APP下载

烟田秸秆腐解特性及其腐解液对烟草疫霉菌的影响

2021-03-24陈丽鹃陈闺周冀衡闫晨兵柳立李强张毅

中国烟草科学 2021年1期

陈丽鹃 陈闺 周冀衡 闫晨兵 柳立 李强 张毅

摘  要:针对南方常见的烤烟轮作体系,研究3种作物(烟草、油菜和水稻)秸秆的腐解特性及其腐解液对烟草疫霉菌的影响,以期为烟田秸秆的综合利用提供理论依据。采用尼龙网袋法研究了3种秸秆在2种土壤水分条件下的腐解率及养分释放规律,并通过人工制备3种秸秆腐解液,研究了其不同浓度对烟草疫霉菌菌丝生长和孢子囊产生的影响。结果表明,前期烟草秸秆和油菜秸秆腐解较快,但腐解率总体表现为水稻秸秆>油菜秸秆>烟草秸秆,各处理秸秆180 d累积腐解率均在55%以上。3种秸秆的养分释放速率均表现为钾>磷>氮,经过180 d的腐解,氮、磷、钾的释放率分别为60.65%~70.18%、75.33%~84.81%及93.96%~97.34%。干湿交替处理的秸秆腐解率及养分释放率整体高于淹水处理,但差异均未达到显著水平。3种秸秆腐解液对烟草疫霉菌菌丝生长和孢子囊产生均有抑制作用,抑制强度表现为水稻秸秆>烟草秸秆>油菜秸秆,且抑菌率随着腐解液浓度的升高而增大,其EC50分别为0.82、1.40和2.08 g/L。因此,烤烟轮作体系中水稻秸秆较易腐解,且3种秸秆腐解液对烟草疫霉菌均存在化感作用,但不同水分条件对秸秆腐解及养分释放效率的影响有待进一步研究。

关键词:作物秸稈;腐解特性;养分释放;烟草疫霉菌;抑制作用

Abstract: In view of the common flue-cured tobacco rotation system in Southern China, the decomposition characteristics of three crop straws (tobacco, rape and rice) and the effects of the straw decomposed liquids on Phytophthora nicotianae were studied in order to provide theoretical basis for comprehensive utilization of tobacco field straws. Simulation experiment was adopted by using nylon net bags to study the decomposition rates and nutrient release patterns of three crop straws under two soil moisture conditions, and the effects of different concentrations of decomposed liquids on hypha growth and sporangium yield of Phytophthora nicotianae were analyzed by artificial preparation of three kinds of straw decomposed liquids. The results showed that tobacco straw and rape straw decomposed faster at the early stage, but the overall decomposition rate was shown as rice straw> rape straw > tobacco straw. The cumulative decomposition rate of straw in each treatment was above 55% in 180 days. The nutrient release rates of three crop straws were all shown as K>P>N, 60.65%-70.18% of nitrogen, 75.33%-84.81% of phosphorus and 93.96%-97.34% of potassium were released during decomposition. The decomposition rate and nutrient release rate of straw in dry-wet alternate treatment were higher than those in flooding treatment, but the differences were not significant. The results also showed that the three straw decomposed liquids had inhibition effects on hypha growth and sporangium yield of Phytophthora nicotianae, the inhibition rates were shown as rice straw > tobacco straw > rape straw. And the inhibition effect was enhanced with the increase of decomposed liquids concentration, with the median effective concentration (EC50) being 0.82, 1.40 and 2.08 g/L, respectively. Therefore, rice straw was easy to decompose in tobacco rotation system, and the three straw decomposition liquids had allelopathic effect on Phytophthora nicotianae. The effects of different water conditions on straw decomposition and nutrient release efficiency need to be further studied.

1.4  数据处理及分析

应用Excel 2010和SPSS 17.0软件对数据进行统计分析。

2  结  果

2.1  3种作物秸秆的腐解及养分释放特征

2.1.1  3种作物秸秆的腐解特征  3种作物秸秆在2种土壤水分条件下的腐解率变化规律如图1所示。总体来看,在180 d腐解期内,各处理秸秆的腐解率均随时间的延长而增大,呈现前期增加迅速,后期相对稳定的趋势。其中,水稻秸秆(S3M1、S3M2)的快速腐解期为0~30 d,30 d时腐解率高于其他2种秸秆处理,分别为55.41%和53.52%;烟草秸秆(S1M1、S1M2)和油菜秸秆(S2M1、S2M2)0~15 d腐解较快,而15~30 d腐解相对变缓,30 d时腐解率达45%以上。30~180 d为各处理秸秆的缓慢腐解期,180 d时累积腐解率达55.69%~69.39%,表现为水稻秸秆>油菜秸秆>烟草秸秆且差异显著(p<0.05)。不同土壤水分条件下秸秆的腐解特性差异不显著,但同一秸秆腐解率表现为干湿交替处理>淹水处理。

