尔茨海默氏病(AD)和帕金森氏病(PD)为典型代表[18]。目前认为,神经退行性疾病的发病机制主要有四种:(1)神经系统内发生氧化应激反应导致神经细胞产生氧化损伤[19];(2)神经兴奋性毒性引起神经元损伤[20];(3)神经系统内炎症反应引起神经细胞状态异常[21];(4)神经系统内蛋白质异常积累引起神经疾病的产生[22]。以上主要的四种发病机制相互作用,最终导致大脑和骨髓特定区域内神经元群体死亡,从而产生认知和运动障碍。
3 花青素对神经退行性疾病的保护作用
流行病学研究表明,长期摄入富含花青素等黄酮类化合物的食物能明显提高记忆能力,改善老年人的认知障碍,还能在一定程度上减缓神经疾病的产生 [23-24]。此外还发现,花青素的高摄入量与PD的低发病率显著相关[25],减缓与年龄有关的神经变性,抑制神经炎症,改善认知的作用[26-28]。一般认为,抑制氧化应激和缓解神经炎症是花青素发挥神经保护作用的两个关键机制。此外,花青素还可能通过缓解兴奋性毒性及抑制蛋白异常聚集发挥作用。
3.1 花青素通过抑制氧化应激发挥神经保护作用
氧化损伤是神经退行性疾病中最常見的特征之一,也是神经细胞死亡的主要因素。研究表明,花青素可直接清除细胞内的活性氧(ROS)[29],抑制神经细胞产生氧化应激,同时可通过促进内源性抗氧化剂的产生降低细胞内ROS含量,发挥间接保护作用[30]。此外,花青素也可以通过抑制线粒体内Bax促凋亡蛋白的活化,调节线粒体膜电位等途径抑制细胞氧化损伤,最终达到减少神经细胞凋亡,在不同的神经退行性疾病中起到保护神经系统的作用[31-34]。AD属于发病率较高的神经退行性疾病,诱导其产生的原因有多种,其中最主要的是淀粉样β蛋白(Aβ)聚集假说。即Aβ肽聚集形成寡聚体和纤维后诱导神经元氧化损伤和影响神经元的生存能力,促进AD的发展[35]。研究表明,花青素作为能够通过血脑屏障的特殊抗氧化剂,可以进入神经细胞内清除ROS,并促进内源性非酶和酶抗氧化剂的产生,降低氧化应激水平,从而抑制Aβ诱导引起的神经细胞的氧化损伤,为神经元细胞提供有效保护[36-39]。PD是另一种常见的神经退行性疾病,导致该疾病产生的重要因素之一也是氧化损伤。Jian Chen等[40]研究表明,矢车菊色素能够通过抑制由1-甲基-4-苯基吡啶诱导的线粒体氧化应激发挥对人神经母细胞瘤细胞(SH-SY5Y)的保护作用。Mehrdad Roghani等[41]发现,天竺葵色素可缓解6-羟基多巴胺(6-OHDA)诱导小鼠的神经毒性,减轻其氧化应激水平,对其神经元起到保护作用。
3.2 花青素通过缓解神经炎症发挥神经保护作用
在中枢神经系统中的小胶质细胞属于免疫细胞,它是引起神经退行性疾病中神经元功能障碍或死亡的关键介体 [42-43] 。小胶质细胞受到外界刺激分泌大量促炎介质,这些促炎介质会诱导神经细胞凋亡,引起神经退行性疾病的产生。花青素可以抑制小胶质细胞中促炎介质的产生,避免因炎症产生的细胞损伤,从而发挥神经保护作用。Francis C. Lau等[44]和Amanda N. Carey等[45]报道了蓝莓花青素通过抑制炎症介质一氧化氮(NO)和TNF-α的产生及诱导型一氧化氮合酶(iNOS)和环氧合酶(COX-2)的表达缓解小鼠小胶质细胞(BV2)的炎症水平。动物实验也证明,花青素能够通过干预炎症信号通路,缓解小鼠神经炎症,减少神经元损伤,从而提高小鼠记忆能力。李建光等[46]也发现,黑果小檗内含有的总花色苷能够显著改善Aβ25-35诱导引起的AD小鼠的记忆损伤。类似地,Yong-Jian Wang等[47]报道了紫薯花青素可以缓解脂多糖(LPS)诱导小鼠产生的急性炎症,逆转小鼠运动行为的损伤,并改善其学习和记忆能力。
Sarinthorn Thummayot等[48]发现,矢车菊苏葡萄糖苷(C3G)可抑制NF-κB炎症信号通路的激活,减少iNOS的表达及NO的产生,同时激活抗氧化防御系统,诱导抗氧化酶的产生并增加其活性,同时调节Aβ25-35诱导引起的人神经母细胞瘤细胞(SK-N-SH)的炎症反应和氧化应激。Muhammad Sohail Khan等[49]报道了黑豆花青素可同时抑制LPS诱导的小鼠脑组织中ROS和IL-1β等炎症因子的产生,改善小鼠海马依赖记忆功能。因此,一般认为花青素对中枢神经系统的保护作用是调节神经系统内的氧化应激和抑制炎症反应的协同作用的结果。
