基于“雁阵效应”的扑翼飞行机器人高效集群编队研究
2021-07-25穆新星孙长银
尹 曌 贺 威 邹 尧 穆新星 孙长银
人类对生物群体行为的探索可以追溯到两千年前对椋鸟群体的观察.近几十年来,随着科技的发展,全球定位系统、声呐成像、计算机视觉等先进技术为观察生物群体行为提供了便利.研究者们借此对生物群体进行了深入而广泛的研究,不同领域专家也从不同角度给出了鱼群、鸟群、蜂群等生物群体一些复杂集群行为的合理解释[1].
随着对生物运动行为研究的日益成熟,仿生机器人领域受到越来越多的关注.作为仿生机器人的一个重要分支,扑翼飞行机器人的设计灵感来源于鸟类飞行模式,其运动方式为机翼主动运动,即通过机翼拍打空气产生的反作用力提供升力以及推进力,并通过侧翼和尾翼的位置偏移来调节机身的运动方向.这种运动方式使得仿生扑翼飞行机器人具有极高的运动敏捷性,能够完成垂直升降、滑翔、悬停等高难度运动.此外,扑翼飞行机器人的扑翼飞行方式能够使其充分利用飞行过程中产生的涡流以及高空中的势能,具有极高的能量利用效率[2−5].但是,伴随着飞行任务复杂性的提高,对扑翼飞行机器人在大区域中执行任务时的机动性、快速性等指标提出了更高的要求,单个机器人往往很难达到.在此背景下,扑翼飞行机器人集群编队技术受到更多关注.集群编队可以充分发挥群体优势,降低对单机的性能要求,提高任务执行的可靠性和灵活性,在军事、民用等领域具有很好的应用前景[6−8].
研究扑翼飞行机器人集群编队行为的一个重要途径是借鉴鸟类集群特征及规律,因此鸟类集群飞行原理对扑翼飞行机器人集群编队研究具有指导意义[9−10].大雁每年会随季节变化而进行大规模迁徙,在迁徙过程中,雁群会以“V”字阵型、“一”字阵型或“L”字阵型进行编队排布,借此提升群体的飞行效率.研究者们对雁群这种集群行为进行了深入探索,取得了阶段性研究成果.Weimerskirch 等[11]首先提出,位于后排飞行的大雁受前排大雁翅膀扑动的影响,其升力会大大增加,可节省飞行体力,从而增强续航能力;具体地,当前排大雁拍动翅膀产生涡流时,跟随其后在此涡流中飞行的大雁,其飞行心率和扑动频率比其单独飞行时低,在整个飞行过程中可节省大约 11%~14% 的体能.另外,在迁徙过程中,雁群主要以成年大雁作为头雁,因为头雁的消耗大于其他位置的大雁,因此在整个过程中,雁群中的成年大雁会轮流出任头雁,这样能够保证雁群在迁徙过程中能量消耗的均衡性.
此外,研究者们对飞行机器人集群编队飞行控制方法也进行了广泛研究.编队飞行主要目标是驱使飞行机器人构成并维持固定阵型,其控制方法主要分为长机−僚机方法、基于行为方法、虚拟结构方法和一致性方法[12−13].传统的长机−僚机方法主要由长机跟踪预设轨迹,僚机与长机保持相对位置跟随长机飞行.为解决该方法鲁棒性差等问题,研究者结合多智能体协作规划[14]、感知卡尔曼滤波算法[15]、滑模控制算法[16]、状态估计算法[17]等先进算法对其进行了改进,其中最具代表性的是宾夕法尼亚大学的Desai 团队[18]提出的长机−僚机改进控制方案,它实现了飞行机器人在非GPS 定位环境中的密集编队飞行.基于行为方法是一种通过定义飞行机器人几种基本控制行为并对其进行加权得到的编队控制方法.研究者们结合遗传算法[19]、图论和势场函数[20]等理论对其进行了改进.在此基础上,北京航空航天大学段海滨团队[21]提出了一种基于鸽群飞行行为特性的编队控制方法,并对无人机紧密飞行控制进行了仿真验证.虚拟结构方法通过引入虚拟长机的方式进行阵型控制,这种方法可以避免长机与僚机之间的干扰,控制精度较高,但虚拟长机需要具有较高的通信质量和较强的计算能力,因此可靠性较低[22].印度阿米尔卡比尔理工大学Askari 等[23]提出了一种新颖的虚拟结构编队飞行控制方法,提高了编队飞行的控制精度.一致性方法是飞行机器人通过局部交互达到一致性状态的一种控制方法,通过一致性方法进行分布式编队控制会使飞行机器人集群具有较强的灵活性和鲁棒性,适用于大规模编队和密集飞行[24].日本庆应大学Kuriki 等[24]结合模型预测控制和一致性控制方法,成功进行了飞行机器人自主防碰撞的编队飞行实验.
