基于低温多晶硅-氧化物半导体混合集成的薄膜晶体管显示背板技术
2021-04-10邓立昂陈世林黄博天郭小军
邓立昂, 陈世林, 黄博天, 郭小军*
(1. 上海交通大学 电子信息与电气工程学院, 上海200240;2.江苏省知识产权局, 江苏 南京210036)
1 引 言
基于有源矩阵驱动的液晶显示(Active matrix liquid crystal display, LCD)和有机发光二极管(Active matrix organic light emitting diode, AMOLED)显示是目前信息终端采用的主要显示技术。AMLCD结合液晶层的光学调控和发光二极管(Light emitting diode, LED)背光系统,可以分别优化两者的性能,已经形成了成熟的规模化制造工艺与产业链体系,在移动终端产品的应用中占有一定的优势地位。近年来,AMOLED显示将发光源与像素控制单元融合,具有全固态、轻薄、柔性的特点,为移动终端产品形态和功能集成的创新提供了更广阔的空间。因此,随着其量产技术水平的提高,AMOLED显示在智能手机和可穿戴电子等移动终端产品中得到越来越多的应用。
随着移动终端显示屏分辨率的不断提升,以及显示面积的增大,显示屏的功耗已成为整个系统功耗的重要组成部分。两种显示技术中的功耗都可以分为静态和动态两部分。静态功耗主要取决于显示的面积、发光亮度和发光器件(LED背光或OLED)的效率。在AMLCD中,通过采用局部调光,能够显著降低LED背光系统的静态功耗[1]。而在AMOLED显示中,随着OLED材料和器件性能的提升,直流功耗也可以得到降低或控制[2]。显示屏分辨率和帧率的提升,不会影响直流功耗,但会显著增加对各像素充放电所消耗的动态功耗。因此,降低动态功耗成为移动终端显示发展需要解决的一个重要问题。考虑到在大多数应用场景下,显示的内容会保持一段时间,因而,根据显示内容自适应地调整帧频率,能够有效降低动态功耗[3]。为此,用于显示驱动和控制的薄膜晶体管(Thin-film transistor, TFT)像素电路需要具有足够低的漏电,以能够在低帧率下保持住存储的信息。
目前,低温多晶硅(Low temperature polycrystalline silicon, LTPS) TFT技术,由于其高迁移率和良好的稳定性,已经取代非晶硅(a-Si) TFT,成为小尺寸高分辨率显示的主流背板技术。然而,在关态偏压下,漏极区会形成较高的电场,LTPS薄膜晶界缺陷态的存在会辅助隧穿效应的增强,导致较大的反偏漏电流[4]。因此,虽然LTPS TFT具有较高的迁移率,有助于实现高分辨率、高帧率显示,但其较高的漏电流给实现低帧率显示驱动带来了挑战。
自2004年日本东京工业大学Hosono课题组发表基于非晶铟镓锌氧(In-Ga-Zn-O, IGZO)沟道层的TFT器件以来,非晶氧化物半导体(Metal oxide semiconductor, MO) TFT因其较高的迁移率 (~10 cm2·V-1·s-1),以及适合大尺寸、低成本制造的优势获得了学术界和产业界的广泛关注[5-7]。在大量工艺技术研究的基础上,IGZO TFT已经实现了大尺寸的量产(G8线),在大/中尺寸高分辨AMLCD和大尺寸刚性/柔性AMOLED显示中得到商业化应用[8]。相比LTPS TFT,MO TFT的迁移率和稳定性还有不少的差距,面向小尺寸高分辨显示尤其是AMOLED显示,虽然已表现出一定潜力,但还难以达到LTPS TFT的性能水平。然而,另一方面,由于MO较大的禁带宽度、带隙间较低的缺陷态密度和对空穴输运的抑制,MO TFT具有亚阈值摆幅陡峭、漏电流低(<10-20A/μm)的优势[9]。利用MO TFT的这一特点,苹果公司提出了MO和LTPS两者集成的像素电路结构(Low temperature polysilicon and oxide,LTPO),实现了低至1 Hz帧率的低功耗AMOLED显示屏[10]。近期,韩国三星公司宣布已实现了可支持1~120 Hz帧率的LTPO AMOLED并将其应用于量产的手机屏幕。
LTPO的集成概念融合了LTPS和MO两者的优势,其他多个企业和研究机构也围绕LTPO的集成工艺和不同的显示应用开展了相关研究。本文将系统地总结和分析相关LTPO技术的研究进展和挑战。首先,将介绍分别应用于AMLCD和AMOLED显示的LTPO集成方式;进一步讨论实现LTPO集成的器件结构和工艺挑战;最后,针对LTPO AMOLED像素电路,分析和讨论MO TFT稳定性对其性能的影响,以及相应的补偿电路和驱动方案的设计。
