APP下载

LaCoO3钙钛矿氧化物的环己烯环氧化性能

2021-05-25张学龙钱洋慧阮小云李忠涛

关键词:己烯环己烷钙钛矿

石 斌, 章 彬, 张学龙, 刘 欢, 钱洋慧, 阮小云, 李忠涛

(中国石油大学(华东)重质油国家重点实验室,山东青岛 266580)

稀土钙钛矿金属氧化物(ABO3)的晶体结构为立方晶系[1],其中A位离子的种类(如La)可以调控B位活性组分(Co)的价态,具有稳定结构提高催化活性的作用[2-6]。在催化燃烧、氧化脱氢和汽车尾气处理等方面,稀土钙钛矿LaCoO3、LaMnO3等复合氧化物具有类铂的催化氧化活性。通过掺杂Sr等其他元素或者部分取代稀土元素可显著提高其催化氧化性能[7-8]。将Ce4+部分取代La3+形成La1-xCexMnO3,随Ce4+的增加,复合稀土氧化物催化剂结构出现晶格缺陷和晶体畸变,其中当x=0.4时,对CO催化氧化反应的活性最好[8]。环氧环己烷[9-13]主要由环己烯环氧化反应制备,环氧化可以采用次氯酸[14]、有机过氧酸[15-16]、氧气[17-21]、双氧水[22]等实现。在烯烃环氧化反应中,相对廉价的镍、钴催化剂通常可以提供较好的活性[23-24],以Co3O4/SiO2催化剂对环己烯-O2-异丁醛体系催化环氧化时,负载钴系催化剂的环氧化活性较高,环己烯的转化率和目标产物的选择性分别为66.6%和71.0%[24],而采用酞菁镍负载酸性氧化铝催化剂在35 ℃、反应时间为11 h的条件下,其环氧化的目标产物收率仅为36.8%[18]。笔者以LaCoO3钙钛矿为催化剂,以氧气为氧源,研究以异丁醛为催化助剂、N,N-二甲基甲酰胺(DMF)为溶剂的环己烯环氧化过程。

1 实 验

1.1 实验试剂

实验试剂有环己烯、环氧环己烷、异丁醛、 N,N-二甲基甲酰胺、硝酸钴、硝酸镧、硝酸镍、硝酸铁、氨水、碳酸钠等,均为国药集团试剂公司的AR试剂。纯度为99.5%的氧气来自青岛天源气体有限公司。

1.2 共沉淀法催化剂的制备

将硝酸钴和硝酸镧等化合物按计量比称准在烧杯中溶解,滴加0.5 mol/L 的Na2CO3,调节溶液pH值至8~10,搅拌2 h后过滤沉淀,用去离子水洗涤3次后在110℃烘箱内干燥10 h,然后在马弗炉中于700 ℃下焙烧4 h,即得到LaCoO3钙钛矿复合氧化物催化剂。

1.3 催化剂表征

XRD分析在日本Rigaku D/max-IIIA型和荷兰Philips Xpert Pro ALphal Diffractomer型衍射仪上完成:使用Cu Kα辐射,管电压40 kW,管电流40 mA,步长为0.017°,扫描速率10°/min。SEM分析采用JSM-5510LV型扫描电子显微镜,样品表面采用喷金处理,工作电压为20 kV。催化剂的表面物性分析在Tristar3000多功能吸附仪上完成,测试前样品先置于400 ℃、真空下脱气4~6 h,然后在77 K下对液氮进行吸附、脱附,完成比表面积、孔容和孔径分析。

1.4 催化剂活性评价

称取催化剂、环己烯、异丁醛分别为0.2、 2.0、 3.5 g以及20 mL DMF置于100 mL高压釜中,在反应温度为50 ℃,氧压为4 MPa条件下反应5 h。产物定性定量分析由SP-3420A型BF-2002气相色谱工作站完成:N2、H2、空气均稳压在0.1 MPa;SE-54毛细管柱初始柱温为50 ℃,升温速率为2 ℃/min至80 ℃,停留1 min后以8 ℃/min速率升温至终温140 ℃,保留10 min。气化室和FID检测器温度分别为200和190 ℃。

2 结果分析

2.1 XRD表征结果

图1为焙烧温度700 ℃、焙烧时间4 h、不同pH值条件下制备的催化剂XRD图。由图1看出, pH值为8~10的条件下均出现了LaCoO3复合氧化物的特征衍射峰。随着pH升高至8.5之后,虽然LaCoO3衍射峰的强度在不断地增加,但同时谱图上也出现了少许微弱杂峰,说明pH值过高会导致其他杂质结构的出现。

图1 不同pH值条件下制备的催化剂的XRD图Fig.1 XRD patterns of catalysts prepared at different pH value

