苦荞重组自交系群体籽粒黄酮含量与产量性状分析
2021-03-30郑冉黎瑞源吕丹郑俊青石桃雄陈其皎陈庆富
郑冉 黎瑞源 吕丹 郑俊青 石桃雄 陈其皎 陈庆富
摘要:為揭示影响苦荞籽粒黄酮含量的主要因素,获得高黄酮含量的苦荞种质,该文以“小米荞×晋荞2号”重组自交系(RILs)群体为材料,采用酶标仪检测籽粒黄酮含量,调查了百粒重、籽粒长宽比、株高、分枝数及籽粒产量等性状的变异,并探究籽粒黄酮含量与产量性状之间的相关关系,比较了不同粒色、不同粒型苦荞株系的籽粒黄酮含量的差异,基于聚类分析筛选了高黄酮含量和高产优异株系。结果表明:(1)父本‘晋荞2号的籽粒黄酮含量、籽粒产量、百粒重和籽粒长宽比均极显著高于母本‘小米荞;RILs群体中籽粒黄酮含量的范围是1.34%~3.05%,变异系数为12.23%;产量性状的变异系数范围在9.38%~25.17%,其中籽粒产量最大,百粒重次之,籽粒长宽比最小;籽粒黄酮含量和产量性状呈现连续地近似正态分布,并存在明显的双向超亲现象。(2)苦荞籽粒黄酮含量与产量性状均不存在显著相关性;籽粒产量与百粒重、株高存在极显著正相关。(3)不同粒色和不同果壳类型的株系间籽粒黄酮含量差异不显著。(4)在欧式距离为17.6~20.6处,219个株系可聚为6类,其中C3类群和C6类群籽粒黄酮含量最高,均值分别为2.39%和2.35%,C2类群在籽粒产量、株高、分枝数、百粒重、籽粒长宽比等方面表现良好。
关键词: 苦荞, 重组自交系, 黄酮含量, 产量性状, 聚类分析
中图分类号:Q945
文献标识码:A
文章编号:10003142(2021)02021609
Abstract:In order toreveal the main factors affecting the flavonoids content of tartary buckwheat in seeds and select high flavonoids content lines, we determined the flavonoids content in seeds of a tartary buckwheat recombinant inbred lines (RILs) population derived from a cross of “Xiaomiqiao × Jinqiao 2”. The genetic variation of seed yield, 100seed weight, seed length to width ratio, plant height, branch number and flavonoids content in seeds were analyzed on RILs population. The relationship between flavonoids content in grains and yield traits was explored by correlation analysis. Variance analysis of flavonoids content in RILs population with different seed colors or shell types was carried out, cluster analysis for the RILs population was carried out based on the phenotypic data of investigated traits, and the excellent lines were selected by variance analysis among groups. The results were as follows: (1)The flavonoids content in seeds, 100seed weight, seed yield, and seed length to width ratio of ‘Jinqiao 2 were significantly higher than those of ‘Xiaomiqiao; The flavonoids content in seeds of the RILs population ranged from 1.34% to 3.05% with the coefficient variation of 12.23%; The coefficient of variation of yield traits ranged from 9.38% to 25.17%, in which grain yield was the largest, followed by 100seed weight, and seed length to width ratio was the smallest; The tremendous transgressive segregation for flavonoids content in seeds was observed in the population. (2)There was no significant correlation between flavonoids content in seeds and the investigated agronomic traits; Seed yield was significantly positively correlated to 100seed weight and plant height. (3)There were no significant differences in flavonoids content among lines with different seed colors or shell types. (4)The RILs population could be divided into six groups at the euclidean distance of 17.6-20.6. Group C3 and Group C6 had the highest flavonoids content in seeds, with the average values of 2.39% and 2.35% respectively. Group C2 had fine performance in plant height, branch number, seed yield, 100seed weight, and seed length to width ratio.
