滇黔北地区筇竹寺组元素地球化学特征及古环境意义
2021-05-25王鹏万李娴静马立桥蒋立伟陈向阳李庆飞
王鹏万,邹 辰,李娴静,马立桥,蒋立伟,贾 丹,梅 珏,黄 羚,陈向阳,李庆飞
(1.中国石油杭州地质研究院,浙江杭州 310023; 2.中国石油浙江油田分公司,浙江杭州 310023; 3.中国石油集团测井有限公司吐哈事业部,新疆哈密 838202)
下寒武统筇竹寺组(牛蹄塘组、水井沱组)作为南方海相页岩气勘探接替层系之一,具有厚度大、分布广、有机碳含量高、热演化程度高及构造改造强等特点[1-3]。勘探实践证实在古隆起周缘热演化程度相对较低的构造稳定区,筇竹寺组页岩气具备富集高产的条件。目前仅在川中古隆起威远—犍为地区(威201井、金页1井和金石1井等)及鄂西黄陵背斜(鄂宜页1井、鄂阳页1井)获得工业气流,而在汉南古陆和雪峰山古隆起周缘地区部署的下寒武统页岩气探井总体产气量较低,钻探揭示不同地区下寒武统优质页岩分布及富集保存条件具明显差异性[4-7]。不同学者针对南方筇竹寺组黑色页岩元素特征、古环境及地质意义进行探讨[8-11]。李娟等[8]指出黔北下寒武统黑色页岩形成于海域开阔的还原环境,黑色页岩的源岩具多成因性质。源区显示大陆岛弧构造背景特征,且受深部热液活动影响。凌斯祥等[9]揭示大巴山早寒武世黑色岩层沉积期为干热型古气候,其形成于被动大陆边缘的缺氧浅海陆棚—斜坡过渡带,且明显受热液影响。闫德宇等[10]分析中下扬子区下寒武统黑色页岩微量元素的富集成因,指出黑色页岩主要形成于静水还原的浅海—半深海缓坡环境,层状元素富集带为沉积成因,海底热流提供丰富物质来源。曹婷婷等[11]认为川东北筇竹寺组沉积物源区处于被动大陆边缘,其底部碳质页岩中陆源黏土矿物含量高,形成于厌氧环境,中—上部沉积期则为贫氧—弱氧化环境。由此可见对于南方下寒武统黑色页岩形成于缺氧的还原环境已经达成共识,但纵向上黑色页岩元素变化特征及古环境系统的研究则相对薄弱,且滇黔北地区尚未开展类似的研究工作。笔者旨在通过主、微量元素及稀土元素地球化学系统测试分析,按层段垂向上对比分析页岩元素变化特征,探讨滇黔北地区下寒武统优质页岩形成的古环境,建立黑色页岩发育模式,为滇黔北地区筇竹寺组页岩气优质层段评选及有利区评价提供地质依据。
1 地质概况
滇黔北地区位于云南、贵州及四川三省交界处,构造主体处于四川盆地南缘的滇黔北坳陷[12]。全球板块重建和扬子板块恢复均揭示中上扬子地区在震旦纪—寒武纪处于拉张构造环境[13]。灯四期德阳—安岳地区沿张性或走滑断裂带强烈沉降,形成近南北向、南抵滇黔北威信—镇雄一带的台内裂陷,裂陷内灯四段为深水沉积,台缘带及台内发育多期丘滩体。灯四段沉积末期,受桐湾运动影响,灯影组抬升剥蚀。早寒武世梅树村期海侵,裂陷内沉积麦地坪组泥质白云岩、硅磷质白云岩、磷质黑色页岩等细粒沉积物[13-14]。筇竹寺组沉积期再次拉张并海侵,裂陷槽控制黑色页岩的分布。滇黔北地区筇竹寺组整体为深水陆棚,黑色页岩厚度为50~120 m,是潜在的页岩气勘探层系[15]。
2 样品采集与测试结果
2.1 样品采集与分析
为开展滇黔北地区统筇竹寺组黑色页岩纵向上元素地球化学变化特征分析,针对A井筇竹寺组岩心和岩屑系统采样31件(井位见图1,取样位置见图2),选取其中17件样品,进行主、微量元素及稀土元素测试。
主量、微量及稀土元素分析均在中国石油杭州地质研究院碳酸盐岩储层重点实验室完成。主量元素采用PANalytical Axios XRF仪器,进行X射线荧光光谱分析,检测温度为23 ℃,相对湿度为20%,测试流程根据GB/T 14506.28-2010及GB/T 14506.14-2010。微量、稀土元素采用Thermo X Series II 电感耦合等离子体质谱联用仪,流程依据DZ/T0223-2001、GB/T14506.30-2010,检测温度为25 ℃,相对湿度为30%。