2 LTPO显示背板的结构
表1为a-Si、LTPS、MO三种TFT的性能对比。随着显示分辨率的提升,栅极驱动电路也和像素阵列一起通过TFT集成到同一衬底上,称为GOA(Gate driver on array)[11]。GOA可以解决高分辨率显示外围引脚数目多、密度高、难以进行外围可靠贴合的问题,同时也有利于降低驱动芯片的成本、缩小显示的边框尺寸。以下将分别讨论基于LTPO的AMLCD和AMOLED显示背板的像素电路、阵列和GOA电路的结构设计。
表1 3种薄膜晶体管各类特性的对比Tab.1 Comparison of various characteristics of three thin film transistors
2.1 AMLCD显示面板
图1为采用LTPO技术的AMLCD显示面板整体结构示意图。显示阵列中每个像素电路采用MO TFT作为开关,而外围GOA电路采用LTPS TFT。低漏电流的MO TFT可以使显示屏在低帧率下保持良好的显示效果;而LTPS TFT高迁移率、良好稳定性以及可实现n/p型互补集成的优势,有利于实现小面积、高性能的GOA电路,应用于高分辨率、窄边框显示。2017年,友达光电公司基于LTPO背板技术设计实现了应用于手表的圆形AMLCD显示屏,其像素电路采用底栅结构的IGZO TFT,而GOA采用了全n型LTPS TFT的电路设计[12]。2018年,JDI公司也报导了基于LTPO背板技术的AMLCD显示,但在GOA中采用了n/p型LTPS TFT互补集成的电路设计,可以实现更小的面积和更好的鲁棒性。基于该方案,实现了分辨率为1 440×2 560的13.9 cm(5.46 in)AMLCD显示,能够支持15~60 Hz的帧率驱动[13]。2019年JDI公司又实现了分辨率为1 080×2 244的16.67 cm(6.53 in)AMLCD显示,其可以在更低的5 Hz的帧频下工作;测试结果表明,在显示同样画面的情况下,相比标准60 Hz模式,低帧率模式下的功耗可下降62%~65%。
图1 采用LTPO技术的AMLCD显示面板整体结构示意图 (阵列像素中采用MO TFT,集成的GOA电路采用LTPS TFT)Fig.1 Overall structure of AMLCD display panel using LTPO technology (MO TFT is used in the array pixels, and LTPS TFT is used in the integrated GOA)
然而,液晶一般需要采用极性反转的驱动方式,以避免在长时间同一电场的电压驱动下引起的残影问题[14]。采取低漏电的MO TFT作为开关管,可以在低帧率驱动的情况下保持住数据电压,但液晶单元会经受较长时间的同一电场方向下的电压驱动。因此,如何避免这一问题是实现低帧率AMLCD的一大挑战。对此,韩国Kyung Hee大学Lee研究组提出了一种基于LTPO结构的用于低帧率驱动的LCD像素电路,如图2(a)所示[15]。该像素电路由4个TFT和2个电容构成,T1和T2采用LTPS TFT,而T3和T4采用MO TFT 。通过采用VSCAN信号控制T3和T4的开关,将数据电压VDATA1和VDATA2分别存入T1和T2的栅极节点,结合VW和VB信号,决定像素电压(VPXL)和显示灰度的VDATA信号电压可被长时间保存,而通过对VW和VB的控制,可实现在较长的帧周期内对液晶实现极性反转的驱动模式。基于该像素电路的设计,可以实现1/60 Hz的极低帧率的驱动,显示静态画面时的动态功耗仅为1.22 mW,而以60 Hz帧率驱动的动态功耗则达到0.38 W。然而,该像素电路需要多个TFT与电容以及复杂的控制信号,因此会大幅降低像素的开口率,增加驱动控制的难度,对于实现高分辨率、高帧率的显示存在一定挑战。
图2 面向低帧率驱动AMLCD的LTPO像素电路设计[12]。(a)电路原理图; (b)工作时序图。Fig.2 LTPO pixel circuit design for low refresh rate AMLCD [12]. (a) Circuit schematic diagram; (b) Working timing diagram.