2.1.2  3种作物秸秆的氮释放特征  从图2可以看出,3种秸秆氮释放特征总体上与腐解率规律类似,但也表现出差异。0~15 d时水稻秸秆的氮释放速率低于烟草秸秆和油菜秸秆,从30 d开始,水稻秸秆和油菜秸秆的氮释放率高于烟草秸秆,这种趋势一直延续到腐解后期,3种秸秆之间表现为油菜秸秆>水稻秸秆>烟草秸秆。经过180 d的腐解,各处理秸秆的氮累积释放率分别为60.65%~70.18%,其中,同一秸秆淹水条件下的氮释放率低于干湿交替处理。

2.1.3  3种作物秸秆的磷释放特征  3种作物秸秆的磷释放特征如图3所示,总体表现为烟草秸秆>水稻秸秆>油菜秸秆。在腐解初期,各处理秸秆磷释放率就表现出明显差异,烟草秸秆在腐解的第15天就有65%左右的磷释放出来,显著高于油菜秸秆和水稻秸秆(p<0.05)。秸秆磷释放可分为3个时期: 快速释放期、释放减缓期和释放停滞期。秸秆腐解的前15 d是快速释放期,这期间各处理秸秆磷释放量占180 d磷释放总量的三分之二以上。同一作物秸秆干湿交替处理的磷释放率略高于淹水处理,但差异不显著,180 d时各处理秸秆的磷释放率为75.33%~84.81%。

2.1.4  3种作物秸秆的钾释放特征  秸秆中钾含量较高,且多数以离子态存在[8,12]。从图4可以看出,3种作物秸秆在2种土壤水分条件下的钾释放率均呈现前期快速释放,后期相对稳定的趋势。在腐解第15天,各处理秸秆近80%的钾已释放,待腐解结束时,秸秆钾释放率达93.96%~97.34%。

2.2  3种作物秸秆腐解液对烟草疫霉菌的影响

2.2.1  秸秆腐解液对烟草疫霉菌菌丝生长的影响  3种秸秆腐解液对烟草疫霉菌菌丝生长的影响如图5所示。可以看出,3种秸秆腐解液对烟草疫霉菌菌丝生长均有不同程度的抑制作用,在低浓度时抑菌率达到极显著差异(p<0.01);随着浓度的升高,3种腐解液对烟草疫霉菌菌丝的抑制率均逐渐增大,总体表现为水稻秸秆>烟草秸秆>油菜秸秆。水稻秸秆腐解液在0.6 g/L时抑菌率即达44.02%,3 g/L时抑菌率高达84.19%;在2.4 g/L和3 g/L时烟草秸秆腐解液的抑菌率分别为72.65%、81.20%,与水稻秸秆无显著差异,均高于油菜秸秆腐解液的65.35%、73.08%。

由表2可知,3种秸秆腐解液对烟草疫霉菌的毒力回归方程线性拟合较好。从EC50来看,油菜秸秆腐解液的抑菌中浓度为2.08 g/L,而水稻秸秆腐解液和烟草秸秆腐解液对烟草疫霉菌的抑菌活性较高,EC50分别为0.82和1.40 g/L。

2.2.2  秸秆腐解液对烟草疫霉菌孢子囊产生的影响  从表3可以看出,3种秸秆腐解液对烟草疫霉菌孢子囊的产生有明显的抑制作用,各处理孢子囊产量均与对照呈极显著差异(p<0.01),且抑制率随着处理浓度的升高而增大。3种秸秆腐解液对孢子囊产量的抑制强度表现为水稻秸秆>烟草秸秆>油菜秸秆,与其对菌丝生长的影响规律一致。水稻秸秆腐解液在低浓度时就表现出较强的抑制作用,当浓度为3.0 g/L时,3种秸秆腐解液对孢子囊产量的抑制率高达83.81%~94.16%。