3.3 花青素通过缓解兴奋性毒性发挥神经保护作用
兴奋性毒性是神经元特有的现象。兴奋性刺激会导致神经元内大量钙离子(Ca2+)流入,钙稳态失调,线粒体膜去极化,引起线粒体功能障碍和神经细胞死亡[50]。与AD紧密相关的一种神经毒性物质Aβ和肌萎缩侧索硬化症(ALS)中谷氨酸浓度的剧增,都能够引起钙稳态失调而产生神经兴奋性毒性[51]。而花青素能缓解钙稳态失调,减小这类神经兴奋毒性。Ping-Hsiao Shih等[52]报道了锦葵色素和锦葵色素-3-O-葡萄糖苷可缓解Aβ1-40和Aβ25-35诱导小鼠脑神经瘤细胞(Neuro-2A)产生的钙稳态失调,抑制ROS的产生,保护细胞抗氧化防御系统。Ji Seon Yang等[53]报道了矢车菊苏葡萄糖苷可有效抑制谷氨酸诱导引起的大鼠海马神经元细胞内Ca2+增加和线粒体去极化,减少神经细胞的死亡,发挥神经保护作用。
3.4 花青素通过抑制蛋白异常聚集发挥神经保护作用
蛋白聚集引起神经元死亡是神经退行性疾病发生的重要机理之一。如AD患者大脑中Aβ肽聚集形成的寡聚体和tau蛋白聚集形成的神经纤维缠结 [54-55]。对于第二大神经退行性疾病PD而言,发病机制之一则是由α-突触核蛋白聚集形成的路易小体 [56-57]。ALS也与突变或氧化的SOD1和TAR-DNA结合蛋白-43(TDP-43)在细胞内形成大的聚集体有关 [58-59] 。Andrea Tarozzi等[60-61]先后报道了C3G在体外抑制Aβ1-42和Aβ25-35的自发聚集,缓解因Aβ聚集而诱导的SH-SY5Y细胞凋亡和坏死。Nan Song等[62]发现,C3G不仅能在分子水平上抑制Aβ25-35的自发聚集,还能有效抑制Aβ25-35与细胞表面的结合。Hyo-Shin KIM等[63]利用分化后具有神经细胞特征的鼠嗜铬细胞瘤细胞(PC12)研究发现,飞燕草色素能有效抑制Aβ诱导的tau蛋白过度磷酸化。C3G还可以在AD小鼠体内抑制Aβ引起的tau蛋白过度磷酸化[64]。此外,Herbenya Peixoto等[65]利用秀丽隐杆线虫研究了巴西莓的含花青素提取物的神经保护作用,发现其显著降低了AM141线虫株体内polyQ40∶GFP聚集体的含量,该蛋白聚集体与亨廷顿氏病(HD)相关。
以上结果均表明,花青素很有可能通过抑制蛋白聚集发挥神经保护作用,但目前尚不清楚花青素是否还能够破坏其他蛋白质物种的有毒聚集体形成,如ALS中的SOD1和PD中的α-突触核蛋白。
4 结论与展望
老龄化趋势导致神经退行性疾病患者比例不断增加。而对于神经退行性疾病已经达成一种共识,即防大于治。花青素作为植物源食品中一种天然功能性成分,由于其抗氧化、抗炎等生理功能而受到广泛关注。大量的细胞和动物实验研究均表明,花青素对神经的保护作用可能涉及其抗氧化、抗炎及缓解兴奋毒性和抑制蛋白异常聚集等机制。但目前對于花青素对神经的保护作用的流行病学研究和临床数据还不是很充分。此外,由于花青素在生理条件下不稳定,容易发生氧化降解和在肠道菌群作用下的生物转化,花青素的生物可利用度也一直让研究者感到困惑[66]。为深入了解花青素对于神经的保护作用及其机制,需要更多的流行病学统计数据和进一步的临床试验,同时对花青素在体内的氧化降解及其代谢产物进行深入研究,明确花青素最终进入大脑神经的目标产物及其对神经的保护作用,为阐明花青素在以预防为主的策略中保护神经系统免受疾病危害的作用,以及富含花青素食品的健康促进作用提供科学依据。
参考文献
[1]Alzheimer’s Association.2018 Alzheimer’s disease facts and figures[J].Alzheimer’s & Dementia,2018,14(3):367-429.
