APP下载

三频非组合模型的GPS/BDS/Galileo精密定轨

2021-03-10隋立芬阮仁桂贾小林肖国锐

测绘学报 2021年2期
关键词:弧段钟差频点

曾 添,隋立芬,阮仁桂,贾小林,肖国锐

1. 93216部队,北京 100085; 2. 信息工程大学,河南 郑州 450001; 3. 地理信息工程国家重点实验室,陕西 西安 710054; 4. 西安测绘研究所,陕西 西安 710054

目前卫星精密定轨常规策略使用的是双频消电离层组合观测量,并未考虑使用三频及以上的观测量。在精密定位等领域已经证实,加入第3频点的观测量可以提升模糊度固定的收敛速度[1-2],对测站定位精度有一定改善[3-4]。近10年来,随着播发三频以上信号卫星数量的不断增多,可充分利用更多频点信息的新的、简洁的观测模型,即非差非组合(原始)模型,正成为研究热点[5-7]。非组合模型已经广泛应用于精密定位[3-4]、电离层建模[8]、差分码偏差估计[9]、钟差估计[10]、时间同步[11]、精密定轨[12-14]等众多领域。

需要指出,GPS的第3频点存在与卫星相关、随时间变化的频率间偏差IFCB[15]。该偏差量级达到分米级,在其他导航系统上量级较小,在厘米或毫米量级,许多文献因此忽略该影响。此外,文献[16]研究表明,在第3频点只存在与卫星相关的时变偏差,在接收机端可以忽略时变特性。三频非组合模糊度方法上,文献[17—19]分别给出了不同策略的模糊度固定方法,表明使用超宽巷(EWL)-宽巷(WL)-窄巷(NL)策略更优。

在非组合定轨方面,文献[20]首先研究了基于非组合观测模型的低轨卫星定轨策略。文献[21—22]对非组合精密定轨策略进行了初步的研究,指出由于存在大量的待估电离层参数,非组合精密定轨相比IF策略计算耗时急剧增大。文献[12]系统地对非组合观测方程的未知参数进行了分析,包括钟差及其秩亏问题、对流层延迟的估计、电离层延迟与码偏差估计及分离、模糊度与相位偏差的分离,并系统给出了精密轨道确定的流程。使用15年(2003—2017年)包括245个全球国际GNSS服务组织(international GNSS service,IGS)测站的GNSS观测数据进行验证,与IGS各分析中心和最终产品进行了比较,表明非组合定轨可以取得与IGS产品精度相当的轨道、钟差、坐标等产品,能够胜任分析中心的日常处理工作。文献[13]针对电离层参数庞大的问题提出了一种提高计算效率的非组合定轨方法。

如果考虑加入第3频点的观测量进行精密定轨,相关研究较少。尽管双频观测量的定轨可满足要求,达到较高的轨道和钟差等产品精度,但是三频观测量明显的一个优势是可得到更为稳健的结果。此外,相较于双频,额外增加了30%的观测数据是否能够改善精密定轨结果,改善的幅度如何仍值得探究。基于以上分析,本文着眼于研究三频非组合精密定轨策略,分析第3频点观测量的加入对精密定轨产品的精度改善情况。考虑到GNSS卫星端存在明显的相位时变偏差,本文研究了顾及/不顾及卫星端相位时变偏差的三频非组合精密定轨观测模型。首先推导顾及时变特性的观测方程重新参数化方法,然后分析基于双差法的三频非组合模糊度固定方法,使用目前可发播三频观测数据的全球系统,即GPS、BDS和Galileo进行试验验证。

1 观测模型

假定某一历元的观测方程为

(1)

将站星距离作泰勒级数展开,并选取IGS钟差基准,即IF组合策略,对观测方程进行参数重组

(2)

(3)

(4)

对于Galileo卫星,可直接使用式(2)作为非组合观测方程。

对于GPS卫星,由于IFCB的存在,需要对以上观测方程重新表达。顾及卫星端的时变偏差,且考虑伪距的权值较小,忽略伪距观测量的时变偏差,观测方程为

(5)

