APP下载

高考数学试题对于教学的导向作用探析

2021-08-19

数理化解题研究 2021年24期
关键词:大题小题命题

孙 淋

(江苏省靖江市第一高级中学 214500)

高中数学的学习难度较大,通过对高考数学试题进行分析和整理,有助于看清高考数学命题规律和趋势,从而对高中数学的教学工作开展起到导向作用.通过研究高考试题,学生能够更好地掌握相关知识点,从而提升学生的学习兴趣.从高考数学命题的内容上来看,对数学基础知识的考查较为全面,如集合、不等式、复数、平面向量、基本函数的图像、三角函数等,基本知识和方法不会有较大的变化,所以重点就是考查学生综合运用各模块知识的能力.尤其是近几年来,高考数学对学生各方面能力的要求也明显提升,更加注重学生的创新能力和实践能力培养,对学生数学知识和能力掌握情况提出了更高层次的要求.因此,本文就近年来的高考数学试题常见类型及趋势进行了研究,以便为高中数学教学提供导向作用.

一、总结命题规律,引导课堂教学

分析历年的高考数学试题,有助于了解高考数学命题趋势,从而更好地指导日常教学,提升学生的数学学习效果.高考数学通常考查的范围包括函数与导数、立体几何、三角函数、数列、平面向量、解析几何、不等式、概率与统计以及算法与推理等.

(1)函数与导数通常为1道大题,2-3道小题,解答题主要考查方程、不等式以及利用导数解决函数等应用问题,客观题通常选择函数图像及变换、函数基本性质、定积分及几何意义等内容.(2)数列通常会选择1道大题或2个小题,解答题主要是对等差或等比数列通项公式、求和公式,递推公式、错位相减等进行考查,小题主要是对数列概念、性质、通项公式、前n项和公式等内容进行考查,难度通常为中低等.(3)不等式也是高考的常见题型,其小题主要考查不等式的基本性质、基本不等式及应用、不等式的解法以及线性规划等内容,大题主要与数列、解析几何及函数等其他知识点结合进行综合考查,难度相对较大.(4)三角函数与平面向量小题主要是考察三角函数图像、倍角公式、平面向量基本性质、正余弦定理等内容,大题主要是将三角形与正余弦定理结合进行考查或将向量与三角结合,重点考查三角函数的图像及性质.(5)立体几何一般为1道大题和2道小题,大题也就是解答题主要考查三棱柱、四棱柱、三棱锥、四棱锥等几何体的夹角、平行、垂直以及距离等问题.小题主要是考查三视图,线与面、线与线以及面与面的位置关系,空间几何体面积、体积等都是考查的重点.解析几何通常为1道大题和2道小题,小题主要考查直线、圆及圆锥曲线的性质,大题通常在直线与圆锥曲线位置关系的基础上,将课本中的不等式、方程、函数、数列以及平面向量联系进来,综合这些知识进行出题,椭圆与抛物线、椭圆与圆等二次曲线之间的结合也较为常见.(6)算法与推理通常以程序框图的形式出现,一般结合数列、函数等知识命题,难度中等.(7)概率与统计通常也是1道解答题和2道小题,大题的考查点相对固定,主要考察离散型随机变量的方差、分布列以及期望等,该类题型往往与生活联系较为紧密,重点考查学生灵活运用数学知识的能力.小题主要考查几何概型、茎叶图、古典概型、频率分布直方图、独立性检验和二项式定理等内容.

二、分析试题要点,巩固教材知识

万变不离其宗,教材才是高考数学考查的基础,很多教师或学生在高考复习阶段,总是习惯性地忽视教材的作用,一味地埋头做题,将做题作为应对高考的主要途径,希望通过刷题来增强学生的解题能力.而现实是高考数学题都来源于教材,所以应注意分析和总结高考试题的考察要点,将其与教材中的相关内容相结合,为课堂教学起到引导作用,更好地巩固教材上的有关知识点.学生要想在高考中获得好的成绩,必然要熟练掌握课本中的知识,脱离课本的复习更显得本末倒置.在对教材的内容进行复习时,首先应建立完善的知识网络,熟悉教材中的每一个知识点和每一个定理,对课本内容进行深入挖掘,举一反三而触类旁通,使学生能够将所学到的知识灵活应用于生活和考试.以2018年上海卷中的一道试题为例,见下图.