本文通过对大自然中雁群迁徙过程进行详细分析,得出雁群在迁徙过程中可以利用前排大雁(简称头雁)扑动翅膀产生的气动涡旋辅助后排大雁(简称从雁)节省体力,并通过轮换头雁方式确保雁群中个体能量消耗达到均衡,为雁群完成长距离飞行提供保证,上述雁群编队迁徙过程俗称“雁阵效应”.借鉴“雁阵效应”原理,本文重点研究了“V”字阵型编队飞行方式,分析得出头雁与从雁之间的最佳飞行位置偏置.基于此,本文设计了扑翼飞行机器人最优阵型排布方式和合理的阵型变换机制实现集群编队飞行过程能量整体消耗的最优性和均衡性.最终设计了一种使用局部信息的控制方法,实现最优阵型的维持以及阵型变换.在仿真部分,本文从工程实际角度出发,使用5 架扑翼飞行机器人进行了数字仿真,有效验证所提理论结果的有效性.
1 基于雁阵效应的编队方式研究
1.1 雁群飞行阵型描述
生物学家通过对雁群的仔细观察,分析研究后提出了“雁阵效应”,即雁群在飞行过程中通过“V”字、“一”字、“L”字等阵型排布,以及群雁间的配合和调度,可有效减小雁群的飞行能量损耗.他们发现,群雁在飞行中后排个雁能够借助前排个雁扑动翅膀产生的上洗气流获得抬升力支持,从而节省飞行体能;一段时间后,后排个雁间交换位置,使另一侧翅膀也能够借助前排个雁产生的上洗气流,保证能量损耗的均衡;此外,成年大雁交替轮换充当头雁,保障雁群的飞行效能.
在众多阵型排布中,“V”字阵型对于“雁阵效应”群体能量节省效果最为显著[25−26].为此,文献[27]针对鸟类“V”字阵型进行了深入研究,发现锐角“V”字阵型(如图1 所示)适合低雷诺数下的大型鸟类,这种阵型对于头鸟而言并无能量节省但是对于从鸟而言能够节省一定的能量;而钝角“V”字阵型(如图2 所示)适合于小型鸟类,其中处于各个位置上的鸟所节省的能量几乎相同.本文以大雁为仿生对象,通过对雁群锐角“V”字阵型的分析,研究仿生扑翼飞行机器人编队飞行方法,最大限度地提升群体飞行效能.
图1 锐角“V”字阵型示意图(α<90°)Fig.1 “V”configuration with an acute angle (α<90°)
图2 钝角“V”字阵型示意图(α>90°)Fig.2 “V”configuration with an obtuse angle (α>90°)
1.2 雁群“V”字阵型成因
雁阵以“V”字阵型群体飞行的主要原因有以下两个:
1)“V”字阵型有助于雁群能量高效利用.在雁群飞行过程中,头雁翅膀扑动产生的气动涡旋会提升从雁的飞行升力,有效节省从雁的飞行能量.如前文所述,当从雁利用头雁产生的涡旋时,可节省11%~14%的能量[11].通过这种能量节省方式的传递,可有效提高雁群整体的飞行效能.