(6)

式(6)中与式(2)不同的参数为

(7)

(8)

三频非组合情况下,第3频点需要估计卫星端的时变偏差,而原始伪距的时不变偏差被吸收到第3频点的模糊度中。事实上,第3频点中仅伪距的观测方程包含时不变偏差,但为了保持伪距和载波偏差项的系数一致,可将该时不变偏差项吸收至模糊度中。注意式(6)中第3频点的伪距与载波的时变偏差项是一致的。

2 模糊度固定

无论是非组合或IF组合的观测模型,均借助观测量的线性组合策略实现模糊度固定,最典型的策略即为先固定(超)宽巷再固定窄巷模糊度,这在三频观测量情况下是类似的。类似双频非组合模糊度固定方法,对三频观测量进行线性组合,基于EWL-WL-NL策略进行模糊度固定,其中EWL和WL可使用HMW组合观测量直接取整得到,而NL模糊度则使用固定后的EWL、WL和3个频点的浮点模糊度计算得到。对2/3频点的观测量使用HMW组合有

(9)

(10)

3 试验与分析

为了验证提出的三频非组合精密定轨模型并分析第3频点观测量对精密产品精度的改善,选取3个可发射三频信号的GNSS(GPS、BDS和Galileo)卫星进行试验,对获取的轨道、钟差、测站坐标及对流层延迟产品进行精度评定。由于BDS-3当前可跟踪三频信号的MGEX测站数量较少,因此选取BDS-2卫星。选取的频点GPS为L1、L2和L5,BDS为B1I、B2I和B3I,Galileo为E1、E5a和E5b。卫星精密定轨时段为2019年7月19日至8月19日共约一个月。测站分布如图1所示,包括62个MGEX测站,均能接收3个GNSS的三频信号。使用的卫星为12颗GPS IIF卫星,9颗BDS-2的IGSO和MEO卫星,24颗Galileo卫星。考虑到BDS部分卫星和GPS的IFCB量级较大[16],对于GPS和BDS卫星,使用观测方程(6)进行定轨,而对于Galileo卫星,使用观测方程(2)进行定轨。由于计算耗时因素,分别进行的试验方案为GPS和BDS-2双系统定轨(共21颗卫星)和Galileo单系统定轨(共24颗卫星)。

图1 测站分布Fig.1 Station distribution of POD test

卫星定轨采样间隔300 s,截止高度角为10°。考虑的引力模型包括地球重力场(EGM2008模型,阶数取至30),太阳、月球、水星、金星、木星等N体引力(JPL DE405),地球固体潮汐引力,相对论效应[27];考虑的非引力模型包括太阳光压模型(使用ECOM 5参数模型[28])和地球辐射压(仅GPS考虑)。钟差每个历元进行估计,选取一地面测站作为参考钟,电离层延迟使用双频伪距观测量计算初始值。测站对流层采用先验模型改正和参数估计方法,先验模型采用Saastamoinen天顶延迟模型和GMF映射函数,湿延迟在天顶方向每两个小时估计一组,水平梯度在北向、东向每天估计一组。测站坐标依据IGS周解的snx文件中坐标及方差,对少量测站紧约束,每个分量约束为0.02 m,大部分测站每个分量松约束1000 m,使用双差模糊度固定方法,得到固定解结果。定轨弧长为1 d。GPS和Galileo卫星的天线改正使用igs14.atx文件,目前IGS发布的atx文件中不包含L5频段的天线相位中心偏差PCO及其变化PCV产品,假定L5频点的PCO及其PCV与L1、L2一致。BDS卫星的天线改正使用文献[29]估计的结果,其中B3频点的值使用B2频点的数值代替。接收机端天线改正GPS的L1和L2频点使用igs14.atx文件,L5频点使用L2频点数值代替,BDS和Galileo的接收机端天线改正与GPS相同。在精密定轨前,需要对三频观测数据进行预处理,使用无几何组合和HMW组合,即TurboEdit算法进行粗差剔除及周跳探测与修复[23],分别对1/2频点组合和1/3频点组合的观测量执行TurboEdit算法,剔除粗差,标记周跳发生位置,对模糊度参数进行统一分段。