[2]Clay E,Zhou J,Yi Z M,et al. Economic burden for Alzheimer’s disease in China from 2010 to 2050:a modelling study[J].Journal of Market Access & Health Policy,2019,7(1):1667195.
[3]Prince P M,Wimo P A,Guerchet D M,et al. World Alzheimer Report 2015. The Global Impact of Dementia. An Analysis of Prevalence,Incidence,Cost and Trends[R].London:Alzheimer’s Disease International (ADI),2015.
[4]Abdel-Aal,El-Sayed M,Hucl,et al. Compositional and antioxidant properties of anthocyanin-rich products prepared from purple wheat[J].Food Chemistry,2018(254):13-19.
[5]Zhuan H. Research progress on antioxidant characteristics of anthocyanin in blueberriy[J].Cereals & Oils,2019,32(3):1-2.
[6]Szymanowska U,Baraniak B. Antioxidant and potentially anti-inflammatory activity of anthocyanin fractions from pomace obtained from enzymatically treated raspberries[J].Antioxidants,2019(8):299.
[7]Youdim K A,Dobbie M S,Kuhnle G,et al. Interaction between flavonoids and the blood-brain barrier:in vitro studies[J].Journal of Neurochemistry,2003(85):180-192.
[8]Figueira,Inês,Tavares,Lucélia,et al. Blood-brain barrier transport and neuroprotective potential of blackberry-digested polyphenols:an in vitro study[J].European Journal of Nutrition,2019(58):113-130.
[9]Fornasaro S,Ziberna L,Gasperotti M,et al. Determination of cyanidin 3-glucoside in rat brain,liver and kidneys by UPLC/MS-MS and its application to a short-term pharmacokinetic study[J].Scientific Reports,2016(6):22815.
[10]Nuno B,Fernando P. Chemistry and photochemistry of anthocyanins and related compounds:a thermodynamic and kinetic approach[J].Molecules,2016,21(11):1502.
[11]肖旭峰,李猛,伍夢婷. 彩色马铃薯花青素研究进展[J].现代园艺,2020,43(1):50-52.
[12]迪娜·吐尔洪,刘新莲,李建光. 花色苷抗阿尔兹海默症的研究进展[J].中华中医药杂志,2019,34(4):1614-1617.
[13]乔廷廷,郭玲. 花青素来源、结构特性和生理功能的研究进展[J].中成药,2019,41(2):388-392.
[14]彭祖茂,邓梦雅,严虞虞,等. 植物中花青素含量测定及种类分布研究[J].食品研究与开发,2018,39(17):100-104.
[15]Pascual-Teresa D,Sonia. Molecular mechanisms involved in the cardiovascular and neuroprotective effects of anthocyanins[J].Archives of Biochemistry and Biophysics,2014(559):68-74.
[16]Khoo H E,Azlan A,Tang S T,et al. Anthocyanidins and anthocyanins:colored pigments as food,pharmaceutical ingredients,and the potential health benefits[J].Food & Nutrition Research,2017,61(1):1361779.
[17]李玲瑶,张智媛,范征. 以Nrf2为靶点治疗神经退行性疾病的研究进展[J].脑与神经疾病杂志,2020,28(1):48-53.