2)“V”字阵型有利于群雁间的信息交互.在雁群飞行过程中,群雁通过声音上的对答互相“鼓励”、“打气”;同时观察同伴的飞行状态,以防掉队,被天敌掠食[28].
本文从高效飞行效能角度讨论雁群“V”字阵型排布成因.如图3 所示,大雁翅膀扑动时,翅膀下方会形成一对细长的涡流,在后方尾涡内侧产生一个下洗流,同时在其外侧产生一个上洗流.综合该气流效应会在周围生成一个上升涡流,如果邻近大雁刚好处在这个上升涡流中,则会充分利用空气动能,节省飞行体能[7].因此,从雁只有在相对头雁合适的横侧向位置飞行时,才能借助上升涡流产生的空气动能实现能量节省.理论上,头雁产生的两个涡流中心距离大约为b′=πb/4≈0.78b,其中b为翼展距离;而从雁为了最大限度利用头雁产生的上升涡流,应与头雁保持至少0.5×(0.78b −b)=−0.11b的最优翼尖横向距离WTSopt(如图3 所示),其中WTSopt=−0.11b<0表明头雁与从雁的翅膀在横向方向存在11 %重叠[29].由此可知,从雁所获得的抬升力主要与头雁之间的横向距离有关,从雁必须与头雁保持最优翼尖横向距离,因此可以将问题转化为位置跟踪的问题.从Munk 提出的置换定理可以推出,该部分额外抬升力与两雁间的纵向距离无关,而雁群间的诱导阻力与升力需要通过其他方式进行研究[30].
图3 雁间距及翼尖涡流示意图Fig.3 The schematic diagrams of spacing between wild goose and vortex formed by wingtip
2 基于“雁阵效应”的仿生扑翼飞行机器人集群编队飞行阵型结构
2.1 集群编队飞行涡流及阵型结构分析
根据前文关于雁阵成因的分析,结合Biot-Savert 定律[31−32],通过模拟流体动力学进行如图4和5 的分析(图中以两架扑翼飞行机器人为例,且分别命名为“长机”与“僚机”),可以得到由“长机”产生的涡流诱导速度
其中,rc是涡线到扑翼飞行机器人右翼上某点P的距离(如图4 所示),Γ 是单位长度上涡流强度,Φ是直交于rc的单位向量,β1和β2分别由图5 中的点和点P的位置决定.由图5 可知,当点位于 −∞时,有β1=0;当点位于+∞时,有β2=π.在实际情况中,当相邻两个扑翼飞行机器人的纵向距离超过两倍翼展时,认为点位于+∞处;而如果假设涡流损耗足够小,且传播距离足够远,那么可认为点位于 −∞处.这时式(1)可简化为
图4 扑翼飞行机器人飞行涡流模型俯视图Fig.4 Top view of two flapping-wing aerial vehicles
图5 扑翼飞行机器人飞行涡流模型后视图Fig.5 View from behind of two flapping-wing aerial vehicles
根据Kutta-Joukowski 定理[33],可以得到涡流环量强度
其中,V为流体速度,ρ为流体密度,L为升力,S为翼面面积,CL为升力系数,AR=b2/S为展弦比,b′=πb/4.
综上可得,“长机”产生的涡流作用于“僚机”在y轴方向的总诱导上洗气流速度Vy为
其中y′和z′分别为.
为进一步分析“长机”产生的涡流对“僚机”升力和阻力的影响,图6 给出了“僚机”机翼升力偏转的侧视图.可以得出雁群飞行过程中从雁受到的总升力LF以及总阻力DF满足如下等式.
