大麻GRAS转录因子家族的全基因组鉴定及镉胁迫下表达分析
2021-04-06杨大为唐慧娟李德芳赵立宁黄思齐
尹 明 杨大为 唐慧娟 潘 根 李德芳 赵立宁 黄思齐
专题
大麻GRAS转录因子家族的全基因组鉴定及镉胁迫下表达分析
尹 明 杨大为 唐慧娟 潘 根 李德芳 赵立宁 黄思齐*
中国农业科学院麻类研究所 / 农业农村部麻类生物学与加工重点实验室, 湖南长沙 410205
GRAS转录因子在植物生长发育及抗逆境胁迫中具有重要作用。本文对大麻GRAS转录因子家族进行了全基因组鉴定, 对其理化性质、系统进化发育、基因结构、基因间的共线性关系进行了分析, 并利用云麻1号及内蒙古小粒大麻的转录组数据分析其在镉胁迫下的表达量变化。结果表明, 大麻基因组中鉴定出54个GRAS基因, 96.30%的基因编码酸性蛋白, 长度为415~757 aa, 分子质量为46,405.05~85,748.52 kD, 等电点为4.77~8.54, 划分为9个亚家族, 其中PAT1、LS、SHR、HAM保守性较高, PAT1、LISCL、CsGRASA出现大量基因串联重复,基因在5种植物的共线性分析中均存在。将2个大麻品种进行镉胁迫处理发现, 云麻1号株高下降10.48%, 鲜重下降6.33%; 内蒙古小粒大麻株高下降66.07%, 鲜重下降42.67%, 表明云麻1号较内蒙古小粒大麻更耐镉胁迫。云麻1号的54个GRAS基因中, 42个(77.78%)基因表达上调1.05~18.10, 11个(20.37%)基因表达下调0.13~0.91; 内蒙古小粒大麻的54个GRAS基因中, 27个(50.00%)基因表达上调1.01~6.46, 27个(50.00%)基因表达下调0.30~0.96。将两者GRAS基因进行同源基因鉴定并分析其表达情况发现, 耐镉品种云麻1号中40个同源GRAS基因较内蒙古小粒大麻在镉胁迫下的上调或下调幅度更明显, 表明这些GRAS基因与镉胁迫有明显相关性。本文可为挖掘和验证大麻GRAS基因提供参考。
大麻; GRAS转录因子; 系统发育分析; 基因结构分析; 表达分析
转录因子是一类能与基因序列上游特定序列结合的蛋白质, 通过改变基因表达来调节生物学过程, 在植物生长发育及对外界胁迫的响应中发挥重要作用[1-2]。GRAS转录因子由、和3个早期鉴定的功能基因而命名, 被认为在植物的生长与抗逆境胁迫中具有重要作用, 早期被认为只存在于植物中, 近期发现细菌中也含有该基因家族, 并有研究提出GRAS基因家族最早出现在细菌中的折叠甲基转移酶超家族中[3-4]。GRAS蛋白质一般至少由350个氨基酸组成[5], 包括1个高度保守的C端和1个可变的N端, 其C端由SAW、LRI、LRII、PFYRE和VHIID 5个保守基序组成, 其中VHIID最为保守, 是GRAS蛋白的核心结构, 存在于所有亚家族成员中[6-8]。有研究发现, N端是GRAS蛋白发挥特异性功能的重要部位, 因为N末端含有IDRs序列, 该序列表达时会与不同蛋白质结合, 而后能够表现出蛋白质的特异性[9-10]。早期的拟南芥GRAS基因分为LS、PAT1、SCL3、DELLA、LISCL、SCR、HAM和SHR 8个亚家族[11], 随后有研究在8个亚家族的基础上新增了DLT和SCL4/7亚家族, 将GRAS基因分为10个亚家族[12], 不同的GRAS亚家族导致了该基因家族功能的多样性。有研究发现, GRAS基因在植物根的形态建成、茎段分生组织的分化、激素信号转导、逆境胁迫响应等过程中发挥重要作用[13-14]。比如SCR和SHR亚家族参与拟南芥侧根的发育, SHR/SCR/SCL3在番茄丛枝菌根化过程中可能参与调控赤霉素[15-16]; PAT1分支中的PAT1和SCL21参与了光敏色素A (phytochrome, phyA)的信号转导, 使下胚轴在脱黄化时逐渐拉长[17];和在水稻的油菜素类固醇(brassinosteroids, BR)信号转导中作为正向调节因子发挥作用[18]。