[18]Uddin M S,Hossain M F,Mamun A A,et al. Exploring the multimodal role of phytochemicals in the modulation of cellular signaling pathways to combat age-related neurodegeneration[J].Science of The Total Environment,2020(725):138313.
[19]Cenini G,Lloret A,Cascella R. Oxidative stress and mitochondrial damage in neurodegenerative diseases:from molecular mechanisms to targeted therapies[J].Oxidative Medicine and Cellular Longevity,2020:1-2.
[20]Binvignat O,Olloquequi J. Excitotoxicity as a target against neurodegenerative processes[J].Current Pharmaceutical Design,2020,26(12):1251-1262.
[21]Stephenson J,Nutma E,Paul V D V,et al. Inflammation in CNS neurodegenerative diseases[J].Immunology,2018(154):204-219.
[22]Cabral-Miranda F,Hetz C. ER Stress and neurodegenerative disease:a cause or effect relationship?[J].Current Topics in Microbiology and Immunology,2017(414):131-157.
[23]Spagnuolo C,Moccia S,Russo G L. Anti-inflammatory effects of flavonoids in neurodegenerative disorders[J].European Journal of Medicinal Chemistry,2018(153):105.
[24]Santos N M,Batista P B,Batista ,et al. Current evidence on cognitive improvement and neuroprotection promoted by anthocyanins[J].Current Opinion in Food Science,2019(26):71-78.
[25]Gao X,Cassidy A,Schwarzschild M A,et al. Habitual intake of dietary flavonoids and risk of Parkinson disease[J].Neurology,2012,78(15):1138-1145.
[26]Kent K,Charlton K,Roodenrys S,et al. Consumption of anthocyanin-rich cherry juice for 12 weeks improves memory and cognition in older adults with mild-to-moderate dementia[J].European Journal of Nutrition,2015,56(1):333-341.
[27]Boespflug E L,Eliassen J C,Dudley J A,et al. Enhanced neural activation with blueberry supplementation in mild cognitive impairment[J].Nutritional Neuroscience,2018,21(4):297-305.
[28]Mcnamara R K,Kalt W,Shidler M D,et al. Cognitive response to fish oil,blueberry,and combined supplementation in older adults with subjective cognitive impairment[J].Neurobiology of Aging,2018(64):147-156.
[29]Kim S M,Chung M J,Ha T J,et al. Neuroprotective effects of black soybean anthocyanins via inactivation of ASK1-JNK/p38 pathways and mobilization of cellular sialic acids[J].Life Sciences,2012,90(21-22):874-882.
[30]Cásedas G,González-Burgos E,Smith C,et al. Sour cherry (Prunus cerasus L.)juice protects against hydrogen peroxide-induced neurotoxicity by modulating the antioxidant response[J].Journal of Functional Foods,2018(46):243-249.
[31]Meng L S,Li B,Li D N,et al. Cyanidin-3-O-glucoside attenuates amyloid-beta (1-40)-induced oxidative stress and apoptosis in SH-SY5Y cells through a Nrf2 mechanism[J].Journal of Functional Foods,2017(38):474-485.
[32]王舒敏,譚艳,卢豪,等. 矢车菊-3-O-葡萄糖苷对β淀粉样蛋白25-35致海马神经细胞损伤的干预研究[J].卫生研究,2018,47(3):73-78.
[33]Wang Y,Fu X T,Li D W,et al. Cyanidin suppresses amyloid beta-induced neurotoxicity by inhibiting reactive oxygen species-mediated DNA damage and apoptosis in PC12 cells[J].Neural Regeneration Research,2016,11(5):795.
[34]Kelsey N,Hulick W,Winter A,et al. Neuroprotective effects of anthocyanins on apoptosis induced by mitochondrial oxidative stress[J].Nutritional Neuroscience,2011,14(6):249-259.
[35]Badshah H,Kim T H,Kim M O. Protective effects of anthocyanins against amyloid beta-induced neurotoxicity in vivo and in vitro[J].Neurochemistry International,2015(80):51-59.
[36]Liu L,Sheng B,Yan Y,et al. Protective effect of anthocyanin against the oxidative stress in neuroblastoma N2a cells[J].Progress in Biochemistry and Biophysics,2010,37(7):779-785.
