APP下载

茎瘤芥3种蚜虫的取食特性及适应性研究

2021-07-21闫玉芳赵如娜陈文龙吴朝君王旭祎

关键词:桃蚜韧皮部繁殖力

闫玉芳,赵如娜,陈文龙,蒋 欢,吴朝君,王旭祎

1.重庆市渝东南农业科学院,重庆 涪陵 408000;2.贵州大学 昆虫研究所,贵州山地农业病虫害重点实验室,贵阳 550025

茎瘤芥Brassicajunceavar.tumida Tsen et Lee是重庆市重要特色支柱产业涪陵榨菜的原材料.历年来,病毒病是危害茎瘤芥的主要病害之一,其主要病原是芜菁花叶病毒(Turnipmosaicvirus,TuMV)[1],蚜虫通过口针以非持久方式传播该病毒[2],同时刺吸植株韧皮部及木质部以摄取营养、水分和无机盐等,对作物造成双重伤害,严重影响农业生产.以刺吸式口器摄取植株汁液是蚜虫赖以生存的生活方式,因此,研究蚜虫的取食行为有助于理解蚜虫对植物的危害性.

刺吸电位图谱(electrical penetration graph,EPG)技术是一种电生理技术,用于研究刺吸式口器昆虫在寄主植物上的刺探和取食行为[3],准确记录口针在植物组织内的动作和位置[4].EPG技术在研究寄主植物适应性、昆虫传毒机理[5]以及植物抗性机制[6-7]等方面是一种重要的辅助工具.Tjallingii[6]最早对蚜虫的取食波形进行了系统研究,发现蚜虫在刺吸植物汁液的同时能够有效传播病毒.韧皮部和木质部取食是反映寄主适应性的重要指标,EPG波形中的E波和G波分别是蚜虫口针进入韧皮部和木质部刺探取食的标志,因此,研究E波和G波可探明蚜虫对寄主植物的适应性.不同体色生物型烟蚜取食烟草时,适应性最强的红色型烟蚜的韧皮部(E1,E2波)持续时间显著长于绿色型和褐色型烟蚜,适应性最低的褐色型烟蚜对水分和无机盐的要求较低,G波的持续时间最短[8];Koch等[9]发现麦二叉蚜和甘蔗黄蚜对2种柳枝稷的适应性不同,在2种柳枝稷间的E1,E2波存在明显差异;棉蚜和褐色橘蚜取食柑橘植株时,适应性较强的褐色橘蚜E2波的持续时间与平均持续时间显著高于棉蚜[10].蚜虫成功传毒与电位落差(pd)波关系密切,传毒发生在胞内刺探的pdⅡ-2亚波,获毒发生在pdⅡ-3亚波[11].近年来,利用EPG技术研究病毒—蚜虫—植物的互作关系已成为研究的热点.研究发现,病毒可以促进蚜虫的取食.桃蚜取食感染马铃薯卷叶病毒(Potato leafroll virus,PLRV)的烟草植株时,韧皮部分泌唾液(E1波)的时间显著提前,取食汁液(E2波)的持续时间明显延长[12];褐色橘蚜在感染柑橘衰退病毒(Citrus tristeza virus,CTV))的植株上取食时,E2波次数和总持续时间均显著大于健康植株[13].

随着EPG技术的不断发展,利用该技术对烟粉虱[14],网蝽[15]、飞虱[16]、柑橘大食蝇[17]、叶蝉[18]等多种刺吸式口器昆虫的取食波形进行了系统研究.但该技术尚未用于研究蚜虫在茎瘤芥植株上的取食特性.桃蚜Myzuspersicae(Sulzer)、萝卜蚜Lipaphiserysimi(Kaltenbach)和甘蓝蚜Brevicorynebrassicae(Linnaeus))同属半翅目、蚜科,是十字花科植物常见害虫,田间发现3种在茎瘤芥植株上均有发生.本研究基于EPG技术对此3种蚜虫在茎瘤芥植株上的取食波形和繁殖力进行比较,从行为学和生物学角度分析3种蚜虫的取食特性及繁殖能力,以期为阐明3种蚜虫对茎瘤芥的适应性提供参考.