Key words:tartary buckwheat, recombinant inbred line, flavonoids content, yield traits, cluster analysis
苦荞(Fagopyrm tataricum)籽粒中含有大量的黄酮类化合物,是苦荞中最重要的抗氧化因子,具有抗肿瘤(李玉英等,2014)、抗氧化(鲍涛,2017)、抗炎症(Wang et al.,2013)、防止血管增生(SchiniKerth et al.,2011)、降血糖(Lee et al.,2016;Qin et al.,2017)、降血压(Hou et al.,2017)、降血脂(Qiu et al.,2016;薛朕钰等,2019)以及促消化(陈蕾,2016;周一鸣等,2019)等多种生理功能,被誉为“20世纪最后的一种营养素”(罗光宏等,2005),高黄酮苦荞资源的发掘利用也越来越受关注。目前,国内外学者对苦荞黄酮类物质的分析主要集中于成分构成(Sato Sakmura,1975;李丹等,2001)、分布与含量测定(徐宝才和丁霄霖,2003;朱友春等,2010;唐宇等,1989;赵玉平和肖春玲,2004)等方面。苦荞黄酮类化合物主要存在形式是黄酮醇和糖苷类化合物,从苦荞中鉴定出主要的黄酮类化合物有槲皮素3葡萄糖芸香糖苷、槲皮素30芸荞苷(芦丁)、山奈酚3芸香糖苷、槲皮素、槲皮素3芸香糖双葡萄苷、山奈酚。在整个生育期中,苦荞黄酮含量在1片真叶(苗期)时最高,孕蕾期至成熟期黄酮含量呈现低-高-低的变化趋势;各器官中黄酮含量大小依次为花>叶>籽粒>茎>根。苦荞籽粒中黄酮含量为1%~3%,成分中以芦丁为主。在苦荞籽粒发育过程中黄酮含量有一定波动。Gao et al.(2017)用高效液相色谱分析法测定苦荞种子中芦丁的含量,表明黄酮含量在种子灌浆期含量最高,随着种子成熟而降低,最终达到稳定状态。也有研究表明苦荞黄酮含量相关基因在灌浆期表达最为丰富(Huang et al.,2017)。苦荞籽粒黄酮含量也存在产地(刘三才等,2007)和品种的差异(母养秀等,2016)。
关于苦荞籽粒黄酮含量与产量性状相关性的研究报道较少。李月等(2013a)研究了8个甜荞品种在全国19个不同地点的籽粒黄酮含量与产量性状之间的相关性,结果表明黄酮含量与主茎分枝数、主茎节数、株高、单株粒数、单株粒重及千粒重不相关。樊林花(2005)利用3个苦荞品种高黄酮突变体M3代和M4代,进行了籽粒黄酮含量与产量性状的相关性分析,表明黄酮含量与株高、主茎节数、主茎分枝数和单株粒数呈正相关,与千粒重呈现极显著负相关。杨丽娟等(2018)以九江苦蕎为对照对5个米苦荞和3个多年生苦荞品种的籽粒性状和品质性状进行分析,发现籽粒黄酮含量与各籽粒性状及品质性状间相关性均未达到显著水平。饶庆琳等(2016)测定了100份薄壳苦荞高世代稳定品种的籽粒黄酮含量,表明籽粒黄酮含量与米粒质量呈极显著正相关,与果壳质量和果壳率呈显著负相关。周达(2016)对来自371份不同地区苦荞的黄酮含量与产量性状的成分分析与通径分析表明,单株粒数、千粒重对黄酮含量直接影响较大,苦荞籽粒越大,黄酮含量越高。以上研究大多集中于苦荞自然群体,研究遗传分离群体黄酮含量的报道较少。重组自交系(RILs)群体是一个稳定的永久性分离群体,黎瑞源等(2017)以苦荞“小米荞×晋荞2号”RILs群体为材料,构建了SSR分子标记遗传图谱,证明该群体适合于遗传作图分析,是苦荞产量和品质性状鉴定和QTL定位研究的材料基础。本文以“小米荞×晋荞2号”RILs群体F8代的219个株系为材料,分析了籽粒黄酮含量、株高、分枝数、籽粒产量、百粒重、籽粒长宽比的遗传变异,比较了不同粒色和果壳类型株系的黄酮含量差异,挖掘与籽粒黄酮含量相关的主要性状,筛选出籽粒黄酮含量及产量性状表现良好的株系,为高产、高籽粒黄酮含量的苦荞品种的选育提供指导。
1材料与方法