图6 扑翼飞行机器人“僚机”机翼升力偏转侧视图Fig.6 Sideview of follower's wing lift rotation
其中,L′和D′分别表示从“长机”尾流处获得的一个上洗矢量后的升力和阻力,Δα为由上洗气流引起的迎角微小变化量,ΔD为升力发生旋转引起的阻力变化量,ΔL为阻力发生旋转引起的升力变化量.由于在飞行过程中升力远远大于阻力,并且在没有大转弯的情况下 Δα是个极小的角度值,因此可以得到
和升力增量系数
其中aW为机翼升力曲线斜率,这样可得升力变化值为
另外,由图6 可知,阻力变化量 ΔD满足
将式(11)两边同时除以动压q以及机翼翼面面积S,可以得到阻力增量系数
其中,µ为考虑涡流中的一些物理效应后加入的一个校正项,为了使其更符合实验数据,该值通常取一个较小的常数值.为了方便计算升力和阻力参数的变化值,表1 给出所研究的仿生扑翼飞行机器人相关参数值.
表1 扑翼飞行机器人基本参数Table 1 Parameters of flapping-wing aerial vehicles
由于“长机”和“僚机”之间的纵向距离Δx=2b满足位于 +∞处条件,因此可以固定纵向距离 Δx=2b.图7 和图8 分别给出了由式(10)和式(11)计算所得的升力和阻力变化三维曲线,从中可以看出,升力和阻力的最大变化值ΔL=0.5763 N 和 ΔD=0.0703 N 对应于“长机”和“僚机”间的横向距离 Δy=0.628 m≈πb/4 和垂向距离 Δz=0 m.因此,由式(6)和式(7)可以得出,当“长机”与“僚机”之间的横向距离 Δy=πb/4、纵向距离 Δx=2b以及垂向距离 Δz=0 时,编队飞行过程中“僚机”获得的总升力LF最大,且承受的总阻力DF最小,达到了提高“僚机”飞行效能的目标.
图7 两机纵向间距为2b 时升力变化关于横向间距、垂向间距3 维曲线图Fig.7 3D curve of lift variation with respect to lateral and vertical distances with longitudinal distance 2b
图8 两机纵向间距为2b 时阻力变化关于横向间距、垂向间距3 维曲线图Fig.8 3D curve of drag variation with respect to lateral and vertical distances with longitudinal distance 2b
2.2 集群编队构型设计与变换
扑翼飞行机器人集群受能量以及环境限制,在编队飞行过程中必须采用合理的阵型排布,并根据能量分布情况或环境变换情况灵活变换阵型.阵型变换思想主要源于大雁长途迁徙现象:雁群在整个迁徙过程中,会以“V”字阵型飞行实现整体能量优化,并且会根据头雁能量损耗情况进行阵型变换,同时也会根据环境变化随时改变群体阵型,确保雁群整体的能量消耗均衡.
借鉴雁群锐角“V”原理字阵型,扑翼飞行机器人集群采用图9 所示的“长机—僚机”阵型排布方式,其中,1 号飞行机器人为“长机”,2~5 号飞行机器人为“僚机”.在编队飞行过程中,2 号和3 号飞行机器人跟随1 号飞行机器人,4 号飞行机器人跟随2 号飞行机器人,5 号飞行机器人跟随3 号飞行机器人,同时跟随机与其对应的被跟随机保持横向πb/4、纵向 2b和垂向 0 的相对距离.由文中第2.1节的涡流模型以及阵型排布构型分析可知,以文中所建立出的“V”字最优相对位移排布字阵型可以保证前排飞行的扑翼飞行机器人能通过产生的涡流效应为后排飞行的扑翼飞行机器人提供最大的额外升阻比,对应的最大升力和阻力变化量分别为ΔL=0.5763 N 和 ΔD=0.0703 N.按照此“V”字阵型排布,第三排的扑翼飞行机器人与第一排的扑翼飞行机器人之间的横向距离为πb/2,纵向距离为4b,垂直距离不变,对应的最大升力和阻力变化量分别为 ΔL′=0.0113 N 和 ΔD′=0.0018 N.由于ΔL′ ≪ΔL以及 ΔD′ ≪ΔD,因此在最优阵型构建过程中只考虑前排飞行机器人对后排飞行机器人的影响.另外,由前文分析知,前排飞行的扑翼飞行机器人产生的涡流方向主要为机翼的正后方方向,因此同排飞行的扑翼飞行机器人之间的横向、纵向和垂向距离分别为πb/2 ,0,0,其对应的升阻力变化值远小于 ΔL和 ΔD,可以忽略不计.