2.2 基于LTPO的AMOLED显示面板
因为OLED是电流驱动型发光器件,所以AMOLED像素电路除了需要作为开关的TFT器件以外,还需要驱动TFT为OLED发光提供稳定的电流[16]。针对用于移动终端的小尺寸AMOLED显示,为实现高分辨率和窄边框,具有高迁移率和良好偏置稳定性的LTPS TFT成为主流的背板技术。而为了补偿由于激光晶化工艺所引起的器件性能扰动以及面板上压降(IR-drop)带来的影响,需要更为复杂的内部补偿像素电路[17]。与此同时,由于LTPS TFT较高的漏电流[18],导致其难以实现低帧率驱动的AMOLED显示。针对此问题,苹果公司提出了针对AMOLED显示的LTPO设计,如图3(a)所示,在由7个TFT与1个电容(7T-1C)组成的内部补偿像素电路中,用来控制信号电压输入的开关TFT采用MO TFT,而像素电路的其他TFT以及GOA电路中的TFT都采用n型LTPS TFT;利用MO TFT的低漏电特性,可实现1 Hz低帧率驱动[10]。该技术最早被应用于Apple Watch Series 4,可在屏幕常亮的情况下持续续航长达18 h。夏普公司也提出了一种应用于AMOLED显示、能够支持1~120 Hz帧率驱动的LTPO背板设计[19]。如图3(b)所示,所设计的7T-1C内部补偿像素电路中的3个开关TFT均采用MO TFT,其他TFT采用p型的LTPS TFT器件。GOA电路采用了由n型LTPS TFT和p型LTPS TFT组成的互补式电路设计,与单极性的GOA电路设计相比,该设计可以降低静态功耗、提高噪声容限以及减小电路的尺寸,同时因为时钟信号的负载更小,能够在保持同样工作频率下降低动态功耗,或在相同功耗水平下支持更高的工作频率。
图3 采用LTPO技术的AMOLED显示面板整体结构示意图及其典型像素电路设计。(a)基于n型 MO TFT和n型 LTPS TFT的像素电路和n型 LTPS GOA[10]; (b)基于n型 MO TFT和p型 LTPS TFT的像素电路和互补型 LTPS GOA[18]。Fig.3 Diagram of the overall structure of an AMOLED display panel using LTPO technology and its typical pixel circuit design. (a) Pixel circuit based on n-type MO TFT and n-type LTPS TFT and n-type LTPS GOA[10]; (b) Pixel circuit based on n-type MO TFT and p-type LTPS TFT and complementary LTPS GOA[18].