3  讨  论

秸秆在土壤中的腐解是一个复杂的过程,腐解速率不仅与秸秆自身的性状有关,还取决于环境条件[24-25]。有研究表明[26-27],碳氮比是影响秸秆分解速率的一个重要因素,碳氮比较低的秸秆更容易腐解;另外,秸秆块的大小能够影响秸秆与土壤之间的水、气和营养元素等的互换,致使土壤微生物种群和活性产生差异从而影响秸秆的腐解速率[28]。土壤水热条件等环境因素对作物秸秆的腐解有显著影响[29],有研究表明,干湿交替条件下微生物的活性受到影响,存在厌氧和好氧微生物群落的交替[30]。本研究中,烟草秸秆和油菜秸秆的碳氮比较低且中腔充满易腐解的髓[13],因此二者在前期(0~15 d)较水稻秸秆腐解更快;3种秸秆在180 d时累积腐解率表现为水稻秸秆>油菜秸秆>烟草秸秆,这可能是因为烟草秸秆比重最大,同样重量条件下所占的体积最小,影响了其与微生物和土壤中酶的充分接触,另外烟秆外表面具有很厚的難腐解的角质层[13]。本试验中不同土壤水分条件下,同一秸秆腐解率表现为干湿交替处理>淹水处理,这与前人[14]的研究结果较为相似,土壤干湿交替处理更有利于作物秸秆的腐解。

秸秆在土壤微生物的作用下进行腐解并释放养分,因此秸秆还田已被认为是培肥土壤的有效措施,营养元素在秸秆中的存在形态是影响其释放速率的关键[14]。秸秆中的钾素含量较高且主要以K+形态存在,易溶于水;磷素60%以离子态存在,另一部分则以难分解的有机态存在;而氮素主要以有机态存在,不易分解,相对释放较慢。本研究中,3种作物秸秆的养分释放速率均表现为钾>磷>氮,这与前人的研究结果一致[12],经过180 d的腐解,60.65%~70.18%的氮、75.33%~84.81%的磷以及93.96%~97.34%的钾被释放出来。干湿交替处理秸秆的养分释放率高于淹水处理,这可能是由于好氧微生物的作用加快了秸秆中氮、磷、钾的释放,但本文中二者未达到显著差异,结果有待进一步验证。

秸秆等作物残体导致的化感作用在自然界中广泛存在[15-18],本试验中3种秸秆腐解液对烟草疫霉菌菌丝生长和孢子囊产生均有不同程度的抑制作用。抑菌率与腐解液浓度正相关,这与前人的研究结果相似[18]。随着浓度的下降3种腐解液的抑制作用差异变大,抑制程度总体表现为水稻秸秆>烟草秸秆>油菜秸秆,这可能与3种秸秆腐解过程中产生的抑菌活性物质含量有关,今后可结合仪器分析等手段进一步探明腐解液中的具体抑菌成分,从而分析其作用机理。

4  结  论

本试验中,3种作物秸秆在2种土壤水分条件下180 d累积腐解率达55.69%~69.39%,表现为水稻秸秆>油菜秸秆>烟草秸秆,且秸秆类型之间差异显著(p<0.05)。3种秸秆的养分释放速率均表现为钾>磷>氮,经过180 d的腐解,氮、磷、钾的释放率分别为60.65%~70.18%、75.33%~84.81%及93.96%~97.34%。不同土壤水分条件下秸秆的腐解率及养分释放速率整体表现为干湿交替处理>淹水处理,但差异不显著。3种秸秆腐解液对烟草疫霉菌菌丝生长和孢子囊产生均有不同程度的抑制作用,表现为水稻秸秆>烟草秸秆>油菜秸秆,抑菌率随着腐解液浓度的升高而增大,其EC50分别为0.82、1.40和2.08 g/L,因此秸秆腐解液对烟草疫霉菌存在化感效应。烤烟轮作体系中可以通过合理的秸秆还田来提高植烟土壤肥力,其中水稻秸秆较易腐解。不同水分条件对秸秆腐解及养分释放的影响有待进一步研究。

参考文献

[1]黄新杰,屠乃美,李艳芳,等. 湖南省烟稻轮作区土壤养分的空间变异特征[J]. 中国烟草科学,2012,33(3):13-16.

HUANG X J, TU N M, LI Y F, et al. Spatial variability of nutrient contents of tobacco and paddy soil in Hunan province[J]. Chinese Tobacco Science, 2012, 33(3): 13-16.

[2]刘晓永,李书田. 中国秸秆养分资源及还田的时空分布特征[J]. 农业工程学报,2017,33(21):1-19.

LIU X Y, LI S T. Temporal and spatial distribution characteristics of crop straw nutrient resources and returning to farmland in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(21): 1-19.