[37]Wang Y,Cho N C,Fu X T,et al. Cyanidin suppresses amyloid beta-induced neurotoxicity by inhibiting reactive oxygen speciesmediated DNA damage and apoptosis in PC12 cells[J].中国神经再生研究(英文版),2016(5):795-800.
[38]Ramassamy C,Belkacemi A. Innovative anthocyanin/anthocyanidin formulation protects SK-N-SH cells against the amyloid-β peptide-induced toxicity:relevance to Alzheimer’s disease[J].Central Nervous System Agents in Medicinal Chemistry,2016,16(1):37-49.
[39]Ali T,Kim T,Rehman S U,et al. Natural dietary supplementation of anthocyanins via PI3K/Akt/Nrf2/HO-1 pathways mitigate oxidative stress,neurodegeneration,and memory impairment in a mouse model of Alzheimer’s disease[J].Molecular Neurobiology,2018(55):6076-6093.
[40]Jian C,Jian S,Julian J,et al. Cyanidin protects SH-SY5Y human neuroblastoma cells from 1-Methyl-4-Phenylpyridinium-induced neurotoxicity[J].Pharmacology,2018(102):126-132.
[41]Roghani M,Niknam A,Jalali-Nadoushan M R,et al. Oral pelargonidin exerts dose-dependent neuroprotection in 6-hydroxydopamine rat model of hemi-parkinsonism[J].Brain Research Bulletin,2010,82(5-6):279-283.
[42]Jeong J W,Lee W,Shin S,et al. Anthocyanins downregulate lipopolysaccharide-induced inflammatory responses in BV2 microglial cells by suppressing the NF-κB and Akt/MAPKs signaling pathways[J].International Journal of Molecular Sciences,2013,14(1):1502-1515.
[43]吳海歌,刘雨晴,姚子昂. 小胶质细胞及相关神经退行性疾病[J].中国细胞生物学学报,2015,37(4):560-564.
[44]Lau F C,Bielinski D F,Joseph J A. Inhibitory effects of blueberry extract on the production of inflammatory mediators in lipopolysaccharide-activated BV2 microglia[J].Journal of Neuroscience Research,2007,85(5):1010-1017.
[45]Carey A N,Fisher D R,Rimando A M,et al. Stilbenes and anthocyanins reduce stress signaling in BV-2 mouse microglia[J].Journal of Agricultural & Food Chemistry,2013,61(25):5979-5986.
[46]李建光,阳莹,刘倩芸,等. 黑果小檗总花色苷对Aβ25-35诱导的AD小鼠及小胶质细胞神经炎性反应模型的影响[J].中华中医药杂志,2017(2):424-427.
[47]Wang Y J,Zheng Y L,Lu J,et al. Purple sweet potato color suppresses lipopolysaccharide-induced acute inflammatory response in mouse brain[J].Neurochemistry International,2009,56(3):424-430.
[48]Thummayot S,Tocharus C,Jumnongprakhon P,et al. Cyanidin attenuates Aβ25-35-induced neuroinflammation by suppressing NF-κB activity downstream of TLR4/NOX4 in human neuroblastoma cells[J].Acta Pharmacologica Sinca,2018(39):1439-1452.
[49]Khan M S,Ali T,Kim M W,et al. Anthocyanins protect against LPS-induced oxidative stress-mediated neuroinflammation and neurodegeneration in the adult mouse cortex[J].Neurochemistry International,2016(100):1-10.
[50]刘家岐,楚世峰,张大永,等. 钙离子与帕金森病的研究进展[J].中国药理学与毒理学杂志,2018,32(9):32-33.
[51]任振宇,于小倩,彭双清. 兴奋性神经毒性中的钙稳态失调及其在退行性病變中的作用[J].中国药理学通报,2007,23(3):289-292.
[52]Shih P H,Wu C H,Yeh C T,et al. Protective effects of anthocyanins against amyloid β-peptide-induced damage in neuro-2A cells[J].Journal of Agricultural & Food Chemistry,2011,59(5):1683-1689.
[53]Yang J S,Perveen S,Ha T J,et al. Cyanidin-3-glucoside inhibits glutamate-induced Zn2+ signaling and neuronal cell death in cultured rat hippocampal neurons by inhibiting Ca2+-induced mitochondrial depolarization and formation of reactive oxygen species[J].Brain Research,2015(1606):9-20.