3 LTPO的集成结构与工艺
3.1 LTPO的集成结构
因为LTPS TFT通常采用共平面结构(顶栅顶接触),而MO TFT则可以采用反向堆叠型结构或共平面结构,所以LTPO的集成可采用如图4所示的两种方式。由于LTPS的工艺温度高于MO,因此在两种集成方式中,MO的工艺都是在LTPS之后进行。图4(a)采用了反向堆叠型结构的MO TFT,可以与LTPS TFT共用栅电极层,从而减少工艺步骤和掩模版的数目,但需要考虑对两个器件性能优化的互相影响。图4(b)的方式采用共平面结构的MO TFT器件,两个器件无共用的膜层,相对独立,便于各自性能的优化,但需要更多的工艺步骤,并且会增加制造的复杂性和成本。在所报道的LTPO显示面板技术中,JDI公司的AMLCD面板和夏普公司的AMOLED面板采用的是共平面结构MO TFT[13,19],而友达公司光电的AMLCD面板采用的是反向堆叠型结构MO TFT[12]。
图4 基于不同结构MO TFT的LTPO集成方式。(a) 反向堆叠型结构MO TFT;(b)共平面结构MO TFT。Fig.4 LTPO integration methods based on MO TFTs of different structures. (a) MO TFT with inverted staggered structure; (b) MO TFT with coplanar structure.
目前,苹果公司针对有源驱动显示中的LTPO技术布局了许多专利,包括LTPO工艺的实现方式以及针对器件性能漂移设计的补偿方案[20-21]。华星光电公司针对TFT阵列基板与屏下指纹传感这两个应用布局了LTPO技术的专利,主要解决了屏下指纹传感时光照对MO TFT器件特性产生影响的问题,有望同时实现降低显示器件功耗以及屏下指纹识别[22-23]。京东方公司针对LTPO有源驱动显示基板的结构与制备工艺布局了一些专利,主要解决了LTPS TFT工艺过程中引入的大量氢对MO TFT产生的影响以及多晶硅浮体效应造成的漏电流较大的问题,有望实现高良率的LTPO基板以及均匀灰阶的显示面板[24-26]。天马公司针对LTPO集成结构中膜层较复杂而带来的应力问题,开发了将MO TFT制作在凹槽结构缓冲层上的技术,该技术可以实现可弯折的显示面板[27]。维信诺公司针对现有LTPO技术中复杂的堆叠结构和工艺流程,开发了可以在同层利用一次掩膜工艺制作两种有源层的技术[28],有望实现节省掩膜、降低工艺难度以及降低成本。
不少研究工作也探索了基于LTPO结构实现n/p型互补集成的逻辑电路[15,29-33]。由于MO能带结构中价带附近的高缺陷态密度分布,难以获得性能较好的p型材料。所以,MO TFT的电路设计与实现主要采用全n型器件的单极型电路的形式[34]。对比单极型电路,采用n型MO TFT和p型LTPS TFT所实现的LTPO互补型电路,可具有噪声容限高、增益高、静态功耗低等优点。如表2所示,各研究机构采用不同结构MO TFT所制备的LTPO反相器电路的噪声容限能够接近VDD/2(VDD为供电电压),并具有较高的电压增益(最高可达到264 V/V[31])。
表2 所报道的基于LTPO的反相器总结与对比Tab.2 Summary and comparison of reported LTPO inverters
韩国Kyung Hee大学Rahaman等基于LTPO集成设计实现了互补型的电平转换电路,可以将2~10 V的输入电压提升到10~30 V的输出[35],与现有的单极性MO TFT电路相比,该LTPO电平转换电路可以实现更高的工作频率和接受更小的输入电压;与现有的互补型LTPS TFT电平转换电路相比,LTPO电平转换电路可以实现更大的输出电压摆幅。这些逻辑电路和电平转换电路的研究初步验证了LTPO应用于实现高性能、低功耗GOA电路的可能性。此外,利用LTPS TFT和MO TFT的关态漏电流对温度变化不同的敏感特性,可以设计实现基于LTPO的集成式温度传感阵列,以应用于高电流密度的显示面板(如Micro-LED)中温度的监控[36]。
3.2 LTPO面临的工艺问题