1.1 材料
以‘小米荞为母本,‘晋荞2号为父本构建的重组自交系(RILs)F8代的219个株系为供试材料。‘小米荞是云南地方品种,中秆、晚熟、种壳极薄、无沟槽、易脱壳成荞米、出粉率高;‘晋荞2号是山西省选育的高产优质,早熟、高秆、抗旱、抗倒伏、耐贫瘠、种壳厚有沟槽且不易脱壳。
1.2 性状调查
供试材料于2017年8月播种于贵州师范大学长顺基地,每个株系3行,中等肥力,常规田间管理。苦荞成熟后,每个株系按小区单独收获,脱粒,风干后称重计产;株高:直尺测量主茎基部至顶端的高度,厘米表示;分枝数:主茎基部至顶端着生的有效分枝数;百粒重、籽粒长宽比:选取有代表性的籽粒利用SG考种分析测定仪(杭州万深检测科技有限公司)进行测定。根据籽粒果壳特性分为“薄壳”(母本型)、“厚壳”(父本型)2种类型。使用比色卡对种皮颜色从浅到深依次分为黄色、褐色(父本型)、深褐色和黑色(母本型)4种类型。
1.3 籽粒黄酮的测定
每个株系称取饱满籽粒20~30 g使用高速粉碎磨样机充分研磨,称取0.020 0 g粉末置于2 mL离心管中,加入2 mL 75%的甲醇后置于60 ℃恒温水浴2 h,8 000 r·min1室温离心10 min,过滤后收集上清液。黄酮含量的测定参考吕丹等(2019)方法。
1.4 数据统计与分析
采用Excel 2016软件分析群体各性状的平均值、标准差、变异系数等描述性统计量。采用SPSS 20.0软件完成籽粒黄酮含量与籽粒性状的相关性分析、亲本籽粒黄酮含量和产量性状方差分析(t检验)、组间黄酮含量和产量性状的方差分析(F检验)及多重比较(Duncan法)。分别用R3.5.3统计软件(https://www.Rproject.org/)的scale、dist和hclust函数完成群体各性状的标准化和中心化、基于欧氏距离的相似性矩阵构建和基于离差平方和法(Ward)的聚类分析。
2结果与分析
2.1 RILs群体籽粒黄酮含量与产量性状的变异
亲本间籽粒黄酮含量与产量性状的方差分析表明,‘晋荞2号黄酮含量、百粒重、籽粒长宽比、籽粒产量均显著高于‘小米荞(表1)。从表1可以看出,重组自交系群体籽粒黄酮含量的变异程度较大,范围在1.34%~3.05%,平均含量为2.12%,变异系数为12.23%。RILs群体各产量性状均存在较大变异,变异系数最大的是籽粒产量(25.17%),其次是百粒重(13.57%),最小的是籽粒長宽比(9.38%)。从图1可以看出,RILs群体籽粒黄酮含量和产量性状呈现连续的近似正态分布,并且具有明显的双向超亲分离现象。
2.2 RILs群体籽粒黄酮含量与产量性状的相关性
由表2可知,籽粒黄酮含量与各产量性状的相关性均不显著。籽粒产量与株高和百粒重具有极显著的正相关性,其中籽粒产量与百粒重的相关系数是0.332,大于籽粒产量与株高的相关系数。此外,籽粒长宽比与株高呈显著正相关;百粒重与株高和分枝数呈极显著正相关;分枝数与株高呈极显著正相关(表2)。
2.3 不同粒色、不同果壳类型株系的籽粒黄酮含量的差异分析
按照籽粒颜色RILs群体可分为深褐色、褐色(父本型)、黑色(母本型)、黄色4个类型。方差分析表明,不同粒色株系间籽粒黄酮含量差异不显著。果壳类型为 “薄壳” (母本型)、 “厚壳 (父本型)”的株系个数依次为69和150(表4),不同果壳类型株系间的籽粒黄酮含量差异不显著。
2.4 RILs群体籽粒黄酮含量极端株系的筛选
以株高、分枝数、百粒重、籽粒长宽比、籽粒黄酮含量、籽粒产量等6个性状为指标,对RILs群体进行聚类分析,在欧式距离为17.6~20.6处,219个株系可分为6个类群(图2)。其中,C3类群和C6类群分别包含30个和18个株系,黄酮含量分别为2.08%~2.98%和1.97%~3.05%,平均值分别为2.39%和2.35%,显著高于其他4个类群;C4类群包含26个株系,黄酮含量为1.52%~2.44%,平均值为1.98%,显著低于其他5个类群;C2类群包含31个株系,株高、分枝数、籽粒产量、百粒重、籽粒长宽比均表现良好(表5)。