图2为pH=8、焙烧时间为4 h、不同焙烧温度下制备的催化剂XRD图。由图2看出,经3种不同温度焙烧后,XRD图上2θ分别为33.30°、47.50°、58.98°处出现了归属于 LaCoO3晶相的特征衍射峰。当焙烧温度为600及800 ℃时,在 2θ为15.78°处出现了La2CoO5的特征衍射峰;焙烧温度为800 ℃时,在2θ为27.11°处还出现了La2O3特征衍射峰。这是由于钙钛矿复合氧化物在高温下是由金属氧化物La2O3和Co3O4反应而生成的,当温度过高或过低,两种氧化物不能完全反应时,就会出现其他化合物的衍射峰。当焙烧温度为700 ℃时,未出现明显的La2O3及La2CoO5特征衍射峰,说明700 ℃时La与Co的协同作用较好,生成了完整的LaCoO3结构。

图3为pH=8、700 ℃下不同焙烧时间制备的催化剂XRD图。由图3看出,当焙烧时间为3 h时,主要出现了LaCoO3的衍射峰和La2CoO5(2θ=15.78)微弱的衍射峰。当焙烧时间为4和5 h时,XRD谱图上LaCoO3衍射峰较为明显,其他杂峰较少。说明焙烧时间过短,可能会因为积累的热量较少,金属氧化物之间的固态反应难以进行,或是所形成的钙钛矿复合氧化物的结晶度较低。

图2 不同焙烧温度下制备的催化剂的XRD图Fig.2 XRD patterns of catalysts prepared at different calcination temperatures

图3 不同焙烧时间下制备的催化剂的XRD图Fig.3 XRD patterns of catalysts prepared at different calcining time

2.2 XPS表征结果

在pH=8、20 ℃常温沉淀,在700 ℃焙烧时间4 h的条件下制备LaCoO3钙钛矿催化剂,LaCoO3中Co2p X射线光电子谱图如图4所示。

图4 LaCoO3钙钛矿催化剂的Co(2p)XPS谱图Fig.4 Co2p XPS spectrum of LaCoO3 perovskite catalyst

图4中Co2p结合能分别为779.6和780.9 eV,显示其中的钴是以Co3+存在[25]。

2.3 扫描电镜(SEM)分析

图5为钙钛矿复合氧化物催化剂的SEM图。由图5(a)、(b)看出,LaCoO3呈现出球状蓬松多孔结构,且有部分小颗粒聚集的现象,此时制备的催化剂的基本粒子粒径为80~120 nm。图5(c)~(e)分别为O、Co、La的存在分布图,放大倍数为600,由图5(d)看出Co的分布比较均匀,可以暴露更多的活性位点,提高催化剂活性。

图5 钙钛矿复合氧化物催化剂的SEM图Fig.5 SEM image of perovskite-type oxides catalyst

2.4 N2吸脱附表征

实验表明,pH值分别为8、8.5、9、9.5时,催化剂的比表面积分别为9.0、8.4、7.9和7.5 m2/g;沉淀温度分别为20、40、60、80 ℃时,催化剂的比表面积分别为6.8、7.4、6.2和5.6 m2/g。说明pH值与沉淀温度对催化剂的比表面积影响都不明显。

2.5 制备条件对催化剂的性能影响

2.5.1 pH值

参照Mukaiyama环己烯-异丁醛环氧化体系[26],催化剂质量为 0.2 g、环己烯质量为 2.0 g、异丁醛质量为3.5 g、DMF 体积为20 mL、氧气压力为4 MPa、反应时间为5 h、反应温度为50 ℃。此时,异丁醛与环己烯的物质的量比为2,分子氧的活化较好,环己烯的转化率相对较高。

图6为pH值对钙钛矿复合氧化物催化性能的影响(沉淀剂浓度为0.5 mol/L、焙烧温度为700 ℃、焙烧时间4 h)。可以看出,当共沉淀的pH值为8时,环己烯转化率可达64.9%,环氧环己烷选择性为68.6%。当pH值由8升至10时,环己烯的转化率由64.9%明显下降至41.5%,而环氧环己烷的选择性也从68.6%下降至56.5%。副产物环己烯醇的选择性有所增加。这说明pH值对催化剂的结构形成有重要影响。结合图1可知,当pH值较低为8时,生成了比较完整钙钛矿复合氧化物的结构,其催化活性较好,而pH值升高则会影响钙钛矿催化剂的生成,从而影响其催化性能。

图6 pH值对钙钛矿催化剂环己烯环氧化性能的影响Fig.6 Influence of pH value on catalytic cyclohexene epoxidation of perovskite-type catalysts

2.5.2 焙烧温度

在沉淀剂浓度为0.5 mol/L、pH=8、焙烧时间为4 h的制备条件下,研究焙烧温度对催化剂性能的影响,结果见图7。可以看出,当温度为600 ℃,环己烯转化率不高,只达到56.1%。当焙烧温度从600 ℃提高到700 ℃时,反应物转化率从56.1%提高至64.9%,主要产物环氧环己烷的选择性从51.1%提高至68.6%。继续提高焙烧温度,环己烯的转化率和环氧环己烷的选择性曲线都呈现下降趋势。说明当温度较高时,焙烧温度已经不是提高催化剂反应性能的关键因素,结合图2可知,当焙烧温度为较低的600 ℃时,所制备出的钙钛矿复合氧化物催化剂的结构不完全是LaCoO3复合氧化物结构,还生成了La2CO5,对催化剂的环氧化性能有所影响。焙烧温度过高时,催化剂结构发生烧结,引起LaCoO3晶粒团聚,催化性能下降。