目前多种植物的GRAS基因家族都已进行了全基因的鉴定与分析, 在拟南芥[19]、水稻[20]、木薯[21]、棉花[22]和小麦[5]中分别存在34、60、77、150和153个GRAS基因。在各个植物都开始深入研究和挖掘该基因家族时, 众多麻类作物中尤其是大麻都还未见相关报道。大麻(L.)又称汉麻, 用于纺织、医药、护肤保健等领域, 其中四氢大麻酚(tetrahydrocannabinol, THC)含量低于0.3%的称为工业大麻, 近年来由于发现大麻对重金属具有较强的耐性, 且具有较高的经济价值, 大麻开始被用于修复重金属污染土壤[23], 有研究发现重金属可以降低大麻中的THC含量, 并提升其大麻二酚(cannabidiol, CBD)含量[24]。随着国际上对工业大麻的解禁及CBD医疗市场的扩大, 培育耐重金属及其他非生物胁迫的工业大麻品种显得十分重要。而GRAS基因与植物生长及耐非生物胁迫有着密切的关系, 已有研究发现, 过表达玉米基因, 可以改善玉米的耐盐性[25]; 过表达山葡萄基因可以显著提高了拟南芥的耐旱性、耐寒性和耐盐性[26], 过表达毛竹基因可增强其耐旱性[27], 过表达小麦可增强其耐光氧化胁迫的能力[5], 虽然这些研究已证明GRAS家族与植物的非生物胁迫有关, 但在GRAS家族与重金属镉胁迫之间还未有相关研究。
本研究旨在通过生物信息学方法在全基因组水平上对大麻GRAS基因的组成进行鉴定, 分析其理化性质、进化关系、基因结构、共线性关系, 同时利用2个大麻的镉胁迫下转录组数据及其qPCR验证分析该基因家族表达情况, 以期为后续研究大麻GRAS基因功能提供参考。
1 材料与方法
1.1 大麻GRAS基因的鉴定与理化性质分析
从NCBI数据库(https://www.ncbi.nlm.nih.gov/)中下载大麻基因组[28]文件与基因组注释文件(assembly number: GCA_900626175.2), 从TAIR数据库(https://www.arabidopsis.org/)中下载拟南芥GRAS基因序列。利用软件TBtools将拟南芥GRAS基因与大麻基因组进行blast序列比对(E-vaule<1e-5), 筛选大麻中的GRAS家族候选基因。将候选基因提交至uniprot数据库(https://www.uniprot.org/)进行批量比对, 验证候选基因是否含有GRAS保守结构域, 删除假阳性基因。利用在线分析软件ExPASy Proteomics (http://web.expasy.org/compute_pi)分析理化性质。
1.2 大麻GRAS基因系统进化树的构建和基因结构分析
将拟南芥与大麻的GRAS 蛋白序列导入软件MEGA 7.0进行比对, 将比对后的结果采用相邻连接法(Neighbor-Joining, NJ; 执行参数: Bootstrap method 1000)构建系统进化树, 并利用软件FigTree完善美化进化树。利用在线软件NCBI-CDD (https://www.ncbi.nlm.nih.gov/cdd/)进行蛋白结构预测, 检测大麻GRAS的蛋白结构域(E-vaule<0.01)。利用在线软件MEME (http://meme-suite.org/)分析大麻GRAS基因保守基序(Motif), 设定预测数为10。利用软件TBtools从大麻基因组注释文件中提取大麻GRAS的相关编码序列(Coding Sequence: CDS)、非翻译区(Untranslated Region: UTR)。利用TBtools将进化树、蛋白结构域、基因保守基序、CDS、UTR结合, 构建GRAS进化关系与结构的整体比对图。
1.3 大麻GRAS基因的染色体分布与共线性预测
利用软件TBtools从大麻基因组文件与基因注释文件中提取GRAS基因位置信息, 并构建GRAS基因在染色体上的物理图谱。利用软件TBtools、MCScanX和Circos计算并绘制大麻GRAS在染色体上存在的串联重复, 大麻不同染色体之间存在的共线性基因, 大麻与大豆()、雷蒙德氏棉()、玉米(L.)、水稻(L.)不同物种间存在的共线性基因。
1.4 材料培养及处理与转录组测序