定轨试验方案如下。

S1:1/2频点IF组合观测模型定轨(IF12)。

S2:1/3频点IF组合观测模型定轨(IF13)。

S3:1/2频点非组合观测模型定轨(UC12)。

S4:三频非组合观测模型定轨(UC3)。

待估参数包括历元参数和常量参数。历元参数包括卫星钟差、接收机钟差,对于非组合定轨还包括斜向电离层延迟;常量参数包括卫星位置(初始历元时刻)、测站位置、模糊度、天顶对流层延迟(ZTD)等。定轨中并未对分段参数预消除,因此常量参数的解算是在整个弧段的观测量累加后平差解算得到,然后恢复历元参数。卫星精密定轨的步骤为:原始GNSS观测数据预处理(周跳、粗差、钟跳等的处理),依据广播星历计算卫星初始状态和状态转移矩阵,建立观测方程并进行参数估计,残差编辑剔除较差的观测量,重复执行参数估计与残差编辑直至剔除所有超出阈值的观测量,最后进行模糊度固定并生成精密定轨产品。

为评定定轨精度,使用外部轨道产品、内部检核即天边界不连续性(DBDs)、卫星激光测距(SLR)手段进行验证。对于外部轨道产品,GPS与IGS最终产品进行比较,BDS、Galileo与GBM定轨产品进行比较。对所有参与国际激光测距服务组织的卫星进行SLR验证,包括BDS的C06等4颗卫星,Galileo所有卫星。由于在DOY212—213两天个别卫星定轨较差,因此剔除了这两个弧段的结果。

3.1 模糊度固定率

图2给出了GPS、BDS、Galileo卫星在每个定轨弧段的(超)宽巷和窄巷模糊度固定率。GPS各方案的宽巷和窄巷模糊度固定率基本相当,所有弧段平均固定率宽巷大小排序为S3>S1>S4>S2,相应地窄巷为S4>S3>S1>S2,但是百分比差别小于0.5%,其中窄巷固定率最高方案S4为86.7%。方案S4超宽巷模糊度固定率为98.9%。BDS超宽巷固定率为100.0%,所有弧段平均固定率宽巷大小排序为S3>S4>S2>S1,相应地窄巷为S2>S4>S3>S1,IF13结果(S2方案)模糊度固定率较高,比S4方案平均高约1%。Galileo超宽巷固定率为100%,平均结果宽巷大小排序为S2>S4>S3>S1,相应地窄巷为S2>S3>S4>S1,不同方案结果差异很小,接近0.1%。

图2 每个定轨弧段的超宽巷、宽巷和窄巷模糊度固定率,其中IF12、IF13、UC12和UC3分别对应方案S1—S4Fig.2 EWL, WL and NL ambiguity fixing rates at each POD arc IF12, IF13, UC12 and UC3 denote the S1—S4 POD schemes respectively

模糊度结果的差异很小,其原因主要是在进行模糊度固定时,使用了消去电离层误差的线性组合观测量,并进行双差运算,可以将卫星端和接收机端的大部分误差项基本消除,传播路径的误差也得到极大削弱。因此使用这些精确的双差模糊度进行模糊度固定,三频和双频策略的模糊度固定率是相当的。此外,无论是三频或者双频定轨,均使用(超)宽巷、窄巷序贯模糊度固定的方法,最终均固定相同的窄巷双差模糊度,因此双频与三频的模糊度固定率相当。

3.2 定轨产品精度

表1给出了所有定轨弧段的外部检核平均结果。图3展示了GPS、BDS和Galileo卫星得到的每个弧段在径向(R)、切向(T)、法向(N)的定轨精度。

图3 每个定轨弧段GPS、BDS、Galileo轨道在R、T和N方向的平均精度RMSFig.3 Averaged GPS, BDS and Galileo orbits RMS in R, T and N directions for each POD arc