图1 滇黔北地区构造单元划分Fig.1 Structure of Zhaotong shale gas demonstration area
2.2 测试结果
2.2.1 主量元素
筇竹寺组页岩主要成分为SiO2、Al2O3和CaO,其总质量分数为68.72%~77.72%,平均为72.93%(表1)。其中SiO2质量分数最高,平均为53.98%,Al2O3和CaO平均质量分数分别为12.45%和6.5%(表1)。K2O、MgO、FeO、Na2O和Fe2O3平均质量分数依次降低,介于2.3%~2.88%;TiO2、P2O5和MnO的质量分数均低于1%。筇竹寺组页岩与北美页岩平均值相比,表现为明显的CaO、MgO和Na2O富集,SiO2、Al2O3、Fe2O3和K2O则相对亏损,MnO和P2O5质量分数大致相当的特点(图2、表1)。
主量元素纵向分布特征具有明显的分段性。富有机质段(TOC大于2%,筇一段)SiO2质量分数最高,为52.94%~59.91%,高于贫有机碳段(筇三段和筇二段)的SiO2质量分数(图2)。筇一段的Al2O3、CaO和TiO2质量分数低于筇二段和筇三段。同时筇二段和筇三段页岩Al2O3、MgO、Na2O、MnO和FeO质量分数相对较高。P2O5质量分数在富有机质层段和贫有机质层段基本保持稳定。
图2 A井筇竹寺组主量元素变化特征Fig.2 Variation characteristics of major element in Qiongzhusi Formation of well A
表1 A井筇竹寺组主量元素分析结果
2.2.2 微量元素
筇竹寺组页岩样品微量元素分析结果如表2所示。沉积物中仅自生来源的微量元素能准确判定古沉积环境[16]。利用陆源且稳定的Al元素,标准化样品中的微量元素质量分数,消除陆源成分对自生微量元素的影响[17]。筇竹寺组页岩与PAAS[18]页岩微量元素的Al标准化值相比,其Mo、V、Sr、Th、Ba、U和P在剖面上均富集,且Ba和P的质量分数远高于平均页岩,Rb则在剖面上整体亏损(图3)。Cr、Co和Ni在筇三段亏损,筇二段和筇一段富集。富有机质层段(筇一段,TOC大于2%)中:Mo、V、Ni、U和Ba富集程度明显高于贫有机质段(筇二段和筇三段);Cr、Co、Th、Sr和P富集程度相差不大。氧化还原敏感元素Mo/Al、U/Al、V/Al和Ni/Al与TOC自上而下增大的趋势相一致(图3,虚线为平均页岩微量元素Al标准化值),说明特定微量元素富集与有机质质量分数存在一定关联。
表2 A井筇竹寺组微量土元素分析结果Table 2 Analyses of trace element in Qiongzhusi Formation of well A
图3 A井筇竹寺组微量元素Al标准化值(×10-4)变化特征Fig.3 Variation characteristics of Al-normalized trace elements(×10-4) of Qiongzhusi Formation in well A
2.2.3 稀土元素
筇竹寺组页岩稀土总量(∑REE)为133.46×10-6~283.30×10-6,平均为185.51×10-6(表3),相对北美页岩稀土总量亏损[19-20],LREE/HREE能反映REE的分异程度[8],A井黑色页岩∑LREE/∑HREE为1.18~4.42,平均为2.81,表明轻稀土相对富集,远高于北美页岩值7.44[21]。稀土元素北美页岩标准化图解显示(图4),其各元素分布曲线总体平行且接近水平分布,说明页岩具有相同的物源[22]。轻稀土段(La/Sm)N为0.76~1.33,平均为1.00。重稀土段(Gd/Yb)N为1.01~1.43,平均为1.19。(La/Yb)N为0.74~1.86,平均为1.15(表3),均表明轻、重稀土段分异不明显。δEu为1.07~1.72,平均为1.43,表现为正异常;δCe为0.78~0.89,平均为0.85,表现为负异常(表3)。