图7 焙烧温度对钙钛矿催化剂环己烯环氧化性能的影响Fig.7 Influence of calcining temperature on catalytic cyclohexene epoxidation of perovskite-type catalysts prepared

2.5.3 焙烧时间

在pH=8、沉淀剂浓度为0.5 mol/L、焙烧温度为700 ℃的制备条件下,考察焙烧时间对催化剂性能的影响,结果见图8。可以看出,当焙烧时间为3 h时,环己烯转化率仅为49.3%,环氧环己烷选择性为59.4%。当焙烧时间增至4 h时,环己烯转化率和环氧环己烷的选择性均明显增加,副产物的选择性则减小。结合图3可知,焙烧时间太少时,焙烧后复合氧化物的主要成分不是LaCoO3钙钛矿复合氧化物结构,对反应没有催化活性;反之当焙烧时间足够,LaCoO3的衍射峰逐渐增强,其主要成分为LaCoO3钙钛矿结构,当钙钛矿复合氧化物的结构在催化剂中占主要成分时能够提高环己烯环氧化反应的催化性能。当超过一定焙烧时间后,催化剂的相态趋于稳定,催化性能基本不变。

图8 焙烧时间对钙钛矿催化剂环己烯环氧化性能的影响Fig.8 Influence of calcining time on catalytic cyclohexene epoxidation of perovskite-type catalysts prepared

2.5.4 沉淀温度

在沉淀剂浓度为0.5 mol/L、pH=8、焙烧温度为700 ℃、焙烧时间为4 h的制备条件下,考察沉淀温度对催化剂性能的影响,结果见图9。可以看出,当催化剂制备的沉淀温度由20 ℃升至80 ℃时,环己烯的转化率有所降低,而环氧环己烷的选择性变化趋势不明显。说明沉淀温度不是影响催化剂催化性能的关键因素。

图9 沉淀温度对钙钛矿催化剂环己烯环氧化性能的影响Fig.9 Influence of precipitated temperature on catalytic cyclohexene epoxidation of perovskite-type catalysts prepared

2.5.5 A位和B位元素掺杂

金属离子掺杂对催化剂环己烯环氧化性能的影响见表1。由表1可知,在A位掺杂Na、K离子之后,钙钛矿复合氧化物的催化性能没有明显改善,催化剂掺杂离子的量会对环己烯环氧化性能造成不同的影响。

表1 金属离子掺杂对催化剂环己烯环氧化性能的影响Table 1 Catalytic cyclohexene epoxidation results of perovskite catalysts substituted by metal ions

当掺杂Na、K离子的量占A位离子量为10%时,环己烯的转化率和产物的选择性均较低,当Na、K离子的掺杂量超过20%时,尤其是掺杂K离子较多时,其催化性能和纯LaCoO3催化剂相差不多,这显然有利于降低制备催化剂时的原料成本。对B位阳离子进行掺杂(掺杂Mn、Ni、Fe)时,催化效果未明显提高。以上实验表明掺杂之后的LaCoO3复合氧化物结构并没有对环己烯环氧化反应表现出更好的性能。

3 结 论

(1)在pH=8、20 ℃下沉淀、焙烧温度为700 ℃、反应时间为4 h的条件下用共沉淀法制备的LaCoO3钙钛矿复合氧化物催化剂具有比较完整的钙钛矿复合氧化物结构,催化活性最高。

(2)共沉淀法制备的LaCoO3钙钛矿催化剂中的钴是以Co3+存在,外观呈球形颗粒状,比表面积为5.5~9.0 m2/g。

(3)在环己烯质量为2.0 g、DMF体积为 20 mL、异丁醛质量为3.5 g、反应温度为50 ℃、氧气压力为4 MPa、反应时间为5 h的条件下, 以0.2 g LaCoO3钙钛矿复合氧化物为环己烯环氧化催化剂,环己烯转化率能达到64.9%,环氧环己烷的选择性达到68.6%。

猜你喜欢

己烯环己烷钙钛矿
十氟己烯在两相浸没式冷却系统中的应用
环己烷催化氧化生产环己酮催化剂的专利技术综述
吸收法处理有机尾气技术研究
环己烷冷液倾析器腐蚀与选材
当钙钛矿八面体成为孤寡老人
几种新型钙钛矿太阳电池的概述
钙钛矿型多晶薄膜太阳电池(4)
钙钛矿型多晶薄膜太阳电池(2)
环己烯制备实验的改进
酸洗条件对未漂硫酸盐麦草浆己烯糖醛酸去除的影响