[3]LI L J, WANG Y, ZHANG Q, et al. Wheat straw burning and its associated impacts on Beijing air quality[J]. Science in China Series D: Earth Sciences, 2008, 51(3): 403-414.

[4]薄国栋,申国明,陈旭,等. 秸秆还田对植烟土壤酶活性及细菌群落多样性的影响[J]. 中国烟草科学,2017,38(1):53-58.

BO G D, SHEN G M, CHEN X, et al. Effect of straw returning on soil enzyme activities and diversity of bacterial communities in tobacco planting fields[J]. Chinese Tobacco Science, 2017, 38(1): 53-58.

[5]ZHANG J, BO G, ZHANG Z, et al. Effects of straw in-corporation on soil nutrients, enzymes, and aggregate stability in tobacco fields of China[J]. Sustainability, 2016, 8: 710.

[6]ARCAND M M, KNIGHT J D, RICHARD E F. Differentiating between the supply of N to wheat from above and belowground residues of preceding crops of pea and canola[J]. Biology and Fertility of Soils, 2014, 50(4): 563-570.

[7]LATIFMANESH H, DENG A, LI L, et al. How incorporation depth of corn straw affects straw decomposition rate and C&N release in the wheat-corn cropping system[J]. Agriculture, Ecosystems & Environment, 2020, 300: 107000.

[8]姜超強,沈嘉,王火焰,等. 烟秆还田对水稻产量和养分吸收的影响及其替代钾肥的效果[J]. 应用生态学报,2016,27(12):3969-3976.

JIANG C Q, SHEN J, WANG H Y, et al. Effect of tobacco straw incorporation on rice yield and nutrient absorption and its substitute for potassium fertilizer[J]. Chinese Journal of Applied Ecology, 2016, 27(12): 3969-3976.

[9]张丹,付斌,胡万里,等. 秸稈还田提高水稻-油菜轮作土壤固氮能力及作物产量[J]. 农业工程学报,2017,33(9):133-140.

ZHANG D, FU B, HU W L, et al. Increasing soil nitrogen fixation capacity and crop yield of rice-rape rotation by straw returning[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(9): 133-140.

[10]陈丽鹃,周冀衡,柳立,等. 不同秸秆对植烟土壤有机碳矿化和腐殖质组成的影响[J]. 中国烟草科学,2019,40(5):8-14.

CHEN L J, ZHOU J H, LIU L, et al. Effects of different crop straws on organic carbon mineralization and humus composition of tobacco-growing soil[J]. Chinese Tobacco Science, 2019, 40(5): 8-14.

[11]曹莹菲,张红,刘克,等. 不同处理方式的作物秸秆田间腐解特性研究[J]. 农业机械学报,2016,47(9):212-219.

CAO F Y, ZHANG H, LIU K, et al. Decomposition characteristics of crop residues among different agricultural treatments[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(9): 212-219.

[12]代文才,高明,兰木羚,等. 不同作物秸秆在旱地和水田中的腐解特性及养分释放规律[J]. 中国生态农业学报,2017,25(2):188-199.

DAI W C, GAO M, LAN M L, et al. Nutrient release patterns and decomposition characteristics of different crop straws in drylands and paddy fields[J]. Chinese Journal of Eco-Agriculture, 2017, 25(2): 188-199.

[13]刘炎红,姜超强,沈嘉,等. 烟杆腐解速率及养分释放规律研究[J]. 土壤,2017,49(3):543-549.

LIU Y H, JIANG C Q, SHEN J, et al. Decomposition rates and nutrient release patterns of tobacco straw[J]. Soils, 2017, 49(3): 543-549.

[14]武际,郭熙盛,王允青,等. 不同水稻栽培模式和秸秆还田方式下的油菜、小麦秸秆腐解特征[J]. 中国农业科学,2011,44(16):3351-3360.

WU J, GUO X S, WANG Y Q, et al. Decomposition characteristics of rapeseed and wheat straws under different rice cultivations and straw mulching models[J]. Scientia Agricultura Sinica, 2011, 44(16): 3351-3360.

[15]于建光,顾元,常志州,等. 小麦秸秆浸提液和腐解液对水稻的化感效应[J]. 土壤学报,2013,50(2):349-356.

YU J G, GU Y, CHANG Z Z, et al. Allelopathic effects of wheat straw extract and decomposition liquid on rice[J]. Acta Pedologica Sinica, 2013, 50(2): 349-356.

[16]李晶,赵先龙,乔天长,等. 秸秆腐解液对玉米幼苗的生理效应及酚酸类化感成分的检测[J]. 核农学报,2015,29(9):1799-1805.