表3 A井筇竹寺组稀土元素分析结果Table 3 Analyses of REE of Qiongzhusi Formation of well A
图4 A井筇竹寺组黑色页岩稀土元素标准化分配模式Fig.4 North American shale-normalized REE patterns of Qiongzhusi Formation in well A
3 讨 论
3.1 构造与沉积背景
图5 筇竹寺组La-Th-Sc构造背景判别Fig.5 Tectonic setting discrimination of La-Th-Sc of Qiongzhusi Formation
大地构造背景影响沉积物源,导致页岩微量元素分布存在差异,其稳定元素La-Th-Sc三角图可识别沉积物源的构造背景[23-25]。A井筇竹寺组样品整体处于大陆岛弧与大陆边缘构造环境之间(图5),具有稀土总量较低、轻稀土元素富集等特征(表3),其与被动大陆边缘构造背景下的稀土元素特征类似[8,26]。页岩筇竹寺组样品同时具有明显的Ce负异常,LREE/HREE较小,REE的北美页岩标准化曲线近于水平(表3、图4),表明A井区具有海相热水沉积特征[22]。U/Th>1代表热水沉积环境[24],A井筇二段和筇三段页岩U/Th<1,但是筇一段U/Th为1.52~3.38,平均为2.50,表明筇一段受到明显热液作用影响。基于Co主要是水成来源,而Cu、Ni、Zn为原生热水来源的认识[27],将样品页岩元素数据投点于Zn-Ni-Co三角图(图6)。其中筇一段样品整体处于热液沉积物区,显示出筇一段沉积期较强的海底热液沉积作用。
图6 筇竹寺组Zn-Ni-Co三角图解Fig.6 Zn-Ni-Co triangular diagram of Qiongzhusi Formation
3.2 古氧化还原环境
黄铁矿矿化度(DOP)是判断氧化还原条件最常用的指标[28]:①含氧环境(正常海水),DOP小于0.42;②无氧气存在和有H2S的厌氧水体,DOP大于0.75;③无H2S的厌氧环境,DOP介于0.42~0.75。黄铁矿中铁与总铁的比值DOPT与DOP相近,故用DOPT代替DOP。V/(V+Ni)和DOP之间具有正相关的关系,可作为反映氧化还原环境的指标,同时V/Cr、U/Th、Ni/Co可以作为氧化还原指标[29-30],稀土元素Ce/La也被应用于氧化还原环境的确定[31]。以上氧化还原环境判别指标参数见表4。
表4 氧化还原环境的元素判别参数Table 4 Element discrimination parameters in redox condition
筇竹寺组页岩DOPT、V/Cr、Ni/Co和U/Th由底向顶具有减小的趋势,V/(V+Ni)则由底向顶具有增大再减小的趋势(图7)。筇一段DOPT为0.40~0.56,平均为0.48。根据表4判定,筇一段沉积期处于贫氧环境。筇二段和筇三段DOPT平均分别为0.41和0.286,整体为富氧环境;筇一段V/Cr为1.58~5.06,平均为3.73,整体为厌氧环境。筇二段和筇三段V/Cr平均为2.04和1.63,分别为贫氧环境和厌氧环境。筇一段Ni/Co为3.71~6.79,平均为5.567,整体为贫氧环境。筇二段和筇三段Ni/Co平均为2.735和2.408,均为贫氧环境;筇一段U/Th为1.52~3.38,平均为2.497,为厌氧环境。筇二段和筇三段U/Th平均为0.46和0.258,均为富氧环境;筇一段、筇二段和筇三段V/(V+Ni)平均分别为0.745、0.778和0.765,均为厌氧环境。此外筇竹寺组Ce/La为1.73~1.99,平均为1.88,整体为厌氧环境。