本试验选取2个大麻品种籽粒大小较一致的种子, 置于黑暗条件下25℃萌发3 d, 将幼苗移至1/4 Hoagland营养液中生长5 d, 昼夜温度24℃/16℃, 光周期16 h/8 h (明/暗), 相对湿度60%, 光强度700 μmol m-2s-1。对生长5 d的幼苗进行处理: 对照(仅营养液) 12 h, 100 μmol L-1的CdCl2处理12 h。在2个处理下取长势一致的植株, 用TRIzol试剂(美国Invitrogen)提取总RNA, 并溶于无RNase的水中(TransGen Biotech, 中国), 用NanDrop 2000 (Thermo Scientific, 美国)检测RNA的质量、纯度和完整性。使用Illumina Truseq RNA样品制备试剂盒构建cDNA文库, 设3个生物学重复, 之后进行转录组测序。通过Illumina测序平台(Illumina HiSeq 4000)进行测序, 通过CASAVA Base Calling分析将原始测序数据转换为Sequenced Reads或Raw Reads, 并再次过滤以获取高质量的纯净读数。利用TopHat2与HISAT2两个软件将质控后的数据与(版本号GCF_900626175.2)参考基因组[28]进行对比, 使用String Tie或Cufflinks软件对Mapped Reads进行拼接。将转录组原始数据匹配至全基因组分析得到的工业大麻GRAS基因并统计reads数量, 并进一步换算成FPKM值进行比对分析。
1.5 实时荧光定量 PCR验证
本试验随机选取转录组中12个GRAS家族基因进行实时荧光定量PCR验证, 利用Primer 3 plus设计荧光定量PCR引物, 内参基因选取Hemp[29], 其上下游引物序列为Sense: 5¢-CCAATAGCCTTG CATTCCAT-3¢; Anti-sense: 5¢-TCGATTGGAAAGC CGAATAC-3¢。试验仪器使用Bio-Rad (伯乐) CFX Connect荧光定量PCR仪, 所取样品与RNA-Seq所选样品一致, 使用TIANGEN试剂盒提取RNA, 用TaKaRa反转录试剂盒合成cDNA, 利用Aidlab试剂盒进行实时荧光定量PCR验证。反应条件为95℃预变性2 min; 95℃变性15 s, 60℃退火30 s, 40个循环。采用2–ΔΔCt法计算目的基因的相对表达量。
2 结果与分析
2.1 GRAS基因成员的鉴定及其理化性质分析
利用拟南芥GRAS基因与大麻基因组进行序列比对, 将获得的基因在Swissport数据库中进行结构域分析, 筛选出具有GRAS保守结构域的基因, 最终鉴定出54个大麻GRAS基因, 根据大麻基因CDS片段, 将54个GRAS基因命名为~(表1)。大麻GRAS蛋白长度为415~757 aa, 平均长度586 aa; 分子质量为46,405.05~85,748.52 kD, 平均分子质量66,199.41 kD; 等电点为4.77~8.54, 其中等电点小于7的GRAS蛋白有52个, 偏酸性; 其余的2个GRAS蛋白等电点大于7, 偏碱性。
2.2 GRAS基因的系统进化树构建和基因结构分析
为深入理解大麻GRAS不同基因间的进化关系, 通过构建大麻与拟南芥中GRAS基因进化树, 将大麻中54个GRAS基因分成LS、LISCL、SCR、HAM、SCL3、DELLA、PAT1、SHR、CsGRASA、CsGRASB共10个亚家族(图1)。其中PAT1亚家族成员最多, 含13个基因; SCL3亚家族成员最少, 含1个基因。大麻中新鉴定出2个亚家族, CsGRASA含有5个成员, CsGRASB含有3个成员, 2个亚家族都不含任何拟南芥GRAS成员, 单独形成一个分支, 而且亲缘关系较远。从图2可以看出, 相同亚家族的基因结构基本一致, 相同亚家族的保守基序也具有相似性, 表明同一个亚家族的基因具有相似的功能。在大麻GRAS基因中, 83.33% (45/54)的基因无内含子, DELLA亚家族有3个基因, 其中的Motif分析中未发现DELLA结构域, 可能是相邻连接法的算法将基因错误划分到了DELLA亚家族, 也有可能是其高度可变的N端序列差异导致其不能与同一亚家族的基因进行聚类, 水稻中GRAS家族成员也有相似的结果[30]。在所有大麻GRAS基因成员中都含有基序1、3、5, 表明这3个基序在GRAS中高度保守(图3), 具有重要作用。
表1 GRAS基因及相关信息
(续表1)
不同颜色表示不同的亚家族, 同一颜色的不同基因均属同一亚家族。
Different colors indicate different subfamily, and different genes under the same color belong to the same subfamily.