GPS三频定轨方案相比IF12和IF13定轨策略在3个方向均有改善。由表1知相比IF12在R、T、N、三维(3D)方向分别改善10.1%、9.3%、10.2%、9.8%,而相比IF13结果改善程度更小,三维方向相差仅约1 mm。

BDS可知方案S4与另外3个方案定轨精度基本相当,存在比方案S1更差的情况,其中第211 d结果方案S4多数卫星显著更差,可能原因是个别测站在当日三频模型结果较差。由表1知整体上方案S4较S1和S2略微更差,可能是由于外部产品的精度也不确定。

Galileo结果可知定轨精度几乎是一致的,尽管存在个别弧段厘米量级的差异。由表1也可看出,方案S4相比S1轨道几乎没有提升,精度改善百分比约为1%。

图4给出了GPS、BDS和Galileo钟差在每个定轨弧段的均方根误差(RMS)和标准差(STD),注意1/3频点组合的方案S2与其余方案的钟差基准不一致。与GPS轨道结果类似,十字形(S4)略微更优,尤其是STD。由表1也可看出,相比方案S1,钟差RMS和STD改善了0.2%和7.6%,钟差STD改善量级0.004 ns。BDS和Galileo与GBM产品比较结果表明,方案S4并无显著改善,结果差异在2%以内。

图4 每个定轨弧段GPS、BDS、Galileo卫星钟差平均精度,包括RMS和STDFig.4 Averaged GPS, BDS and Galileo clocks RMS and STD for each POD arc

表1 GPS、BDS和Galileo外部轨道比较结果及DBDs

图5展示了GPS、BDS、Galileo每颗卫星在一个月的平均定轨精度,图6为每颗卫星钟差的结果,目的是排除个别卫星可能影响评定结果。由图5可见:①GPS卫星轨道的3个方向以及钟差的STD整体上均比方案S1结果更优;②BDS卫星结果中,4种方案的结果存在一定差异,其中部分卫星(如C11和C12)的轨道和钟差精度方案S4比其他方案更差,可能是PCO对于非组合模型存在不适用性或BDS数据质量问题;③Galileo卫星不同方案定轨精度基本是一致的,部分卫星方案S4更优,部分卫星方案S1或S2更优。

图5 每颗GPS、BDS、Galileo卫星轨道在R、T和N方向的平均精度RMSFig.5 Averaged GPS, BDS and Galileo orbits RMS in R, T and N directions for each satellite

图6 每颗GPS、BDS、Galileo卫星钟差平均精度,包括RMS和STDFig.6 Averaged GPS, BDS and Galileo clocks RMS and STD for each satellite

以上结果表明,与BDS和Galileo不同,GPS三频策略相较方案S1改善仍能达到约10%,最可能的原因是GPS的L5频点的信号质量好于L2频点[30]。

进一步查看其内部符合精度的差异,利用DBDs进行评定。图7展示了GPS、BDS、Galileo卫星在每个弧段所有卫星的DBDs。表1给出了统计的三维精度:①GPS定轨精度三维方向S4较S1方案改善了11.1%,BDS和Galileo卫星的改善结果较小甚至更差,相应地分别改善了-2.9%和7.2%;②尽管Galileo存在部分弧段的DBDs精度S1方案(圆圈)显著差于三频定轨结果,约在厘米量级,然而,其对应频点的双频非组合定轨精度(S3)却与三频定轨精度仅相差1~2 mm量级,即三频和双频非组合定轨精度更加一致。

图7 每个定轨弧段GPS、BDS、Galileo卫星轨道DBDs在R、T和N方向的平均精度RMSFig.7 Averaged GPS orbits RMS of DBDs in R, T and N directions