图9 扑翼飞行机器人集群编队阵型Fig.9 Configuration of flapping-wing aerial vehicles
另一方面,考虑到扑翼飞行机器人集群在以“V”字阵型排布飞行过程中,“长机”的能量损耗最为严重,需要不断进行“长机”的更替,保证集群均衡的能量消耗,而“长机”的更替实际是从一个“V”字阵型变换为另外一个“V”字阵型过程.仿效上述“雁群效应”,本文采用如图10 所示的扑翼飞行机器人阵型变换方案,其中,根据“长机”能量消耗情况对其进行更替.整个集群编队飞行过程“僚机”均能通过通讯模块获取“长机”的剩余能量,同时各个扑翼飞行机器人之间的相对位移量能够以图10中的箭头方向进行单向信息获取,根据文献[34]中分析,每当“长机”能量低于更替时刻能量的50 %将被视为能量消耗过高,此时将进行“长机”更替,该更替通过部分“僚机”与其后排同侧“僚机”一同加速,“长机”及剩余“僚机”减速来完成.这种阵型更替方式符合雁群阵型变换规则,能够在保证集群整体高效能量利用的同时,确保成员间均衡的能量消耗.
图10 扑翼飞行机器人集群阵型变换Fig.10 Reconfiguration of flapping-wing aerial vehicles
3 扑翼飞行机器人集群编队飞行控制
3.1 集群拓扑结构
考虑到扑翼飞行机器人集群中信息交互是单向的,即“僚机”获取“长机”信息,后排“僚机”获取前排“僚机”信息,这里使用有向图(Directed graph)来描述集群拓扑结构.
将由一个“长机”和N个“僚机”构成的集群考虑成由N+1 个节点构成的网络,使用有向图G={V,E}表征该网络拓扑,其中,V={0,1,···,N}是节点集,E ⊆V ×V是边集.(i,j)∈E表示节点j可以获得节点i的信息,但是对于有向图而言,(i,j)∈E⇎(j,i)∈E,即信息传递是单向的.令集合Ni={j∈V |(j,i)∈E}包含所有可以传递信息给节点i的节点.另外,使用有向图G的子图GF={VF,EF}描述N个“僚机”间的网络拓扑,其中VF={1,2,···,N}.
3.2 扑翼飞行机器人模型建立
为方便扑翼飞行机器人模型建立以及后续集群编队飞行控制器设计,做如下假设:
1)地面坐标系为惯性坐标系;
2)飞行机器人飞行控制系统分别由三个分离的位置控制量进行控制,且忽略姿态回路的控制;
3)“长机”产生的上洗气流涡旋为严格的马蹄涡模型,且涡流效应不衰减;
4)“长机”不受“僚机”电磁干扰等因素影响;
5)忽略环境变化影响,暂时考虑相同环境条件下的能量消耗问题.
在上述假设条件下,仅考虑高度不变的稳定飞行情况,通过拉格朗日建模方法,可以得到如下扑翼飞行机器人的非线性动力学模型[35]:
由于本文主要考虑扑翼飞行机器人集群间的相对位置关系,因此忽略姿态回路的控制.进一步,通过分解可得如下位置回路动力学模型:
其中,qti=[xi,yi,zi]T表示扑翼飞行机器人在惯性坐标系下的位置向量,mi表示扑翼飞行机器人的质量,Gti=[0,0,−mig]T表示重力向量,g=0.98 m/s2表示重力加速度,τti=[τix,τiy,τiz]T表示控制输入量,uti=[−DF,0,LF]T包含扑翼飞行机器人在涡流中受到的升阻力对应的力分量,当i为“长机”时uti=0,Fti=[Fx,Fy,Fz]T表示在三轴方向上所受到的空气阻力.旋转矩阵通过如下三个旋转矩阵得到:
其中α,β和γ表示机体坐标系下的姿态状态量.在此仅考虑偏航角γ为统一变化值,横滚角α和俯仰角β均为0 的情况.