3讨论与结论
本研究中RILs群体219个F8家系性状变异系数分析表明,苦荞重组自交系各性状中百粒重、 籽粒黄酮含量和籽粒产量变异系数均高于10%,说明这些性状间差异较大,具有丰富的遗传多样性。其中籽粒产量的变异系数最大为25.20%,变异程度低于石桃雄等(2017)调查该RILs群体399个F6家系的籽粒产量,这可能与本文调查的株系数量较少有关。百粒重变异系数为13.57%,接近该群体F5家系(梁龙兵等,2016)和F6家系(石桃雄等,2017)的千粒重变异系数,说明该性状较稳定。籽粒黄酮含量的变异系数为12.23%,变异范围为1.34%~3.05%,变异程度高于苦荞自然种质籽粒黄酮含量(周达,2016;汪燕等,2017;吕丹等,2019),说明本研究的RILs群体更有利于筛选籽粒黄酮含量的极端株系。同时研究结果表明,该群体的父本‘晋荞2号的籽粒黄酮含量为2.42%,显著高于母本‘小米荞,这与胡鞒缤等(2013)和李月等(2013b)使用相同提取剂和显色剂测定的‘晋荞2号的籽粒黄酮含量大体一致,但高于黄元射等(2012)以亚硝酸钠、硝酸铝以及氢氧化钠混合液为显色剂测定的‘晋荞2号的籽粒黄酮含量(2.02%),这可能与显色剂不一致有关。
本研究中RILs群体籽粒黄酮含量与所调查的产量性状的相关性均未达到显著水平,这与周达(2016)研究苦荞自然群体籽粒千粒重及单株粒重的增加可以提高黄酮含量的结论不同,这可能与群体类型不同有关,表明对影响籽粒黄酮含量的因素还需要进一步挖掘。国内许多学者就影响苦荞产量的农艺性状做了深入的探索,研究表明较高的千粒重、株高、有效花序数、单株粒数和单株粒重(赵建栋等,2017;汪灿等,2013;贾瑞玲等,2015)对提升苦荞产量可起到有效的推进作用,也有研究表明秋季苦荞适宜的播期可提高其产量(黄凯丰等,2018)。本研究中苦荞籽粒产量与百粒重、株高呈极显著正相关,这与前人的研究较为一致,但与杨明君等(2010)以14个苦荞品种为材料得出的产量与千粒重呈不相关的结论相反,这主要与试验材料数目差异较大有关。综合上述分析,说明在大田育种中可以选择百粒重高、株高适中的株系作为高产苦荞选育的最佳材料。
本研究基于RILs群体的籽粒黄酮含量与产量性状,将219个株系聚为6类,类群间的方差分析表明,C3类群30个株系和C6类群18个株系的籽粒黄酮含量均值显著高于其他类群,分别为2.39%和2.39%,两个类群中的R14、R15、R17、R18、R79、R102、R176、R198、R200、R201、R205、R206、R212、R213、R214、R215、R216和R217等18个株系的果壳类型为薄壳,籽粒黄酮含量均高于‘小米荞,且接近高值亲本‘晋荞2号,可应用于高籽粒黄酮含量薄壳苦荞的改良。与常规苦荞相比,薄壳苦荞,如‘小米荞,其果壳薄(果壳率10%~20%)(陈庆富等,2015;陈庆富,2018)、无沟槽、易脱壳形成新鲜的苦荞米,在苦荞的加工领域具有更广泛的应用前景。C2类群的31个株系在籽粒黄酮含量、籽粒产量和产量相关性状等方面综合表现良好,其中R31株系是薄壳类型,籽粒产量高于高值亲本‘晋荞2号,可用于高产薄壳苦荞的育种试验。
参考文献:
BAO T, 2017. Antioxidant and antidiabetes activity of tartary buckwheat flavonoids derived from alpine mountain of Yunnan Province [D]. Hangzhou: Zhejiang University: 1-80. [鲍涛, 2017. 云南高寒山区苦荞黄酮抗氧化和降血糖活性研究 [D]. 杭州:浙江大学:1-80.]