表2给出了POD得到的测站位置及天顶对流层延迟的结果,其中测站位置与IGS周解文件IGSyyPweek.snx进行比较得到北(N)、东(E)、天(U)方向的RMS,部分测站RMS值大于1 dm的结果被剔除。ZTD的偏差计算方法为取每个测站偏差的绝对值,然后对所有测站在整个定轨弧段取平均。RMS剔除了超过2 cm的结果。由表2可知,①GPS和BDS双系统策略测站位置精度,方案S4较S1,N、E、U、3D方向分别改善了8.0%、8.3%、7.8%、8.0%,改善量级在1 mm以内,这一结果与Galileo方案类似,约改善10%。但是,Galileo的方案S2与S4的测站位置精度基本相当;②对流层延迟精度GPS和BDS双系统结果方案S4较S1略微更差,而Galileo的结果S4方案略微更优,RMS差异百分比1%左右,表明这一差异并不显著。定轨结果中出现三频较双频定轨结果更差的情况,最可能的原因是第3频点的误差项没有准确改正,如BDS卫星PCO误差,另外的原因可能是三频非组合定轨观测模型有待进一步精化。

表2 测站位置及天顶对流层延迟与IGS产品的整体比较结果

3.3 SLR验证

由于IGS分析中心得到的精密产品均是基于IF组合的观测模型,模型差异性可能存在。为此,使用卫星激光测距观测量,对获得的一个月的轨道产品进行检核。可检核的卫星包括BDS 4颗和Galileo所有卫星。图8为BDS、Galileo每颗卫星的统计结果,包括SLR的偏差、STD及RMS。BDS每颗卫星情况不一样,偏差值方面整体上方案S4相比S1略微更优。表3给出了4颗卫星的平均值,表明偏差值略微提升了1 mm,而相比方案S2则提升了3 mm,但是RMS改善不大甚至略微更差,原因可能是BDS观测数据质量、卫星轨道精度及稳定性都有待提升。Galileo结果表明4种方案定轨结果差异很小。需要指出,Galileo卫星的偏差值存在一个系统性偏差,这一偏差在GBM和WUM产品中基本消失, 原因为本文的定轨软件暂未考虑天线推力对定轨的影响。由表3可知Galileo卫星RMS 4种方案差异小于1 mm,表明三频定轨并未带来明显的精度改善。

图8 每颗BDS、Galileo卫星30个定轨弧段的SLR平均偏差、STD和RMSFig.8 SLR offset, STD, RMS and NP number for BDS and Galileo satellites over 30 POD arcs

表3 不同定轨方案BDS和Galileo卫星SLR检核整体均值,包括偏差、STD和RMSTab.3 Averaged offset, STD and RMS of SLR residuals for BDS and Galileo satellites mm

3.4 精密定轨残差

为进一步分析定轨结果,图9给出了3个系统每个弧段的定轨残差,其中不同颜色表示4种不同的定轨方案。对于非组合定轨结果(S3和S4)不同的符号标记对应不同频点的定轨残差。表4给出了伪距和载波相位定轨残差的RMS均值。对于IF12和IF13策略的结果已对残差除以相应的比例因子。结果表明:

表4 GPS、BDS和Galileo卫星伪距和载波相位整体定轨残差Tab.4 Averaged RMS of POD residuals for GPS, BDS and Galileo satellites m

图9 GPS、BDS、Galileo卫星伪距和相位定轨残差的RMSFig.9 RMS of code and carrier phase residuals for GPS satellites at each arc

(1) 3个GNSS的载波残差S4相较S3方案均更大,比如GPS的方案S3,L1、L2残差分别为3.1、1.9 mm,而S4方案的残差则分别为3.5、2.6 mm。文献[22]对BDS的三频定轨初步试验也得到了类似的结果。原因可能是三频非组合的误差建模并不是最优的,另外有可能还受到误差项如第3频点天线相位中心误差不准确的影响。对于伪距残差,不同方案的结果基本相当,尤其是对于方案S3和S4,两个频点平均结果几乎一致,仅有毫米量级的差异。