3.3 集群编队飞行控制器设计
为保证第3 节提出的扑翼飞行机器人集群高效能量利用以及能量均衡消耗,集群编队飞行控制主要解决阵型维持和变换这两个问题.具体地,通过最优阵型的维持节省“僚机”体能消耗,并且通过更替“长机”进行阵型变换保证集群能耗的均衡.参照雁群交互方式,本文设计的集群编队飞行控制框图由图11 给出,其具体形式如下:
图11 扑翼飞行机器人集群编队控制框图Fig.11 Formation control block diagram of flappingwing aerial vehicles
其中,Kq和Kv是正定的控制参数矩阵,表示第i个和第j个飞行机器人最佳的位置偏置.可以看出,该控制器仅使用局部信息.通过第3 节中确定的最佳阵型选择位置偏置,所设计的飞行控制(15)可稳定维持该最佳阵型,确保集群整体能量损耗最优.另外,通过合理调整位置偏置,所设计的飞行控制(15)可保证阵型变换的稳定性,实现“长机”更替,保障集群整体能耗的均衡性.需要指出,当集群阵型发生变换后,每个飞行机器人i所能“观察”的飞行机器人也随之发生变化,因此集合Ni也会随着阵型的变换而相应发生改变.
4 仿真与分析
以五架扑翼飞行机器人为集群基数进行编队飞行仿真,验证锐角“V”字阵型维持方式以及阵型变换方式,使得集群在编队飞行过程中实现能量高效利用,提高集群飞行续航能力.在仿真中考虑三轴方向的空气阻力分别为,其中ρ=1.29 kg/m3为空气密度,Cx=1,Cy=1.2,Cz=2分别为x,y,z三轴对应的阻力系数,Sx,Sy,Sz分别表示x,y,z为三轴对应的投影面积.这里只考虑位置环动力学模型(14),五架扑翼飞行机器人参数由表1 给出.五架扑翼飞行机器人的最佳位置偏置如第3 节所述,在编队飞行开始时1 号扑翼飞行机器人位于“长机”位置,2~5 号位于“僚机”位置,它们的初始状态由表2 给出.仿真过程共分为三个阶段:第一阶段为阵型形成阶段,即5 架扑翼飞行机器人由初始位置构成最佳“V”字阵型过程;第二阶段为阵型维持阶段,即“V”字阵型保持过程;第三阶段为阵型变换阶段,即按照既定规则进行“长机”更替和阵型变换.这里假设当扑翼飞行机器人集群稳定飞行20秒后进行一次“长机”更替和阵型变换.仿真结果如图12~18 所示.
表2 扑翼飞行机器人仿真参数Table 2 Simulation parameters of flapping-wing aerial vehicles
图12 给出了5 架扑翼飞行机器人集群编队飞行的三维轨迹图,从中可以清晰分辨出编队飞行的三个阶段,其中,y=−4 m~5 m 为阵型形成阶段,形成了指定“V”字阵型;y=5 m~65 m 为阵型维持阶段;此后扑翼飞行机器人集群进行了如图10所示的阵型变换.由图13~16 可见,在阵型形成后的稳定飞行阶段,各扑翼飞行机器人之间的横向、纵向以及垂向的位置偏置分别为=[−2b,−π/4b,0],=[−2b,π/4b,0],=[−2b,−π/4b,0],=[−2b,π/4b,0],且满足前述能量最优要求,为能量高效利用提供了保证.在扑翼飞行机器人完成阵型变换后的稳定飞行阶段,根据图10 所示变换规则,各扑翼飞行机器人之间的横向、纵向以及垂向的位置偏置仅有所变化,其值变为=[2b,−π/4b,0].从图17 中可以看出,当进行阵型变换时,2 号扑翼飞行机器人加速成为“长机”,4 号扑翼飞行机器人为了与2 号扑翼飞行机器人保持最佳飞行距离同样也进行了加速,同时1、3 和5 号扑翼飞行机器人通过减速完成阵型变换,这与前文所述的阵型变换规则一致.另外,从图17 和图18 还可以看出,当扑翼飞行机器人集群逐渐趋于稳定飞行时,各机器人的速度与偏航角也很快趋于一致,验证了基于局部信息控制器的有效性.