CHEN L, 2016. The effect of tartary buckwheat on the intestinal flora [D]. Shanghai: Shanghai Normal University:1-70. [陈蕾, 2016. 苦荞对肠道菌群影响的研究 [D].上海:上海师范大学:1-70.]
CHEN QF, 2018. The status of buckwheat production and recent progresses of breeding on new type of cultivated buckwheat [J]. J Guizhou Norm Univ(Nat Sci Ed), 36(3): 1-7. [陳庆富, 2018. 荞麦生产状况及新类型栽培荞麦育种研究的最新进展 [J]. 贵州师范大学学报(自然科学版), 36(3):1-7.]
CHEN QF, CHEN QJ, SHI TX, et al., 2015. Inheritance of tartary buckwheat thick shell character and its relationships with yield factors [J]. Crops, (2): 27-30. [陈庆富, 陈其皎, 石桃雄, 2015. 苦荞厚果壳性状的遗传及其与产量因素的相关性研究 [J]. 作物杂志, (2): 27-30.]
FAN LH, 2005. Analysis on flavone and heredity of agronomic character of tartary buckwheat mutants [D].Taigu: Shanxi Agriculture University: 1-36. [樊林花, 2005. 苦荞突变体生物黄酮与部分农艺性状的遗传分析 [D]. 太古:山西农业大学: 1-36.]
GAO J, WANG TT, LIU MX, et al., 2017. Transcriptome analysis of filling stage seeds among three buckwheat species with emphasis on rutin accumulation [J].PLoS ONE,12(12): 1-22.
HOU ZX, HU YY, YANG XB, et al., 2017. Antihypertensive effects of tartary buckwheat flavonoids by improvement of vascular insulin sensitivity in spontaneously hypertensive rats [J]. Food Funct,8(11):4217-4228.
HU QB, YAO YY, LI YQ, et al., 2013. Determination and comparison of total flavonoid content from various parts of different buckwheat[J]. Food Drug, 15(6): 394-396. [胡鞒缤, 姚瑛瑛, 李艳琴, 等, 2013. 荞麦植株各部位总黄酮含量的测定与比较 [J]. 食品与药品, 15(6):394-396.]
HUANG J, DENG J, SHI TX, et al., 2017. Global transcriptome analysis and identification of genes involved in nutrients accumulation during seed development of rice tartary buckwheat (Fagopyrum tararicum) [J]. Sci Rep, 7(1): 11792.