(2) 3个系统各频点的载波相位定轨残差UC相比IF(除以比例因子后)均更小,而伪距的IF残差介于UC两个频点之间。另外,BDS结果S4方案载波相位每个定轨弧段残差的波动比其他方案更大,而GPS和Galileo卫星不存在该现象。可能正是由于BDS数据质量、卫星轨道精度及稳定性原因,导致外部检核、激光检核得到不同方案优劣的结论并不清晰。应当指出不同定轨方案得到的残差均值量级是一致的,对于伪距残差的平均值为厘米至毫米量级,相位为亚毫米量级,表明定轨结果不存在系统性误差。

3.5 讨 论

以上定轨结果分析表明:

(1) 3个GNSS中,仅GPS卫星三频非组合定轨相较L1/L2频点策略对轨道和钟差改善较为显著,相比L1/L5频点定轨结果略微更优,基本上是一致的。这表明并不是增加了多余观测量较大程度改善了轨道精度,更可能的原因是GPS的L5频点的信号功率强于L2频点,从而方案S2的定轨精度优于方案S1。

(2) 由于相同的窄巷波长,4种定轨方案的模糊度固定率差异很小。BDS外部轨道比较结果三频定轨反而变差,而Galileo结果三频非组合轨道和钟差精度仅有约1%的差异或改善,DBDs的结果也验证了这一结论,差异在1~5 mm。除了BDS的方案S1与S4比较结果,BDS和Galileo卫星三频定轨结果SLR残差的RMS几乎没有改善,差异或改善幅度小于1%。BDS存在较大差异甚至变差的原因可能是PCO模型精度或BDS数据质量、卫星轨道精度及稳定性原因。

因此,三频定轨精度并没有对轨道和钟差等定轨产品精度带来显著提升。原因可能是:①额外频点的观测量并未改善观测量之间的几何构型,导致对产品精度改善贡献微弱,尽管增加了额外1/3的冗余观测量,这可能是最重要的原因;②对第3频点观测量的建模还有待改进,相比双频非组合定轨结果,3个GNSS的三频定轨相位残差均增大了亚毫米量级。因此观测模型可能有待进一步优化,另外存在一些误差项如第3频点的卫星端和接收机端的天线相位中心偏差并未正确改正。一个例外是GPS的L1/L2策略,其产品精度差于三频定轨结果和L1/L5双频定轨结果,最可能的原因是L5频点有更高的码片率和接收功率,且L1/L5组合的观测噪声优于L1/L2组合。

4 结 论

本文提出了三频非差非组合精密定轨观测模型及其模糊度固定方法,评定了第3频点观测量对GNSS精密定轨的贡献。针对GPS及部分BDS卫星存在相位时变偏差问题,将载波相位观测量的时延偏差分成时变和时不变分量,分别得到适用于不同GNSS的三频定轨观测模型;发展了适用于精密定轨的双差策略的三频模糊度固定方法。进行精密定轨试验验证,评定额外增加的1/3观测量对GNSS定轨产品的贡献。结果表明,三频定轨对轨道、钟差、测站位置和对流层产品精度的改善有限,对于BDS和Galileo改善或差异小于5%,对于GPS相比L1/L2频点双频定轨结果改善10%,但是与L1/L5频点双频定轨结果基本相当,原因可能是GPS的L2频点信号功率较低。

致谢:特别感谢IGS的MGEX项目为本文提供数据。

猜你喜欢

弧段钟差频点
基于改进弧段切点弦的多椭圆检测
交通运输网络的二叉堆索引及路径算法优化
电弧增材制造过程的外形控制优化
IGS快速/超快速卫星钟差精度评定与分析
实时干涉测量中对流层延迟与钟差精修正建模
基于拉格朗日的IGS精密星历和钟差插值分析
基于测量报告数据优化CSFB频点配置的方法
浅谈如何将多段线中的弧线段折线化
SOCP宽带波束形成器非样本频点上恒定束宽问题研究
载带压缩11频点创新方案