图12 扑翼飞行机器人集群编队飞行及阵型变换三维图Fig.12 3D formation snapshot of flapping-wing aerial vehicles
图13 1 号和2 号扑翼飞行机器人相对位置分量Fig.13 Relative position components between flappingwing aerial vehicles 1 and 2
图14 1 号和3 号扑翼飞行机器人相对位置分量Fig.14 Relative position components between flappingwing aerial vehicles 1 and 3
图15 2 号和4 号扑翼飞行机器人相对位置分量Fig.15 Relative position components between flappingwing aerial vehicles 2 and 4
图16 3 号和5 号扑翼飞行机器人相对位置分量Fig.16 Relative position components between flappingwing aerial vehicles 3 and 5
图17 扑翼飞行机器人飞行速度曲线Fig.17 Velocities of flapping-wing aerial vehicles
图18 扑翼飞行机器人飞行航向角曲线Fig.18 Yaws of flapping-wing aerial vehicles
在满足控制目标的同时,本文所提出的集群编队阵型在能量高效利用方面也具有优势,本文主要考虑集群稳定飞行阶段中的能量消耗问题,在阵型形成阶段以及阵型变换阶段由于能量消耗量会因为不同的初始位置以及不同的阵型变换指令变得复杂且难以计算,同时这两个阶段的能量消耗问题也远不如稳定飞行阶段的能量消耗问题价值高.参考文献[36−37]中功率的计算方式并结合本文所提的扑翼飞行机器人模型,本文给出如下能量消耗模型:
其中,τti表示每个扑翼飞行机器人的控制输入力向量,表示每个扑翼飞行机器人的速度向量.值得注意的是,不同的电机在功率消耗模型中对应着不同的数值关系,因此我们引入如下更加详细的能量消耗模型:
其中,ηi=0.86 表示每个扑翼飞行机器人对应的电机影响因子.由于扑翼飞行机器人在集群编队稳定飞行过程中为了保持最优编队阵型,所有集群中扑翼飞行机器人的速度几乎保持一致,为此我们可得Pi=Pi(τti),即每个扑翼飞行机器人的能量消耗是一个关于τti的函数,同时结合扑翼飞行机器人集群模型(13)以及其对应的位置回路动力学模型(14),我们可以得知扑翼飞行机器人的能量消耗与电机的输出存在密切关系.根据前文分析可知,当i表示为“长机”时,模型(14)中的uti=0 ,此时τti为最大值,对应的Pi也为最大值,其意味着此时“长机”的能量消耗最大,而其余的“僚机”由于受到涡流的影响需要较小的电机输出力τti,因此“僚机”的能量消耗比“长机”相对较少,具体结果通过图19 与图20 给出.