HUANG KF, LI ZZ, WANG Y, et al., 2019. Research progress on physiology of buckwheat under highyield cultivation [J]. J Guizhou Norm Univ(Nat Sci Ed), 37(1):115-120. [黄凯丰, 李振宙, 王炎, 等, 2019. 我国荞麦高产栽培生理研究进展 [J]. 贵州师范大学学报(自然科学版),37(1):115-120.]
HUANG YS, HE SH, ZHANG QT, et al., 2012. Selection on high flavonoids producing Fagopyrum tataricum [J]. Guangdong Agric Sci, 39(18): 20-22. [黄元射, 何绍红, 张启堂, 等, 2012. 高黄酮苦荞品系的筛选 [J]. 广东农业科学, 39(18):20-22.]
JIA RL, MA N, WEI LP, et al., 2015. Genetic diversity analysis on the agronomic characteristics of 50 tartary buckwheat germplasms [J]. Agric Res Arid Areas, 33(5):11-16. [贾瑞玲, 马宁, 魏立平, 等, 2015. 50份苦荞种质资源农艺性状的遗传多样性分析 [J]. 干旱地区农业研究, 33(5):11-16.]
LEE DG, JANG IS, YANG KE, et al., 2016. Effect of rutin from tartary buckwheat sprout on serum glucoselowering in animal model of type 2 diabetes [J]. Acta Pharm, 66(2): 297-302.
LI D, XIAO G, DING XL, et al., 2001. Study on antioxidant effect of tartary buckwheat flavonoid [J].J Wuxi Univ Light Ind, 20(1): 44-47. [李丹, 肖刚, 丁霄霖, 等, 2001. 苦荞黄酮抗氧化作用的研究 [J]. 无锡轻工大学学报, 20(1):44-47.]
LI RY, LIANG LB, SHI TX, et al., 2017.Construction of a microsatellite based genetic map of tartary buckwheat using F5 recombinant inbred lines [J]. J Guizhou Norm Univ(Nat Sci Ed), 35(4): 31-45. [黎瑞源, 梁龙兵, 石桃雄, 等, 2017. 苦荞重组自交系群体F5代SSR遗传图谱的构建 [J]. 贵州师范大学学报(自然科学版), 35(4):31-45.]
LI Y, SHI TX, HUAG KF, et al., 2013a. Correlation analysis of tartary buckwheat seed yield with ecological factors and agronomic traits [J]. SW Chin J Agric Sci, 26(1): 35-41. [李月, 石桃雄, 黄凯丰, 等, 2013a. 苦荞生态因子及农艺性状与产量的相关性分析 [J]. 西南农业学报, 26(1):35-41.]
LI Y, SONG ZX, HU WQ, et al., 2013b. The correlation between protein and flavonoid contents and environment in different buckwheat cultivars [J]. Jiangsu Agric Sci, 41(5): 79-82. [李月, 宋志新, 胡文强, 等, 2013b. 不同品种荞麦蛋白质和黄酮含量与环境的相关性 [J]. 江苏农业科学, 41(5):79-82.]
LI YY, ZHAO SJ, BAI CZ, et al., 2014. Effect of isoquercetin from Fagopyrum tataricum on the proliferation and apoptosis of human gastric carcinom a cell line SGC7901 [J].Food Sci, 35(3): 193-197. [李玉英, 赵淑娟, 白崇智, 等, 2014. 苦荞异槲皮苷对人胃癌细胞SGC7901增殖及凋亡的影响 [J]. 食品科学, 35(3):193-197.]
LIANG LB, 2016. The study of main agronomic traits and SSR molecular markers in genetic population of tartary buckwheat [D].Guiyang: Guizhou Normal University:1-100. [梁龙兵, 2016. 苦荞遗传群体主要农艺性状的遗传及其SSR分子标记研究 [D]. 贵阳:贵州师范大学: 1-100.]
LIU SC, LI WX, LIU F, et al., 2007. Identification and evaluation of total flavones and protein content in tartary buckwheat germplasm [J]. J Plant Genet Resour, 8(3): 317-320. [刘三才, 李为喜, 刘方, 等, 2007. 苦荞麦种质资源总黄酮和蛋白质含量的测定与评价 [J]. 植物遗传资源学报, 8(3):317-320.]