1 材料与方法

1.1 材 料

供试植物:茎瘤芥品种(系)为涪杂2号,由重庆市渝东南农业科学院榨菜研究中心提供,茎瘤芥播种于方形塑料框中,于黑暗条件下浸种,待种子萌发后置于高效节能组培架上育苗,菜苗生长至3叶1心时移栽至营养钵中定植,每个营养钵移栽1株菜苗.生长条件设置:温度25±1 ℃,相对湿度70%±5%,光照周期13∶11(L∶D).菜苗扎根固定后作为试验材料,选用嫩叶进行试验.

供试虫源:3种蚜虫均采自于重庆市渝东南农业科学院茎瘤芥种植基地,采用茎瘤芥低抗品种室内繁殖5代后,备用.期间未施用任何杀虫剂.室内繁殖条件同生长条件.选取大小、日龄一致的无翅成蚜用于试验,试验前饥饿处理1 h.

试验仪器:DC-EPGCiga-8直流昆虫刺探电位仪并附带铜钉、金丝(直径18.5 μm)、铜丝等配件,荷兰EPG Systems公司;DI-158U电信号转换器,美国DATAQ INSTRUMENTS公司;银胶,河南农业大学植物保护学院;自制法拉第金属屏蔽罩,规格90 cm×60 cm×120 cm,网孔60目.

1.2 方 法

1.2.1 EPG分析

EPG的测定:常温25 ℃、自然光下进行.将无翅成蚜放于茎瘤芥嫩叶上进行试验,每头蚜虫和每株菜苗只用于1个记录.EPG系统的昆虫电极是一段长2~3 cm,直径18.5 μm的金丝,金丝末端沾少量水溶性导电银胶粘到蚜虫前胸背板上.EPG系统的植物电极插在菜苗生长的营养钵土壤中.试验开始前,受试蚜虫饥饿处理1 h.每头蚜虫的记录时间为6 h,统计重复20次有效波形.为防止外源声波的干扰,整个试验在法拉第金属屏蔽罩内进行.试验于每天8:00开始进行.蚜虫口针刺入植物叶片组织时,系统回路接通,蚜虫刺吸植物组织产生的微电流经转换器转换为数字信号,再由Probe 3.4软件转化成波形图谱.蚜虫取食所记录的波形参照胡想顺等[19]记录的9种典型波形(表1).

表1 EPG各波形及意义

EPG波形分析方法:蚜虫口针进入植物不同的组织内所产生的EPG波形不同[20].EPG波形与其取食行为的对应关系采用阎凤鸣[21]的分析方法,即整个记录分为3个阶段:口针到达韧皮部前的刺探路径阶段;韧皮部刺探阶段;木质部刺探阶段.

1.2.2 繁殖力试验

桃蚜在室内(温度25±1 ℃,相对湿度75%±5%)繁殖多代后,选择100头无翅成蚜放入人工气候箱内(温度25±1 ℃,相对湿度75%±5%)的茎瘤芥幼苗上任其自然生长,每株1头,观察并记录每头产仔量,试验重复3次.萝卜蚜和甘蓝蚜方法同上,最后比较3种蚜虫的繁殖力.

1.3 数据分析

使用Stylet软件对EPG数据进行记录和分析,EPG试验和繁殖力试验均采用Excel 2003和SPSS 19.0软件对试验数据进行分析;EPG数据不符合正态分布的,采用非参数检验(Kruskal-Wallis)单因素ANOVA法进行统计分析,差异显著性检验采用Duncan新复极差法,差异显著性水平设置为p<0.05.

2 结果与分析

2.1 3种蚜虫取食茎瘤芥的EPG波形

在6 h的刺探取食过程中,桃蚜和萝卜蚜均记录到9种波形(图1,3种蚜虫产生的每种波形类似,故以桃蚜为例),分别为非刺探波np,路径波A,B和C,电位落差波pd,韧皮部取食波E1和E2,机械阻力波F和木质部取食波G;甘蓝蚜只记录到7种波形,没有产生F波和G波,说明甘蓝蚜口针在刺探过程中没有遇到机械阻力,在木质部摄取水分和无机盐的需求较低.