图19 扑翼飞行机器人飞行功率消耗曲线Fig.19 Power of flapping-wing aerial vehicles
图20 2 号扑翼飞行机器人基于不同的编队阵型下的飞行功率消耗曲线Fig.20 Power of flapping-wing aerial vehicles 2 in different formations
图19 绘出了扑翼飞行机器人集群中各编队飞行构成的三个阶段,其中阵型形成阶段由于每个扑翼飞行机器人的初始状态不同因此实现目标跟踪所需要的能量也有所不同.对于阵型维持阶段,此过程为阵型形成后的稳定飞行阶段,我们可以看到图中的“+”号曲线代表的1 号扑翼飞行机器人此时为“长机”,其在三轴方向消耗的总功率之和高于其他“僚机”的总功率之和,而其他“僚机”消耗的总功率基本一致.此后,扑翼飞行机器人进行了阵型变换,根据阵型变换规则,此时2 号扑翼飞行机器人变为“长机”,其通过图19 中的虚线表示.在阵型变换后的稳定飞行阶段,我们同样得到2 号扑翼飞行机器人在三轴方向消耗的总功率之和也高于其他扑翼飞行机器人消耗的总功率之和,且其他扑翼飞行机器人在稳定飞行过程中各自消耗的总功率几乎相同.同时,从该图我们可以直接计算在变换阵型前后稳定飞行阶段中的5 架扑翼飞行机器人所消耗的总能量.由于本文中假设“长机”不受后排扑翼飞行机器人的影响,因此可以将阵型变换前稳定飞行阶段的1 号扑翼飞行机器人所消耗的能量作为扑翼飞行机器人单独飞行所消耗的能量参考值.因而可以得到在该稳定飞行阶段以本文所提出的阵型进行集群编队飞行所消耗的能量约为5 架扑翼飞行机器人单独飞行时消耗的总能量的85.27 %,达到了集群编队飞行节约能量的目的.
接下来我们对扑翼飞行机器人在不同编队飞行距离下的功率消耗进行比较.由于“长机”在整个飞行过程中都不受到涡流带来的影响,在不同的集群编队阵型中消耗的总功率保持一致.因此本文以2 号扑翼飞行机器人为例,选取其在本文仿真实验过程中变换阵型前的第一个稳定飞行阶段为数据依据,分析其在不同的集群编队飞行偏置下所消耗的总功率,相应的其他“僚机”具有与2 号扑翼飞行机器人类似的对比结果.由图20 可见,当我们选取最优飞行距离编队飞行时,即 Δy=πb/4 m,Δz=0 m 时,2 号扑翼飞行机器人在三轴方向消耗的总功率之和最低.我们同时选取了其他的4 组数据进行对比,分别为 Δy=πb/4 m,Δz=0.1 m ,Δy=πb/4 m,Δz=1 m ,Δy=πb/3 m ,Δz=0 m 和Δy=πb/5 m,Δz=0 m.从图20 中可以得出,在其他4组集群编队飞行偏置下2 号扑翼飞行机器人消耗的总功率均大于其在本文所述的最优编队阵型下的总功率.由此可以得出,扑翼飞行机器人集群编队飞行在本文所提出的阵型下飞行具有能量高效利用优势.
为了使仿真结果更具说服力,本文基于Unity 3D 仿真软件开发了上位机虚拟仿真平台,如图21所示,其能够与扑翼飞行机器人的真实数据集进行数据对接.因此我们依据本文提出的扑翼飞行机器人集群模型以及飞行编队阵型进行了集群飞行的虚拟仿真实验,其结果已在Youtube 以及Youku 视频网站上给出,网址分别为:https://youtu.be/JPUdZH9qap8,https://v.youku.com/v_show/id_XNDYwNzYzNTY1Mg==.html.
图21 扑翼飞行机器人集群编队飞行三维虚拟仿真实验图Fig.21 3D virtual simulation snapshot for formation of flapping-wing aerial vehicles
5 总结
本文首先针对雁群迁徙过程中“V”字阵型编队集群行为,分析得出在“雁阵效应”中,从雁通过合理的位置排布可有效借助头雁挥翅时产生的上洗涡流来提高抬升力,从而节省体能;同时,通过头雁的更替以及相应阵型的变换,可以实现雁群能量整体消耗的均衡性,保证长航时飞行.然后,仿照“雁群效应”中阵型排布和变换方式,研究扑翼飞行机器人高效编队飞行机制,并设计基于局部信息的控制方法,实现稳定的阵型维持和灵活的阵型变换.最后,通过仿真验证了控制方法的有效性以及该编队阵型的能量高效性.对于未来的工作,我们将实验验证部分作为重要研究内容,并努力搭建多架具有稳定飞行性能的扑翼飞行性机器人,完成集群编队飞行实验,从而进一步验证提出的理论方法的有效性和完备性.