LUO GH, CHEN TR, ZU TX, et al., 2005. Research of Fagopyrum tatarium bioflavonoids and its quantitative methods [J]. Food Sci, 26(9): 524-527. [羅光宏, 陈天仁, 祖廷勋, 等, 2005. 苦荞生物类黄酮及其测定方法研究进展 [J]. 食品科学, 26(9):524-527.]
L D, LI RY, ZHENG R, et al., 2019. Variation analysis of flavonoids content in seeds and seed traits of tartary buckwheat germplasm resources [J]. Mol Plant Breed, 18(14): 4762-4774. [吕丹, 黎瑞源, 郑冉, 等, 2019. 苦荞种质资源籽粒黄酮含量及籽粒性状的变异分析 [J]. 分子植物育种, 18(14): 4762-4774.]
MU YX, DU YP, CHEN CJ, et al., 2016. Correlation between nutritional quality and agronomic characters and yield of different tartary buckwheat varieties [J]. Jiangsu Agric Sci, 44(6): 139-142. [母养秀, 杜燕萍, 陈彩锦, 等, 2016. 不同苦荞品种营养品质与农艺性状及产量的相关性 [J]. 江苏农业科学, 44(6):139-142.]
QIN PY, WEI AC, ZHAO DG, et al., 2017. Low concentration of sodium bicarbonate improves the bioactive compound levels and antioxidant and αglucosidase inhibitory activities of tartary buckwheat sprouts [J]. Food Chem, 224: 124-130.
QIU J, LI ZG, QIN YC, et al., 2016. Protective effect of tartary buckwheat on renal function in type 2 diabetics: A randomized controlled trial [J]. Ther Clin Risk Manag, 12: 1721-1727.
RAO QL, CHEN QJ, CHEN QF, et al., 2016. Variation of total flavonoids content of thin shell buckwheat and its relationship with main yield components [J]. Jiangsu Agric Sci, 44(10): 333-336. [饶庆琳, 陈其皎, 陈庆富, 等, 2016. 薄壳苦荞品系籽粒总黄酮含量变异及与主要产量构成要素间的相关性 [J]. 江苏农业科学, 44(10):333-336.]
SATO H, SAKAMURA S, 1975. Isolation and identification of flavonoids in immature buckwheat seed (Fagopyrum esculentum Monch) [J]. J Agric Chem Soc JPN, 49: 53-55.
SCHINIKERTH VB, ETIENNESELLOUM N, CHATAIGNEA T, et al, 2011. Vascular protection by natural productderived polyphenols: in vitro and in vivo evidence [J]. Plant Med, 77(11): 1161-1167.
SHI TX, LI RY, LIANG LB, et al., 2018. Analysis of agronomic traits in recombinant inbred line population of tartary buckwheat (Fagopyrm tataricum) [J]. J S Chin Agric Univ(Nat Sci Ed), 39(1): 18-24. [石桃雄, 黎瑞源, 梁龙兵, 等, 2018. 苦荞重组自交系群体农艺性状分析 [J]. 华南农业大学学报, 39(1):18-24.]
TANG Y, ZHAO G, REN JC, et al., 1989. Changes of content of flavone and rutin in buckwheat [J]. Plant Physiol Comm, (1): 33-35. [唐宇, 赵钢, 任建川, 等,1989. 荞麦中总黄酮和芦丁含量的变化 [J]. 植物生理学通讯, (1):33-35.]
WANG C, HU D, YANG H, et al., 2013. Multiple analysis of relationship between main agronomic traits and yield in tartary buckwheat [J]. Crops, (6): 18-22. [汪灿, 胡丹, 杨浩, 等, 2013. 苦荞主要农艺性状与产量关系的多重分析 [J]. 作物杂志, (6):18-22.]