LTPO集成需要考虑两种器件工艺的互相影响。对于LTPS,为了实现高性能和良好偏置稳定性的器件,需用通过掺氢(H)来钝化多晶硅晶粒内部、晶界之间以及多晶硅与栅极绝缘层界面处的缺陷。然而,MO TFT的性能对H非常敏感。如图5(a)所示,通过对MO的态密度的第一性原理计算表明,当H位于各成键的位置或间歇位置,都会导致费米能级(EF)超过导带底(Conduction band minimum, CBM),从而引入自由电子;而额外的氧(O)可以和H结合形成O—H或H—O—H键,EF能够保持在深能级[37]。在LTPO工艺过程中,LTPS层中的H扩散到MO层,会与其中的氧悬挂键结合,或打破氧-金属共价键而形成氢氧化物。当H的量很少时,由于缺陷态密度的降低,一定程度上会提高器件的迁移率、减弱回滞现象;然而,当有更多的H时,氧空位和金属-氧键的平衡会被打破,导致器件阈值电压的漂移和稳定性的恶化[38]。在低帧率的显示驱动下,MO TFT开关管受较长时间的反向偏压应力,会引起一定的阈值电压负向漂移。如果负向漂移过大,会导致该TFT处于常开状态,造成显示屏对应位置的亮点缺陷。即使TFT还能够关断,一定的负向漂移也会引起TFT关断带来的反冲(Kickback)电压的变化,对于AMOLED显示,会进一步影响驱动TFT的电流和该像素的发光亮度,尤其在低亮度情况下,导致显示发光的非均一性[10]。
图5 (a)基于第一性原理计算的所掺杂H在不同位置下的态密度情况[37];(b)不同H浓度工艺条件下制备的MO TFT在反向偏压温度应力测试下的阈值电压漂移情况[10]。Fig.5 (a) Total state density under different H doping conditions calculated based on the first principles[37]; (b) Threshold voltage drift of MO TFT after NBTS under different process conditions[10].
因此, LTPO的最大工艺挑战是在对H浓度的调控,平衡两种器件的性能。如图5(b)所示,通过采用优化的低H工艺,所制备的MO TFT在反向偏压温度应力测试(Negative bias-temperature stress, NBTS)下阈值电压的漂移显著低于采用高H浓度的工艺[10]。虽然现阶段基于IGZO的MO TFT已经量产,但其迁移率和稳定性还有很大的提升空间。对比LTPS,MO的一个重要优势是可以通过调整材料中不同的组分及其比例来提高或优化器件性能[39]。所以,结合MO材料组分的设计与后退火处理工艺,有望降低MO TFT性能对H的敏感性,为高性能的LTPO集成提供更宽的工艺窗口。
4 基于LTPO的 AMOLED像素电路设计
最早的LTPO概念被应用于AMOLED像素电路,利用MO TFT低漏电的特性,取代像素电路中作为开关的LTPS TFT,以实现低帧率的显示驱动。在小尺寸AMOLED显示面板中,为了减小LTPS TFT器件非均一性以及驱动电压压降(IR-drop)的存在对显示效果的影响,一般需要采用复杂的内部补偿像素电路设计[40]。
4.1 兼容低帧率和高帧率驱动的LTPO像素电路
在AMOLED像素电路中,驱动TFT的栅极节点对电压信号的保持能力是实现低帧率驱动的关键。如图6(a)所示,传统的基于LTPS TFT的像素电路设计中,为了增强对数据电压信号的保持能力,需要通过双TFT串联的结构降低漏电流,并设计较大的存储电容CS。然而,较大的存储电容CS会影响所能实现的驱动帧率。另外,每一帧开始阶段,需要对OLED阳极电压进行初始化,以清除上一帧周期的亮度信息,而初始化的速度也是影响实现高帧率驱动的关键。如图6(a)所示,由全p型LTPS TFT组成的像素电路中,用于初始化控制的复位TFT(T7)的栅源电压是控制线VEM[n]与OLED阳极之间的电压差,在初始化的过程中会逐渐减小,导致TFT放电能力的减弱,从而在有限的时间内,难以完成对OLED阳极电位的初始化,造成显示的不良现象。
夏普公司提出的LTPO像素电路设计将图6(a)中的3个开关(T1、T2、T7)用MO TFT代替,如图6(b)所示[18]。利用MO TFT超低漏电的特性,可以不依赖于提高存储电容CS的设计就获得足够强的数据电压信号保持能力,在满足低帧率驱动需求的同时,也有利于实现高帧率。通过将图6(a)中的T7由p型LTPS TFT换为n型MO TFT,并将其栅极和控制线VEM[n]连接,T7的源漏电压恒定为VINI与VEM[n]之间的电势差,也可以提高OLED阳极初始化的速度,有助于高帧率驱动的实现。该像素电路的工作时序,如图6(b)所示,可分为如下3个阶段:
图6 (a)传统的有内部补偿功能的LTPS TFT像素电路原理图; (b)夏普公司提出的有内部补偿功能、宽帧率范围的LTPO像素电路原理图; (c)工作时序。Fig.6 (a)Schematic of traditional LTPS TFT pixel circuit with internal compensation function; (b)Schematic of LTPO pixel circuit diagram with internal compensation function and wide frame rate range proposed by Sharp; (c)Timing of proposed circuit.