在《九章算术》中,称底面为矩形有一侧棱垂直于底面的四棱锥为阳马,设AA1是正六棱柱的一条侧棱,如图1所示.若阳马以该正六棱柱的顶点为顶点,以AA1为底面矩形的一边,则这样的阳马个数是( ).

A.4 B.8 C.12 D.16

该题目以阳马作为命题背景,然后结合棱锥以及棱柱结构特征相关知识,学生初看该题目会感觉并没有接触过这个内容,觉得难度很大,但仔细分析会发现,这个题目虽然出现了新的定义,但是其考查的内容最终还是离不开课本,结合棱柱和排列组合的相关知识,主要考查学生的数形结合能力,所以学生只要吃透了这部分知识,就能够较为轻松地应对该类题型.立体几何是高中数学教学的重点和难点,所以教师在教学中,可多引导学生熟悉课本,学生基础知识应扎实,在教学的同时尽量增强教学的趣味性,最大限度提升学生的数学学习兴趣,从而培养学生灵活运用数学知识等多方面能力.

三、钻研历年真题,优化教学设计

高考命题以有利于高校选拔新生、中学数学教学以及高校自主办学为主要指导思想,所以高考真题自然也能够起到指导高中数学教学的作用.为确保学生能够游刃有余地应对高考,教师在进行教学时,不管是哪方面的知识点,都应对近几年这部分内容的考查形式和重点进行分析.比如,某知识点是以选择题、应用题还是填空题的形式出现,主要结合哪些知识点命题,需要考查学生的哪方面能力等,从而有针对性地进行教学设计,促进学生核心素养的提升,从而提高高中数学教学质量.以2018年全国卷的一道高考题为例:

(2018年全国Ⅲ卷)中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图2中木构件右边的小长方体是榫头.若如图2所示摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( ).

数学来源于生活,同时又可以指导生活实践,该题以榫卯为载体,重点对学生的空间想象能力和空间图形转化能力进行考查,将三视图与古建筑的木构件相结合,学生可直接利用空间几何体三视图相关知识,即可判断出上述四个选项中哪一个是正确的,该题目将数学与生产实践相结合,充分体现了学以致用的理念.所以教师在日常教学过程中,应注意培养发现数学的眼光,学会用数学思维分析和解决生活中的问题,从而提升学生运用数学知识分析问题与解决问题的能力.

四、研究评价报告,调整教学方向

对于教师来说,在日常教学中不能单纯只重视高考,将教学变成应试教育,但是也不能忽视高考的作用.在高考结束后,各地区的教师均会对高考试卷进行评价和总结.通过对当前的高考试卷评价报告进行分析,能够较好地了解当前高考试题的难易程度、对学生能力的要求以及数学知识的考查范围等,从而为以后的教学提供重要指导,及时发现教学过程中存在的问题,并调整和改进教学方向,增强教学的有效性,以便学生能够更好地应对各类高考试题.

总之,高中数学教学不仅应注重培养学生的各方面能力,而且也要注重学生的高考成绩.通过对高考数学试题进行分析总结,有助于了解当前的高考命题趋势和方向,对中学数学教学起到了很好的导向作用, 结合教材有针对性地强化教学.其主要表现在回归课本、努力夯实基础,重视数学方法,培养学生搜集和处理信息的能力,获得新知的能力,分析和解决问题的能力,交流和合作的能力.教师应充分利用高考试题,积极总结命题规律,深入发掘课本内容,对高考真题进行仔细钻研,通过分析高考试卷评价报告,有针对性地调整教学方向,促进高中数学教学质量的提升,实现从结果教育到过程教育的转变.

猜你喜欢

大题小题命题
科学备考新方向——数列大题之“数列求和”篇
科学备考新方向——三角大题之“解三角形”篇
2019届高考数学模拟试题(七)
2019届高考数学模拟试题(八)
2012年“春季擂台”命题
2011年“冬季擂台”命题
2011年“夏季擂台”命题