3.3 古生产力
古生产力变化对有机质富集起关键性的作用,包括表层水的生物生产力和微生物对有机质的生物化学降解作用[16,31-32]。Ba是常用的古海洋生产力指标,通常用剔除陆源成分影响的Baxs表征古生产力[16,33],认为Baxs质量分数在(1 000~5 000)×10-6时,沉积古环境具有高的生产力。A井筇一段至筇三段页岩Baxs质量分数具有减小的趋势,为(3 861.11~11 925.70)×10-6,整体具有高的古生产力(表2、图7)。其中筇一段Baxs平均质量分数为7 900×10-6,古生产力最高,且TOC值与Baxs质量分数具有一定正相关性(图7)。
图7 A井筇竹寺组页岩微量元素在剖面上的变化特征Fig.7 Variation characteristics of trace elements of Qiongzhusi Formation on section in well A
磷元素作为古生产力指标,受海水氧化还原条件和Fe化合物对P吸附能力的影响[34]。氧化环境有利于P元素保存,还原环境和水体中较低的Fe浓度则不利于P元素沉淀,造成高生产力的还原环境沉积物P元素质量分数不一定为高值[16,34]。筇竹寺组P元素质量分数略有变化(图7),其中筇一段质量分数最高,平均为909×10-6,筇三段质量分数最低,平均为791×10-6。水体还原性最强的筇一段P元素表现出相对高值,可能与水体中较高的Fe浓度有关。
整体上古生产力与古氧化还原条件基本匹配(图7),P、Ni、Zn及Cu等营养元素在对应的古氧化还原条件下浓缩,且深部热液与上升洋流活动的存在为烃源岩提供充足的有机质[10]。同时大范围生物活动消耗氧气导致海水底部缺氧[6],使得有机质有效保存。
3.4 盆地水体局限程度
氧化还原敏感元素富集程度还可指示沉积盆地水体的滞留程度[35-36],用Mo/TOC图解可判断古海洋水体滞留程度[36]。在含氧环境,Mo质量分数受氧化还原条件强烈控制。厌氧环境,Mo元素富集则主要受有机碳质量分数和海水中Mo浓度影响。根据盆地开放程度,又分为2类:一是厌氧滞留盆地,其海水流通性差,Mo进入沉积物的速率大于外界补给率,沉积物中Mo/TOC减小;二是开放型盆地,海水与外界交换频繁,Mo元素持续补充,沉积物中Mo/TOC较高[37-38]。A井筇三段和筇二段形成于富氧和含氧环境(图7),其TOC均小于2%,页岩Mo/TOC平均分别为6.53和5.78,由于氧化环境不利于Mo元素沉淀而造成Mo/TOC的偏低,不宜采用Mo/TOC图解判断其盆地的滞留性[38]。筇一段Mo/TOC为6.01~15.33,平均为9.75,处于中等滞留—强滞留环境(图8)。
图8 A井筇竹寺组Mo/TOC 关系与现代厌氧海盆的对比Fig.8 Comparison of Mo-TOC relationship in Qiongzhusi Formation for well A and those for modern anoxic basins
沉积物中U和Mo主要来源于海水,氧化还原条件、锰铁颗粒载体的搬运和盆地滞留共同控制U和Mo元素的富集[37-38],建立非滞留、弱滞留和强滞留3种海洋环境下的U-Mo协变模式。贫氧条件下Mo富集晚于U富集,Mo/U为正常海水的0.1~0.3倍。随水体还原程度提高,Mo/U为正常海水值的1~3倍。到弱滞留环境,金属氢氧化物颗粒作为载体加快水中的Mo进入沉积物中的速率,Mo/U通常是海水的3~10倍;而强滞留环境中,Mo/U一般小于1倍海水值,且Mo/U在厌氧环境会随着富集系数的增加表现出降低的趋势[34,37,39]。A井筇一段与筇二段及筇三段页岩样品的U-Mo协变模式明显不同。筇一段Mo/U大多在0.1倍海水值附近(图9),表现为典型的黑海强滞留环境,比Mo/TOC图解判断的滞留强度略强。筇二段及筇三段Mo/U主要处于非滞留的贫氧环境(图9)。