(1)初始化阶段(Initialization):VpSCAN[n]和VEM[n]被置为高电平,VpSCAN[n]被先置为低电平,然后变换为高电平,而VpSCAN[n-2]被先置为高电平,然后变换为低电平,T7和T1逐次导通,OLED阳极被充电至VINI实现初始化。
(2)数据写入阶段(Programing):T2和T3导通,T4的工作在临界饱和区,其栅极N1电压被置为VDATA+VTH。
(3) 发光阶段(Emission):T5和T6导通,T4的源极N4被置为VDD,此时驱动TFT(T4)产生的OLED驱动电流为:
(1)
因此,理论上OLED的驱动电流不受驱动TFT (T4)阈值电压(VTH)的影响,可以实现有效的补偿。
在实际使用时,不同的显示模式可以采用不同的控制信号时序,比如在追求低功耗的低帧率驱动模式下,因为每一帧的时间较长,对快速初始化的需求并不强烈,可以每隔几帧进行一次初始化以降低不必要的功耗。而在高帧率模式下,为了保证显示质量,初始化需要在每一帧进行。
4.2 TFT不稳定性对低帧率驱动的影响及补偿方法
在低帧率驱动下,虽然采用MO TFT有助于提高信号电压的保存能力,但由于MO TFT的稳定性问题,在长时间负栅压偏置下,会导致其阈值电压的负向漂移,引起关断时反冲电压的变化,进一步影响驱动TFT的电流,最终导致像素发光亮度的差异,尤其在低亮度的情况下,会造成显示的非均一性。另外,虽然LTPS TFT具有较好的稳定性,但由于OLED电流对驱动TFT的特性变化非常敏感,在长时间偏置的情况下,LTPS TFT产生一定的阈值电压漂移,也会影响像素电路的补偿效果。
因此,基于LTPO TFT的AMOLED像素电路设计除了需要补偿驱动TFT性能的非均一性问题,还要考虑低帧率驱动下MO TFT负栅压偏置不稳定性所造成的影响。图7(a)是苹果公司设计的支持常亮低功耗显示应用的LTPO内部补偿AMOLED像素电路,其中开关TFT(T3)采用的是MO TFT,而其他TFT均为LTPS TFT[10]。该电路的控制信号(VEM1、VEM2、VSCAN1和VSCAN2)的时序如图7(b)所示,整个工作过程可分为3个阶段:
图7 苹果公司的6T1C像素电路。(a)电路原理图; (b)电路的工作时序; (c)加入了电偏置阶段的用于低帧率显示的像素电路工作时序[27]。Fig.7 6T1C pixel circuit proposed by Apple Co., Ltd.. (a) Circuit schematic diagram; (b) Circuit working timing diagram; (c)Timing of pixel circuit for low frame rate display with added voltage bias phase[27].