2.3 大麻GRAS基因的染色体分布与共线性分析
大麻染色体上GRAS基因位置分析表明, 大麻GRAS基因分布在10个染色体上, 与染色体长短无显著相关性(图4)。染色体NC6包含10个GRAS基因, NC1包含9个GRAS基因, 为含GRAS基因最多的2个染色体; NC9包含的GRAS基因最少, 只有1个; 其他染色体包含3~6个GRAS基因。其中5个染色体上出现了基因的串联重复情况, 尤其在NC1、NC6、NC7三个染色体上, 出现了大量GRAS基因的串联重复(相同染色体上基因有红色线段连接, 表示相关基因为串联重复基因), 串联重复基因占全部GRAS基因的44.44%, 表明大麻GRAS家族发生过明显的基因串联复制事件, 也表明基因串联重复事件在大麻GRAS家族的扩展中具有关键作用。通过大麻染色体间的共线性分析(有红色线段连接的为共线性基因)发现4对共线性基因(图5), 除与属HAM亚家族, 其他均分属不同亚家族, 这些基因是通过复制而得到相同连续顺序的旁系同源基因[28]。通过旁系同源基因的预测, 我们了解到NC5、NC6、NC8、NC10等4个染色体可能经历过染色体的片段复制, 而这4个染色体都能联系到NC10, 表明NC10可能是4个染色体中GRAS家族的关键染色体。为进一步了解大麻GRAS家族的进化机制, 构建了大麻与雷蒙德氏棉、大豆、水稻、玉米的GRAS家族共线性关系图(图6和图7), 这4种植物分别属于双子叶与单子叶植物。最终鉴定出大麻与雷蒙德氏棉有32对直系同源基因、与大豆有45对直系同源基因、与水稻有5对直系同源基因、与玉米有2对直系同源基因, 这也符合大麻与4种对应植物的进化关系。对5种植物进行共线性分析发现,在5种植物中未被鉴定到, 其中大部分都是串联重复基因, 可能是大麻原有GRAS基因进行串联重复扩增而来, 这些基因可能是双子叶与单子叶植物GRAS基因功能差异的相关基因[31], 而在5种植物中都被鉴定到, 且该基因包含GRAS基因中的motif 1~10, 推测该基因可能是双子叶植物与单子叶植物分化前就存在的GRAS基因。
2.4 镉胁迫下不同大麻耐性筛选
将云麻1号、甘肃大麻、内蒙古小粒大麻、内蒙古油用大麻、内蒙古土右旗大麻、皖大麻6种大麻进行镉胁迫萌发试验发现, 云麻1号发芽率最高, 内蒙古小粒大麻发芽率最低。在镉胁迫水培试验中, 云麻1号镉处理组和对照组平均株高分别为9.4 cm、10.5 cm, 平均鲜重分别为7.4 g、7.9 g; 内蒙古小粒大麻镉处理组和对照组平均株高分别为3.8 cm、11.2 cm, 平均鲜重分别为4.3 g、7.5 g。在重度镉污染耕地中, 云麻1号鲜重产量达21,134.40 kg hm–2, 内蒙古小粒大麻鲜重产量达11,173.95 kg hm–2, 表明云麻1号较内蒙古小粒大麻更耐镉胁迫[32]。
2.5 两个大麻品种在镉胁迫下GRAS基因的表达分析及qPCR验证
为了解大麻GRAS基因在正常条件及镉胁迫条件下的表达情况, 对云麻1号及内蒙古小粒大麻在2个环境下的植株进行了转录组测定, 表中各组基因的表达量均为3个重复的平均数。结果显示, 在云麻1号的转录组数据中(表2), 11个基因表达下降(占比20.37%), 下降倍数为0.13~0.91, 42个基因表达上调(占比77.78%), 上调倍数为1.05~18.10; 1个基因表达未发生变化(占比1.85%); 其中28个基因变化值差异显著。在内蒙古小粒大麻的转录组数据中(表3), 27个基因表达下降(占比50.00%), 下降倍数为0.30~0.96, 27个基因表达上调(占比50.00%), 上调倍数为1.01~6.46; 其中18个基因变化值差异显著。将表2与表3中GRAS基因按照增长倍数递增而排列, 云麻1号与内蒙古小粒大麻中GRAS基因家族部分基因对照组(CK组)表达量均为0, 无法计算倍数, 改为增加量(Cd–Ck)。
2.6 两个大麻品种中同源基因对比及qPCR验证
为进一步对比2个品种GRAS基因的表达情况变化, 本研究将2个品种的GRAS家族基因在正常环境下(YCK与NCK)及镉胁迫环境下(YCd与NCd) 表达进行比对(图9), 并对大麻GRAS基因与镉胁迫进行关联分析。根据GRAS基因在不同品种大麻不同环境下的表达量, 将图9中的54个GRAS基因从上往下划分,~在2种大麻中都表达下调;~与~在2种大麻中都表达上调;~与~在云麻1号中表达上调, 在内蒙古小粒大麻中表达下调, 其中33个基因在云麻1号中的上调与下调幅度都比内蒙古小粒大麻更加明显。从2个大麻转录组数据中挑选了12个基因进行RT-qPCR验证(图9), 只有表达趋势与转录组结果不一致, 其他基因的qPCR验证均与转录组一致, 表明转录组结果较为可靠。
表2 云麻1号GRAS基因表达
(续表2)
*表示在0.05水平显著差异。*means significant difference at the 0.05 probability level.