[54]林炼峰,罗焕敏. 基于Aβ与tau蛋白过度磷酸化损伤机制的阿尔茨海默病治疗靶点(英文)[J].神经科学通报(英文版),2011,27(1):53-60.
[55]Brier M R,Gordon,Friedrichsen K,et al. Tau and Aβ imaging,CSF measures,and cognition in Alzheimer’s disease[J].Science Translational Medicine,2016,8(338):66.
[56]Musacchio T,Rebenstorff M,Fluri F,et al. Subthalamic nucleus deep brain stimulation is neuroprotective in the A53T α-synuclein Parkinson’s disease rat model[J].Annals of Neurology,2017,81(6):825-836.
[57]牛西远,吴蕾,丁小灵,等. 血浆及唾液中α-突触核蛋白作为帕金森病生物学标记物的研究[J].中风与神经疾病杂志,2018,35(3):201-204.
[58]陈健. 基因沉默减少肌萎缩侧索硬化中异常蓄积蛋白的研究进展[J].武警医学,2018,29(12):1177-1180.
[59]Sun J G,Yu-Mi S,Do-Yeon L,et al. Pathological modification of TDP-43 in amyotrophic lateral sclerosis with SOD1 mutations[J].Molecular Neurobiology,2018(56):2007-2021.
[60]Tarozzi A,Merliccoa A,Morroni F,et al. Cyanidin 3-O-glucopyranoside protects and rescues SH-SY5Y cells against amyloid-beta peptide-induced toxicity[J].Neuroreport,2008,19(15):1483-1486.
[61]Tarozzi A,Morroni F,Merlicco A,et al. Neuroprotective effects of cyanidin 3-O-glucopyranoside on amyloid beta (25-35)oligomer-induced toxicity[J].Neuroscience Letters,2010,473(2):72-76.
[62]Song N,Zhang L,Chen W,et al. Cyanidin 3-O-β-glucopyranoside activates peroxisome proliferator-activated receptor-γ and alleviates cognitive impairment in the APPswe/PS1ΔE9 mouse model[J].Biochimica Et Biophysica Acta Molecular Basis of Disease,2016,1862(9):1786-1800.
[63]Kim H S,Sul D,Lim J Y,et al. Delphinidin ameliorates beta-amyloid-induced neurotoxicity by inhibiting calcium influx and tau hyperphosphorylation[J].Bioscience Biotechnology & Biochemistry,2009,73(7):1685-1689.
[64]Qin L,Zhang J,Qin M. Protective effect of cyanidin 3-O-glucoside on beta-amyloid peptide-induced cognitive impairment in rats[J].Neuroscience Letters,2013,534(Complete):285-288.
[65]Peixoto H,Roxo M,Krstin S,et al. Anthocyanin-rich extract of Acai (Euterpe precatoria Mart.)mediates neuroprotective activities in Caenorhabditis elegans[J].Journal of Functional Foods,2016(26):385-393.
[66]Lila M A,Burton-Freeman B,Grace M,et al. Unraveling anthocyanin bioavailability for human health[J].Annual Review of Food Science and Technology,2016,7(1):375-393.
Research Advancements on the Protective Effect of Anthocyanins on Neurodegradative Disease
YANG Li-pin,ZHU Zhen-zhu,LEI Hong,LIU Qin
(College of Food Science and Engineering,Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety of Jiangsu Province,Nanjing 210023,China)
Abstract:Studies have shown that anthocyanins can prevent neurodegenerative diseases and effectively alleviate the progress of neurodegenerative diseases and exert a protective effect on the nervous system. Research progress on neuroprotection of anthocyanins in neurodegenerative diseases was summarized and the neuroprotective mechanisms of anthocyanins were discussed in terms of suppressing the oxidative stress,anti-neuroinflammation,alleviating excitotoxicity and inhibiting abnormal protein aggregation to provide scientific basis for better understanding on the preventive effects of anthocyanin in neurodegenerative diseases.
Keywords:anthocyanins;nerve;neurodegenerative diseases;neuroprotection;molecular mechanism
基金項目:江苏省高校自然科学研究重大项目(项目编号:16KJA550001)。
作者简介:杨丽嫔(1995— ),女,硕士研究生,研究方向:食品科学。
通信作者:刘 琴(1968— ),女,博士,教授,研究方向:功能食品。