图1 桃蚜各个取食波形

2.2 3种蚜虫的EPG波形比较

2.2.1 口针到达韧皮部前的取食波形比较

萝卜蚜和甘蓝蚜的口针达到韧皮部前的刺探(C波)总持续时间(分别为199.34 min,191.59 min)显著长于桃蚜(135.89 min),说明两者的口针在达到韧皮部前(C波)反复刺探,寻找到韧皮部合适的取食位点比较困难.相比之下,桃蚜口针在达到韧皮部之前的刺探(C波)时间较短,能够很快进入韧皮部.3种蚜虫pd波数量及总持续时间差异无统计学意义,表明三者传毒能力相当.

2.2.2 口针在韧皮部的刺探行为比较

桃蚜和萝卜蚜口针刺探韧皮部分泌唾液(E1波)的次数(分别为9.65次,10.40次)显著高于甘蓝蚜(4.85次);3种蚜虫分泌唾液的总持续时间差异明显,分别为桃蚜31.22 min,萝卜蚜11.45 min,甘蓝蚜5.07 min.说明桃蚜和萝卜蚜口针在韧皮部分泌唾液比较频繁,持续时间较长,吸食效率显著提高.蚜虫口针在韧皮部被动吸食(E2波)的次数存在差异,桃蚜和萝卜蚜显著高于甘蓝蚜,分别为7.35次,8.20次和4.20次,表明桃蚜和萝卜蚜在韧皮部吸食营养物质的次数较多(表2).

2.2.3 口针在木质部的刺探行为比较

口针刺探过程中,甘蓝蚜没有出现木质部主动吸食(G波)的情况.桃蚜G波的刺探次数(1.90次)及总持续时间(10.05 min)显著高于萝卜蚜(0.15次,0.93 min),说明桃蚜比萝卜蚜需要在木质部吸食更多的水分和无机盐,甘蓝蚜对水分和无机盐的需求较低(表2).

表2 茎瘤芥3种蚜虫主要EPG参数比较

2.3 蚜虫个体取食特征分析

3种蚜虫的取食行为存在种间差异性,进一步分析了个体取食特征,发现3种蚜虫各不相同.桃蚜和萝卜蚜出现了机械阻力波(F波)和木质部主动吸食波(G波),但两种波的持续时间极其短暂,在长达6 h的测试中近乎为0.甘蓝蚜和萝卜蚜的C波分别占总时间的53.22%,55.37%,E1波(分别为1.41%,3.18%)和E2波(分别为37.82%,27.69%)所占比重较小.说明甘蓝蚜和萝卜蚜约一半多时间都在叶表、叶肉组织和韧皮部筛管分子外刺探,在韧皮部摄取营养物质的时间较少.桃蚜仅约37.75%的时间用于韧皮部前的刺探(C波),相比之下,韧皮部耗时更多,E1波为8.67%和E2波为34.89%,表明桃蚜在韧皮部吸食汁液花费了更多时间(图2).

图2 3种蚜虫各个刺探阶段所占总时间百分比

2.4 繁殖力比较

为了进一步明确3种蚜虫在茎瘤芥上的适应性,试验进行了生殖力测定(图3).结果表明,3种蚜虫的生殖力差异有统计学意义.萝卜蚜的产仔量最多,每雌成蚜约产仔116头;其次为桃蚜,约85头;甘蓝蚜的产仔量最低,仅65头.说明萝卜蚜在茎瘤芥上的适应性最强,其次为桃蚜,甘蓝蚜的适应性最弱.

图3 3种蚜虫的繁殖力比较

3 讨论与结论

本试验中,桃蚜取食茎瘤芥产生9种波形,分别为np波,A波,B波,C波,pd波,E1波,E2波,F波和G波,与薛承美[22]对桃蚜取食芥菜的研究结果一致,桃蚜均产生了以上9种波形;而李进进[23]对桃蚜取食除虫菊和祝愿等[24]对桃蚜取食杭菊的研究中,并未发现桃蚜产生F波.研究发现,甘蓝蚜没有产生G波和F波,这与Canassa等[25]的研究结果不同,该团队证实甘蓝蚜在取食抗病、感病两种基因型羽衣甘蓝时产生了G波,但不产生F波,上述原因是否与寄主植物有关有待进一步研究.