表3 内蒙古小粒大麻GRAS基因表达
*表示在0.05水平显著差异。*means significant differences at the 0.05 probability level.
3 讨论
随着高通量测序技术的发展, 越来越多的植物基因组完成了测序, 而基因家族分析也成了育种方向挖掘基因功能有效的生物信息学手段。目前, WRKY[33]、核苷酸结合位点基因家族(nucleotide binding site, NBS)[34]、MADS[35]等基因家族在很多物种中都被鉴定出来, 并进行了系统的研究与分析, 而GRAS基因家族在各种作物中, 尤其是各麻类作物中的研究还相对缓慢。
本研究从大麻基因组中鉴定出54个GRAS家族基因, 将拟南芥与大麻GRAS基因构建系统进化树后发现, 有2个亚家族未包含拟南芥GRAS基因。通过系统进化树、基因结构与Motif对比发现, CsGRASB亚家族中的可归纳到SCL3亚家族,与可能为与演变得到, 在演变过程中丢失了DELLA结构域, 在大麦GRAS家族鉴定中也未发现含DELLA结构域的GRAS基因, 表明DELLA结构域在不同物种间GRAS家族中的高度可变性[36]。而CsGRASA亚家族虽然与HAM亚家族亲缘关系最近,但两者差异较大, 无法合并为一个亚家族。故大麻GRAS基因一共鉴定出9个亚家族, 其中CsGRASA亚家族是大麻新GRAS基因亚家族。
*, **, ***分别表示在0.05、0.01和0.001水平显著差异。
*, **, *** mean significant differences at the 0.05, 0.01, and 0.001 probability levels, respectively.
本研究通过对大麻染色体间GRAS家族基因进行共线性分析发现, PAT1与SHR、SCR与PAT1、HAM与LISCL等不同亚家族间有共线性基因对, 表明这些亚家族有染色体片段复制的相关性。而通过构建大麻、雷蒙德氏棉、大豆、水稻、玉米基因组GRAS共线性分析发现, PAT1、LS、SHR、HAM在大麻、雷蒙德氏棉、水稻中有直系同源基因, 说明这些家族的保守性较强, 而在5种植物中都存在, 属于SHR亚家族, 表明其保守性最强, 可能在单双子叶植物分化前就存在[33], 且该基因在2个大麻品种镉胁迫下都上调表达, 可作为后续研究的关键基因之一。而演化的过程中, GRAS家族在PAT1、LISCL、CsGRASA上又发生了大量基因的串联重复, 这表明大麻GRAS的染色体片段复制与导基因串联重复是大麻出现54个GRAS基因的关键步骤。
本研究将镉耐受性不同的2种大麻进行GRAS家族基因表达量比对发现, 在镉胁迫下该基因家族表达量发生了明显的变化, 表明镉胁迫会显著影响大麻GRAS基因表达。其中大部分GRAS基因在更耐镉胁迫的云麻1号中上调表达明显, 表明GRAS基因家族与大麻的镉胁迫耐受性明显相关, 上调大麻GRAS家族基因可能会提高大麻的镉胁迫耐受性。通过图8中2种大麻的形态对比发现, 云麻1号在2种环境中形态未有显著差异, 但内蒙古小粒大麻在镉胁迫环境下根系明显变短, 而GRAS基因可以调控植物的根系生长及维管束的发育[37], 推测是镉胁迫抑制了内蒙古小粒大麻部分GRAS基因表达而影响大麻根系的生长。其中等 4个基因在云麻1号中表达上调, 但在内蒙古小粒大麻中明显下调, 推测其与大麻的根系发育有关。在植物激素方面, 2个DELLA基因:与都表达下调, 而DELLA基因负调控赤霉素途径, 推测大麻在镉胁迫环境下增加赤霉素等植物激素以缓解外界的镉胁迫[38]。而属于LISCL亚家族的与在云麻1号中明显表达上调, 在内蒙古小粒大麻中未发生变化, 推测其为改变植物的光转导途径来应对外界的环境变化[36]。将转录组中的12个基因进行qPCR验证发现, 其中91.66%的基因变化趋势与转录组结果相同, 表明转录组的结果较可靠。
4 结论
通过对大麻全基因组的序列比对, 共获得GRAS家族54个成员, 分属9个不同亚家族, 具有典型的GRAS或DELLA保守结构域。通过生物信息学方法分析大麻GRAS家族的理化指标、系统进化关系、基因结构、共线性关系表明, 染色体片段复制与串联重复复制对大麻形成54个GRAS基因起重要作用, 而转录组数据及qPCR验证都表明, GRAS基因与大麻应对镉胁迫有明显相关性, 但其主要影响的代谢通路及不同基因之间的协同作用还需进一步研究。
[1] Zheng X W, Yi D X, Shao L H, Li C. In silico genome-wide identification, phylogeny and expression analysis of the R2R3-MYB gene family in., 2017, 16: 1576–1591.