WANG LJ, YANG XS, QIN PY, et al., 2013. Flavonoid composition, antibacterial and antioxidant properties of tartary buckwheat bran extract [J]. Ind Crops Prod, 49: 312-317.
WANG Y, LIANG CG, SUN YH, et al., 2017. The yield and quality of tartary buckwheat varieties and the response to low nitrogen [J]. J Guizhou Norm Univ(Nat Sci Ed), 35(6): 66-73. [汪燕, 梁成剛, 孙艳红, 等, 2017. 不同苦荞品种的产量与品质及其对低氮的响应 [J]. 贵州师范大学学报(自然科学版), 35(6):66-73.]
XU BC, DING XL, 2003. The quantitative methods of flavonoids in buckwheat (Fagopyrum tataricum) [J]. J Wuxi Univ Light Ind (J Food Sci Biotechnol), 22(2): 98-101. [徐宝才, 丁霄霖, 2003. 苦荞黄酮的测定方法 [J]. 无锡轻工大学学报(食品与生物技术), 22(2):98-101.]
XUE ZY, XUE M, WANG X, et al., 2019. Study on antioxidant and hypolipidemic effects of nude oat extruded products with flavones in buckwheat [J]. Food Res Devel, 40(12):33-38. [薛朕钰, 薛淼, 王雪, 等, 2019. 添加苦荞黄酮提取物的裸燕麦挤压膨化产品抗氧化及降血脂功效研究 [J]. 食品研究与开发, 40(12):33-38.]
YANG LJ, CHEN QF, LI HY, et al., 2018. Analysis of grain characters and quality in new varieties of tartary buckwheat [J]. Guangdong Agric Sci, 45(5): 7-13. [杨丽娟, 陈庆富, 李洪有, 等, 2018. 新类型苦荞品种籽粒性状和米粒品质分析 [J]. 广东农业科学, 45(5):7-13.]
YANG MJ, YANG Y, GUO ZX, et al., 2010. Correlation analysis between grain yield and main character of tartary buckwheat in dry land [J]. Inn Mongol Agric Sci Technol, (2): 49-50. [杨明君, 杨媛, 郭忠贤, 等, 2010. 旱作苦荞麦籽粒产量与主要性状的相关分析 [J]. 内蒙古农业科技, (2):49-50.]
ZHAO JD, LI XL, SHI XH, et al., 2016. Principal component analysis and cluster analysis of Fagopyrum tataricum varieties(lines) [J]. Agric Sci Technol, 17(12): 2707-2712.
ZHAO YP, XIAO CL, 2004. Determination of total flavones on Fagopyrum gaertn of variety organs [J]. Food Sci, 25(10): 264-266. [赵玉平, 肖春玲, 2004. 苦荞麦不同器官总黄酮含量测定及分析 [J]. 食品科学, 25(10):264-266.]
ZHOU D, 2016. Analysis on the main agronomic traits and flavonoids content variation of tartary buckwheat resources [D]. Yangling: Northwest A & F University: 1-69. [周达, 2016. 苦荞资源主要农艺性状及黄酮含量变异分析 [D]. 杨凌:西北农林科技大学:1-69.]
ZHOU YM, ZHAO S, FENG F, et al., 2019. Modulatory effect of set yogurt with tartary buckwheat juice on intestinal flora in mice [J]. Food Sci, 40(13):123-129. [周一鸣, 赵燊, 冯飞, 等, 2019. 凝固型苦荞酸奶对小鼠肠道菌群的调节作用 [J]. 食品科学, 40(13):123-129.]
ZHU YC, TIAN SL, WANG DH, et al., 2010. Change of flavones content and nutrient ingredients of buckwheat at different growth stages [J].Gansu Agric Sci Technol, (6): 24-27. [朱友春, 田世龍, 王东晖, 等, 2010. 不同生育期苦荞黄酮含量与营养成分变化研究 [J]. 甘肃农业科技, (6):24-27.]
(责任编辑何永艳)