LI J, ZHAO X L, QIAO T C, et al. Physiological effects of maize stalk decomposition liquid on seedlings and detection of phenolic allelochemical ingredients[J]. Journal of Nuclear Agricultural Sciences, 2015, 29(9): 1799-1805.

[17]郭晓源,景殿玺,周如军,等. 玉米秸秆腐解液酚酸物质含量检测及对玉米大斑病菌的影响[J]. 玉米科学,2016,24(4):166-172.

GUO X Y, JING D X, ZHOU R J, et al. Detection of phenolic acids in crop straw decomposed liquid and their effect on pathogen of northern leaf blight of corn[J]. Journal of Maize Sciences, 2016, 24(4): 166-172.

[18]張琴,李艳宾,滕立平,等. 不同腐解方式下棉秆腐解液对棉花枯、黄萎病菌的化感效应[J]. 农业环境科学学报,2012,31(9):1696-1701.

ZHANG Q, LI Y B, TENG L P, et al. Allelopathy of different decomposed liquids of cotton stalk on Fusarium oxysporum and Verticillium dahliae[J]. Journal of Agro-Environment Science, 2012, 31(9): 1696-1701.

[19]戴美玲,李强,解燕,等 . 紫茎泽兰提取物对烟草疫霉菌的抑制作用研究 [J]. 中国烟草学报,2018,24(6):126-133.

DAI M L, LI Q, XIE Y, et al. Study on the inhibitory effect of Eupatorium adenophorum extracts on Phytophthora parasitica var. nicotianae[J]. Acta Tabacaria Sinica, 2018, 24(6): 126-133.

[20]谭军,周冀衡,李强,等. 氮素形态对烟草黑胫病发生的影响[J]. 中国烟草科学,2017,38(4):80-85.

TAN J, ZHOU J H, LI Q, et al. Effects of nitrogen forms on the occurrence of tobacco black shank[J]. Chinese Tobacco Science, 2017, 38(4): 80-85.

[21]鲍士旦. 土壤农化分析[M]. 3版. 北京:中国农业出版社,2011.

BAO S D. Soil and agricultural chemistry analysis[M]. 3rd ed. Beijing: China Agricultural Press, 2011.

[22]方中达. 植病研究方法[M]. 北京:中国农业出版社,1998.

FANG Z D. Plant disease research method[M]. Beijing: China Agriculture Press, 1998.

[23]郑小波. 疫霉菌及其研究技术[M]. 北京:中国农业出版社,1995.

ZHENG X B. Phytophthora and its research techniques[M]. Beijing: China Agriculture Press, 1995.

[24]BAUMANN K, MARSCHNER P, SMERNIK R J, et al. Residue chemistry and microbial community structure during decomposition of eucalypt, wheat and vetch residues[J]. Soil Biology & Biochemistry, 2009, 41(9): 1966-1975.

[25]张红,吕家珑,曹莹菲,等. 不同植物秸秆腐解特性与土壤微生物功能多样性研究[J]. 土壤学报,2014,51(4):743-752.

ZHANG H, LYU J L, CAO F Y, et al. Decomposition characteristics of different plant straws and soil microbial functional diversity[J]. Acta Pedologica Sinica, 2014, 51(4):743-752.

[26]王晓玥,孙波. 植物残体分解过程中微生物群落变化影响因素研究进展[J]. 土壤,2012,44(3):353-359.

WANG X Y, SUN B. Factors affecting change of microbial community during plant residue decomposition: a review[J]. Soils, 2012, 44(3): 353-359.

[27]STUBBS T L, KENNEDY A C, REISENAUER P E, et al. Chemical composition of residue from cereal crops and cultivars in dryland ecosystems[J]. Agronomy Journal, 2009, 101(3): 538-545.

[28]BENDING G D, TURNER M K. Interaction of biochemical quality and particle size of crop residues and its effect on the microbial biomass and nitrogen dynamics following incorporation into soil[J]. Biology and Fertility of Soils, 1999, 29(3): 319-327.

[29]IBRAHIM M,CAO C G,ZHAN M,et al. Changes of CO2 emission and labile organic carbon as influenced by rice straw and different water regimes[J]. International Journal of Environmental Science and Technology, 2015, 12(1): 263-274.

[30]COPPENS F, GARNIER P, DE GRYZE S, et al. Soil moisture, carbon and nitrogen dynamics following incorporation and surface application of labelled crop residues in soil columns[J]. European Journal of Soil Science, 2006, 57(6): 894-905.