[2] Borrill P, Harrington S A, Uauy C. Genome-wide sequence and expression analysis of the NAC transcription factor family in polyploid wheat., 2017, 7: 3019–3029.
[3] Carolin H, Hannah K, Sven H, Stefanie W, Nina R, Natalia R. Symbiotic fungi control plant root cortex development through the novel GRAS transcription factor MIG1., 2016, 26: 2770–2778.
[4] Zhang L, Li Q, Chen J F, Chen W S. Computational identification and systematic classification of novel GRAS genes in., 2016, 14: 161–176.
[5] Chen K M, Li H W, Chen Y F, Zheng Q, Li B, Li Z S., a novel wheat (L.) GRAS gene, regulates plant growth, photosynthesis, tolerance to photooxidative stress, and senescence., 2015, 42: 21–32.
[6] Li S P, Zhao Y H, Zhao Z, Wu X L, Sun L F, Liu Q S, Wu Y K. Crystal structure of the GRAS domain of SCARECROW-LIKE7 in., 2016, 28: 1025–1034.
[7] Zhang H, Mi L M, Xu L, Yu C X, Li C, Chen C L. Genome-wide identification, characterization, interaction network and expression profile of GRAS gene family in sweet orange ()., 2019, 9: 59–66.
[8] Liu S, Xuan L, Xu L A, Huang M R, Xu M. Molecular cloning, expression analysis and subcellular localization of four DELLA genes from hybrid poplar., 2016, 5: 1–8.
[9] 王树林. 马铃薯StGRAS基因家族鉴定与基因克隆及其遗传转化. 甘肃农业大学硕士学位论文, 甘肃兰州, 2019. Wang S L. Identification of StGRAS Gene Family and Cloning ofGene and Its Genetic Transformation in Potato. MS Thesis of Gansu Agricultural University, Lanzhou, Gansu, China, 2019 (in Chinese with English abstract).
[10] Thieulin P G, Avilan L, Kojadinovic M, Gontero B. Fairy tails: flexibility and function of intrinsically disordered extensions in the photosynthetic world., 2015, 2: 23, doi: 10.3389/fmolb.2015.00023.
[11] Guo Y Y, Wu H Y, Li X, Li Q, Zhao X Y, Duan X Q, An Y R, Lyu W, An H L. Identification and expression of GRAS family genes in maize (L.)., 2017, 12: e0185418.
[12] Liu M Y, Huang L, Ma Z T, Sun W T, Wu Q, Tang Z Z, Bu T L, Li C L, Chen H. Genome-wide identification, expression analysis and functional study of the GRAS gene family in Tartary buckwheat ()., 2019, 19: 342, doi: 10.1186/s12870-019-1951-3.
[13] Zeng X, Ling H, Chen X M, Guo S X. Genome-wide identification, phylogeny and function analysis of GRAS gene family in(Orchidaceae)., 2019, 705: 5–15.
[14] Lu J X, Wang T, Xu Z D, Sun L D, Zhang Q X. Genome-wide analysis of the GRAS gene family in., 2015, 1: 303–317.
[15] Jia Y B, Tian H Y, Li H J, Yu Q Q, Wang L, Friml J, Ding Z J. Theelongator complex subunit 2 epigenetically affects root development., 2015, 66: 4631–4642.
[16] Tania H P, Nuria M R, David F F, Miriam V D, José M G G. Identification and expression analysis of GRAS transcription factor genes involved in the control of arbuscular mycorrhizal development in tomato., 2019, 10: 268, doi: 10.3389/fpls.2019.00268.
[17] Xu W, Chen Z X, Ahmed N, Han B, Cui Q H, Liu A Z. Genome-wide identification, evolutionary analysis, and stress responses of the GRAS gene family in castor beans., 2016, 17: 1004, doi: 10.3390/ijms17071004.