(1) 初始化阶段(Initialization):VSCAN1和VEM2被置为高电平,T3、T6和T4导通,N1和N2节点的电位分别被充电至VINI和VDD。
(2) 数据写入和阈值电压采样(Programing and Threshold Voltage Sampling):VEM2被置为低电平,VSCAN1和VSCAN2被置为高电位, T4关断,T1和T3导通,数据信号VDATA通过T2将N2节点的电位充至VDATA+VTH(VTH为T2的阈值电压),而N1节点的电位仍然是VTH,所以电容CST上的电压为VDATA+VTH-VINI。
(3) 发光阶段(Emission):VSCAN1和VSCAN2被置为低电平,VEM1和VEM2被置为高电平, T2、T4与T5导通,其余TFT均关断,形成VDD到VSS的电流通路,OLED受电流驱动发光。此时N1和N2节点的电位分别为VDATA+VTH和VINI,故T2提供给OLED的驱动电流可近似为:
(2)
因此,基于该电路,驱动TFT(T2)的阈值电压(VTH)理论上对OLED电流没有影响,从而其扰动对显示一致性的影响可以得到有效补偿。但在低帧率驱动的情况下,由于T3管存在一定的漏电,N2节点电压会发生变化,影响OLED电流和发光亮度。基于LTPO技术,T3采用低漏电流的MO TFT,可以较长时间地维持N2节点的电压,满足低帧率驱动的要求。然而,由于MO TFT较长时间处于关态,反向偏置所引起的阈值电压会产生漂移,造成其关态特性的变化,这也会导致显示亮度的偏移。针对此问题,苹果公司提出了通过设计外围监测电路,对像素OLED电流进行检测,如其偏离预期值,则可通过改变开关MO TFT的扫描控制信号 (VSCAN1)的高电压电平,以补偿其阈值电压漂移带来的影响[26]。
在低帧率驱动下,由于每一帧的时间变长,相邻两帧的阈值电压漂移情况可能会有不同,数据写入和阈值电压采样阶段是基于前一帧驱动完成后的T2的阈值电压,而转入发光阶段后,由于在新一帧数据电压的长时间偏置下,LTPS TFT的阈值电压也会产生一定的漂移(尤其当相邻两帧的灰度级相差很大时),从而导致阈值电压补偿的失效,影响显示效果。针对此问题,一个可行的方法是在数据写入和阈值电压采样阶段之前增加一个电偏置过程,将驱动T2提前偏置在新一帧的数据电压下,获得相应的阈值电压,如图7(c)所示[27]。然而,这样会对实现高帧率驱动造成影响。
5 总 结
LTPO利用MO TFT超低漏电的特性,能够弥补LTPS TFT的不足,有利于实现低帧率驱动,降低显示的动态功耗。对于AMLCD,为了实现低帧率,需要通过像素电路的设计,避免在长时间同一方向电场驱动下引起的残影问题。而针对AMOLED显示,采用n型低漏电的MO TFT,不但有助于实现低帧率,还可以减小对存储电容的要求以及加快像素电路的初始化速度,从而有利于实现高帧率驱动。然而面向超低帧率、常亮显示的应用,需要解决长期偏置下MO TFT开关和LTPS TFT驱动管阈值电压漂移带来的影响。此外,基于LTPO技术,充分发挥两者的特性,还可以设计实现一些新型的功能性的电路系统。虽然LTPO技术有以上优势,但增加了集成结构的复杂度,而且在工艺上,由于MO TFT和LTPS TFT对工艺过程中H浓度的不同要求,需要很严格的H浓度调控,平衡两种器件的性能。这些工艺上的挑战导致LTPO背板技术存在成本高、良率低的问题。因此,发展对H不敏感的MO TFT技术对提高LTPO集成的性能可靠性非常重要[41]。进一步,MO TFT如能获得和LTPS TFT类似的开态电流和稳定性,而同时保持低漏电流、无kink效应以及低温度系数等优势,将有望实现全MO TFT的显示背板,支持低帧率到高帧率的显示驱动[42]。
致谢:感谢杭州领挚(LinkZill)公司对本工作的支持!