图9 A井筇竹寺组UEF-MoEF协变图Fig.9 UEF versus MoEF covariation in Qiongzhusi Formation for well A
3.5 黑色页岩的发育模式
黑色页岩的发育主要受沉积相带、古生产力、水体氧化还原环境和盆地滞留程度等因素控制[36]。晚震旦世—寒武纪早期,上扬子区发育近南北向的台内裂陷槽。筇竹寺组沉积早期,滇黔北地区主体处于深水陆棚相区,堆积一套黑色页岩。A井钻揭麦地坪组—筇竹寺组有效烃源岩为200 m,优质页岩为112 m(图2)。受西侧台地和东侧水下隆起阻隔,形成半封闭的环境(图10)。其表层水体营养丰富,可见藻类、海绵、骨针等浮游生物[40]。筇一段Zn-Ni-Co三角图显示受海底热液影响,热液提供丰富的营养物质,其Baxs平均质量分数为7 900×10-6,代表相对高的古海洋生产。表征水体氧化还原环境的DOPT、V/Cr、Ni/Co、U/Th和V/(V+Ni)等参数均指示,筇竹寺组沉积期水体由缺氧环境逐渐过渡为氧化环境,且Mo/TOC图解和Mo/U揭示筇一段表现为典型的强滞留环境,即筇一段沉积期为缺氧环境,有利于有机质的保存。筇二段—筇三段沉积期,随着康滇古陆的隆升、克拉通内裂陷填平补齐,海平面逐渐下降,滇黔北探区逐渐过渡为浅水陆棚,陆源物质输入量大,水体氧化性增强,滞留性减弱,有机碳质量分数逐渐降低。
筇一段沉积期高的生产力背景和滞留性强的缺氧环境是有机质富集保存的关键,稳定的深水陆棚缺氧相沉积暗色页岩(A井,灰黑色—黑色页岩,厚度为97 m,TOC介于2.28%~5.63%,平均为3.54%)。筇二段沉积期为半深水陆棚贫氧相,底部岩性为灰黑色泥岩,向上过渡为深灰色泥岩(A井,厚度为172 m,TOC介于0.38%~1.54%,平均为0.76%)。筇三段沉积期主体为浅水陆棚相弱氧化—氧化环境,以灰色—深灰色泥岩为主,由底向上灰质和砂质夹层增加(A井,厚度为148 m,TOC介于0.21%~0.33%,平均为0.28%)。筇一段沉积期相对筇二段和筇三段,水体深、古生产力高、滞留性强及缺氧特征显著,因而其优质页岩相对发育(图2),是该区筇竹寺组页岩气勘探的潜在有利层段。
图10 滇黔北地区下寒武统筇竹寺组页岩沉积模式Fig.10 Sedimentary models of lower cambrian Qiongzhusi Formation shales in Dianqianbei aera
4 结 论
(1)筇竹寺页岩主量元素具分段性,筇一段SiO2质量分数最高,其Al2O3、CaO和TiO2质量分数低于筇二段和筇三段;筇一段页岩氧化还原敏感元素Mo、V、Ni、U和Ba富集程度明显高于筇二段和筇三段;筇竹寺组页岩整体轻稀土相对富集,轻、重稀土段分异不明显。
(2)滇黔北地区筇竹寺组沉积期处于被动大陆边缘,筇一段页岩受热液作用影响。其DOPT、V/Cr、Ni/Co、U/Th、V/(V+Ni)、Sr/Ba和Ce/La等氧化还原参数表明,筇竹寺组沉积期水体古环境整体由缺氧到贫氧再向氧化环境过渡,与Mo/TOC图解和UEF-MoEF协变图所表征的水体滞留程度由强转弱趋势一致。
(3)筇一段沉积期相对筇二段和筇三段古生产力较高,水体强滞留性形成的缺氧古环境是有机质有效保存的关键。筇一段优质页岩相对发育,为滇黔北地区筇竹寺组页岩气勘探潜在的有利层段。