[18] Xie J, Liao H X, Wang X W, Zhang X B, Ni J L, Li Y Y, Tian W J, Sang X C. DLT/OsGRAS-32, regulating leaf width and thickness by controlling cell number in., 2019, 39: 1–11.
[19] Yuan Y Y, Fang L C, Karungo S K, Zhang L L, Gao Y Y, Li S H, Xin H P. Overexpression of VaPAT1, a GRAS transcription factor from, confers abiotic stress tolerance in., 2016, 35: 655–666.
[20] Chen Y Q, Tai S S, Wang D W, Ding A M, Sun T T, Wang W F, Sun Y H. Homology-based analysis of the GRAS gene family in tobacco., 2015, 14: 188–200.
[21] Shan Z Y, Luo X L, Wu M Y, Wei L M, Fan Z P, Zhu Y M. Genome-wide identification and expression of GRAS gene family members in cassava., 2020, 20: 46, 10.1186/ s12870-020-2242-8.
[22] Zhang B, Liu J, Yang Z E, Chen E Y, Zhang C J, Zhang X Y, Li F G. Genome-wide analysis of GRAS transcription factor gene family inL., 2018, 19: 348, doi: 10.1186/s12864-018-4722-x.
[23] 许艳萍, 吕品, 张庆滢, 郭蓉, 邓纲, 郭鸿彦, 杨明. 不同工业大麻品种对田间5种重金属吸收积累特性的比较. 农业资源与环境学报, 2020, 37: 106–114. Xu Y P, Lyu P, Zhang Q Y, Guo R, Deng G, Guo H Y, Yang M. Comparison of the absorption and accumulation characteristics of five heavy metals among different industrial hemp varieties., 2020, 37: 106–114 (in Chinese with English abstract).
[24] Husain R, Weeden H, Bogush D, Deguchi M, Soliman M, Potlakayala S, Katam R, Goldman S, Rudrabhatla S. Enhanced tolerance of industrial hemp (L.) plants on abandoned mine land soil leads to overexpression of cannabinoids., 2019, 14: e0221570.
[25] 殷龙飞, 王朝阳, 吴忠义, 张中保, 于荣.玉米基因的克隆及功能研究. 作物学报, 2019, 45: 1029–1037. Yin L F, Wang Z Y, Wu Z Y, Zhang Z B, Yu R. Cloning and functional analysis ofgene in maize., 2019, 45: 1029–1037 (in Chinese with English abstract).
[26] Yuan Y Y, Fang L C, Karungo S K, Zhang L L, Gao Y Y, Li S H, Xin H P. Overexpression of, a GRAS transcription factor from, confers abiotic stress tolerance in., 2016, 35: 655–666.
[27] 董丽莉, 赵韩生, 李利超, 孙化雨, 王丽丽, 高志民. 毛竹基因表达特征及其启动子活性研究. 热带亚热带植物学报, 2016, 24: 252–258.Dong L L, Zhao H S, Li L C, Sun H Y, Wang L L, Gao Z M. Expression characteristics and promoter activity analysis ofgene from., 2016, 24: 252–258 (in Chinese with English abstract).
[28] Laverty K U, Stout J M, Sullivan M J, Shah H, Gill N, Holbrook L, Deikus G, Sebra R, Hughes T R, Page J E, van Bakel H. A physical and genetic map ofidentifies extensive rearrangements at the THC/CBD acid synthase loci., 2019, 29: 146–156.
[29] Peng H, He X J, Gao J, Ma H X, Zhang Z M, Shen Y O, Pan G T, Lin H J. Transcriptomic changes during maize roots development responsive to cadmium (Cd) pollution using comparative RNAseq-based approach., 2015, 464: 1040–1047.
[30] Liu X Y, Widmer A. Genome-wide comparative analysis of the GRAS gene family in,and rice., 2014, 32: 1129–1145.
[31] Liu C Y, Xie T, Chen C J, Luan A P, Long J M, Li C H, Ding Y Q, He Y H. Genome-wide organization and expression profiling of the R2R3-MYB transcription factor family in pineapple ()., 2017, 18: 503, doi: 10.1186/s12864- 017-3896-y.
[32] 黄玉敏. 不同工业大麻品种耐镉性及原花青素缓解镉胁迫功能分析. 中国农业科学院研究生院硕士学位论文, 北京, 2019. Huang Y M. Cadmium Tolerance in Different Hemp Varieties and Analysis of Proanthocyanins in Relieving Cadmium Stress. MS Thesis of Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China, 2019 (in Chinese with English abstract).