韧皮部和木质部取食是衡量蚜虫寄主适应性的重要指标,姜永幸等[26]发现,C波也能反映寄主的适应性.本研究重点就C波,E1波,E2波,G波等4个指标分别在3种蚜虫的种间差异性和蚜虫个体取食特征两个层面进行了分析.种间EPG参数分析发现,萝卜蚜和甘蓝蚜在叶肉和韧皮部筛分子外部刺探(C波)的总持续时间显著长于桃蚜,表现出较低的适应性.该阶段刺探次数多、时间长,难以找到合适的吸食位点,取食效率降低[10].蚜虫唾液中的蛋白酶、淀粉酶和蔗糖酶等对食物进行初步消化有助于提高蚜虫对食物的利用率[27],甘蓝蚜分泌唾液次数(E1波)、被动吸食次数(E2波)显著小于桃蚜和萝卜蚜,说明甘蓝蚜对茎瘤芥营养物质的利用率和摄取能力不及桃蚜和萝卜蚜.试验未检测到甘蓝蚜在木质部进行取食,而木质部则是蚜虫摄取水分和无机盐的部位[28].此外,甘蓝蚜的繁殖力最低,各项指标均表明甘蓝蚜对茎瘤芥的适应性差.顾丽元[29]研究不同生物型烟蚜取食烟草时发现,烟草型桃蚜的非韧皮部刺探次数(C波)显著减少、韧皮部取食(E1波,E2波)总持续时间显著增加.本试验与该研究结果相符,桃蚜在整个取食过程中对茎瘤芥的适应性最强.例如,桃蚜在叶肉和韧皮部筛分子外部刺探(C波)时间显著短于萝卜蚜和甘蓝蚜,韧皮部(E1波,E2波)刺探次数与萝卜蚜相当但显著长于甘蓝蚜,木质部取食时间显著长于萝卜蚜等.

3种蚜虫具有不同的取食策略.甘蓝蚜和萝卜蚜在叶表皮、叶肉和韧皮部筛分子外部刺探花费了较多时间(分别为53.22%,55.37%),韧皮部取食时间较短;相反,桃蚜C波刺探时间仅占总时间的37.75%,而韧皮部(E1波,E2波)取食时间较长,因此,个体取食特征也反映了3种蚜虫的适应性差异.从取食行为来看,桃蚜对茎瘤芥的适应性高于萝卜蚜,但繁殖力不及萝卜蚜,其生物学意义有待进一步研究.该研究结果与李向东[30]对蚜虫在烟草上的适生性研究结果不符,他发现适生性良好的桃蚜繁殖力高于萝卜蚜.从繁殖力角度来讲,萝卜蚜对茎瘤芥的适生性高于桃蚜.那么,萝卜蚜在其他植物上的繁殖力是否也高于桃蚜有待进一步研究.据此推测,在复杂的农业生态系统中,萝卜蚜在某些适宜寄主植物上繁衍,适宜寄主一旦消失(如农业采收、田间管理等),则会转移到茎瘤芥上同桃蚜竞争取食,以其较高的繁殖力很快在生态位中占据优势.综合分析,从取食行为来看,桃蚜对茎瘤芥的适应性最强,结合繁殖力明确了萝卜蚜具有较强的适应潜力.

本试验基于EPG技术,从行为学角度研究了蚜虫对茎瘤芥的适应性,并结合繁殖力试验进行了验证,研究蚜虫对寄主植物的适应性还需结合田间种群数量、建立种群生命表等进一步开展研究.

猜你喜欢

桃蚜韧皮部繁殖力
桃树抗蚜材料中桃蚜取食行为的初步分析
头足类鞘亚纲繁殖力研究进展
湖南沅水下游繁殖期内繁殖力和卵径的变化研究
通过营养改善母猪繁殖力的要点
22%氟啶虫胺腈SC对桃蚜的防效
农药及空间大小对桃蚜翅型分化的影响
镉污染来源对萝卜镉积累特性的影响
苹果树木质部及韧皮部组织基因组DNA的提取及质量检测
桃蚜防治小经验
木薯块根膨大期韧皮部和木质部比较蛋白组学初步研究