[33] Xie T, Chen C J, Li C H, Liu J R, Liu C Y, He Y H. Genome-wide investigation of WRKY gene family in pineapple: evolution and expression profiles during development and stress., 2018, 19: 490, doi: 10.1186/s12864-018-4880-x.
[34] Vannozzi A, Wong D C J, Höll J, Hmmam I, Matus J T, Bogs J, Ziegler T, Dry I, Barcaccia G, Lucchin M. Combinatorial regulation of stilbene synthase genes by WRKY and MYB transcription factors in grapevine (L.)., 2018, 59: 1043–1059.
[35] Die J V, Román B, Qi X P, Rowland L J. Genome-scale examination of NBS-encoding genes in blueberry., 2018, 8: 3429, doi: 10.1038/s41598-018-21738-7.
[36] 孔豆豆, 毛成志, 王蕾, 王寒冬, 张怀刚, 徐金青, 沈裕虎.大麦基因组GRAS基因家族的全基因组鉴定与表达分析. 分子植物育种, 2019, 22: 1–23. Kong D D, Mao C Z, Wang L, Wang H D, Zhang H G, Xu J Q, Shen Y H. Genome-wide identification and phylogenetic analysis of the GRAS gene family in barley (L.)., 2019, 22: 1–23 (in Chinese with English abstract).
[37] 魏斐. 全基因组鉴定甘蓝型油菜GRAS基因家族. 郑州大学硕士学位论文, 河南郑州, 2018. Wei F. Genome-wide Identification GRAS Gene Family in. MS Thesis of Zhengzhou University, Zhengzhou, Henan, China, 2018 (in Chinese with English abstract).
[38] Dill A, Jung H S, Sun T P. The DELLA motif is essential for gibberellin-induced degradation of RGA., 2001, 98: 14162–14167.
Genome-wide identification of GRAS transcription factor and expression analysis in response to cadmium stresses in hemp (L.)
YIN Ming, YANG Da-Wei, TANG Hui-Juan, PAN Gen, LI De-Fang, ZHAO Li-Ning, and HUANG Si-Qi*
Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences / Key Laboratory of Biological and Processing for Bast Fiber Crops, Ministry of Agriculture and Rural Affairs, Changsha 410205, Hunan, China
GRAS transcription factors play important roles in plant growth, development and stress responses. In order to systematically analyze the GRAS transcription factor family in hemp, we performed a genome-wide identification of hemp GRAS genes, analyzed their physical and chemical properties, phylogenetic development, gene structure, and GRAS gene expression under cadmium stress in two hemp varieties (Yunma 1 and Inner Mongolia Xiaolidama). The results showed that there were 54 GRAS transcription factors in hemp genome, with the protein length from 415 to 757, encoding 96.30% of acidic proteins, the molecular weight from 46,405.05 to 85,748.52 kD and the isoelectric point from 4.77 to 8.54. These transcription factors were divided into nine subfamilies, among which, PAT1, LS, SHR, and HAM were more conserved, PAT1, LISCL, and CsGRASA had a large number of tandem repeats of genes, andgenes were all present in collinearity analysis of five plants. Yunma 1 and Inner Mongolia Xiaolidama were treated with cadmium stress. Plant height and the fresh weight decreased in Yunma 1 and Inner Mongolia Xiaolidama, by 10.48%, 6.33% and 66.07%, 42.67%, respectively, indicating that Yunma 1 was more tolerant than Inner Mongolia Xiaolidama under cadmium stress. Among 54 GRAS genes in Yunma 1, 42 genes (77.78%) were up-regulated by 1.05–18.10, and 11 genes (20.37%) were down-regulated by 0.13–0.91. Among 54 GRAS genes in small-grain cannabis in Inner Mongolia, 27 genes (50.00%) were up-regulated by 1.01-6.46, and 27 genes (50.00%) were down-regulated by 0.30-0.96. This study showed that the 40 homologous GRAS gene in Yunma 1 were significanlty up- or down-regulated than those in Inner Mongolia Xiaolidama under cadmium stress, indicating that these GRAS genes were significantly related to cadmium stress. This study can provide a reference for subsequent mining and verification of GRAS genes in hemp.
hemp; GRAS transcription factors; phylogenetic analysis; gene structure analysis; expression analysis
10.3724/SP.J.1006.2021.04078
本研究由国家现代农业产业技术体系建设专项(CARS-16-E02)资助。
This study was supported by the China Agriculture Research System(CARS-16-E02).
黄思齐, E-mail: huangsiqi@caas.cn
E-mail: 1586887698@qq.com
2020-03-27;
2020-11-13;
2020-12-28.
URL: https://kns.cnki.net/kcms/detail/11.1809.S.20201228.1501.010.html