APP下载

微纳米点阵力学超材料的设计和性能

2021-03-06李晓雁

力学与实践 2021年1期
关键词:幂指数桁架曲面

张 璇 李晓雁

*(莱布尼茨新材料研究所,德国萨尔布吕肯66123)

†(清华大学工程力学系先进力学与材料中心,北京100084)

在旅行中,我们常常会看到一些精美绝伦的镂空建筑,如高达324 米的埃菲尔铁塔、占地25 万平方米的鸟巢体育场,令人叹为观止(图1)。这些复杂的建筑结构背后,都蕴含着一个简单的思想:通过特殊的结构设计,以消耗最少的材料来实现最优的力学性能。将建筑结构设计的理念拓展到材料设计中,人们通过在块体材料中引入微结构,从而可以精确调控力学性能参数,例如实现更高的刚度和强度,获得本身块体材料所不具备的超常规力学性能。这些经过特殊设计从而具有超越一般实体材料力学性能的多孔结构,我们又赋予它们一个新名字-- 力学超材料。

虽然“力学超材料”概念的提出由来已久,但是因为这些材料往往具有繁复的细节设计和苛刻的尺寸要求,长期以来受到制备条件的约束,发展比较缓慢。21 世纪以来,随着各式各样的增材制造技术的迅速发展,使得力学超材料在近些年来成为了固体力学和材料科学研究的前沿和热点。

图1

依据所调控的力学参数的不同,可以将目前所研究的力学超材料大致分为以下几类:轻质超强点阵力学超材料、拉胀力学超材料、多稳态力学超材料、超流体力学超材料、手性力学超材料、拓扑力学超材料等。如对于轻质超强点阵力学超材料,通过调控其结构设计,可以实现超越普通材料的更高刚度和强度;对于拉胀力学超材料,其泊松比通常为负值,通过结构设计可调控材料的负泊松比值,以及几何参数对泊松比正负的影响;多稳态力学超材料是指可以通过结构设计,实现多种稳定形貌的互相转换;超流体力学超材料则是通过特殊设计,使得其结构剪切模量可以忽略不计,表现出类似流体材料的性质等等。

在类型众多的力学超材料中,轻质超强点阵力学超材料,由于其具有超越普通材料的刚度和强度等优异力学性能,得到了人们的广泛关注和研究。轻质超强点阵力学超材料,顾名思义,是指一类具有密度超低、刚度和强度超高、由规则单胞周期排布的结构材料。在Gibson 和Ashby 合著的一本经典教材《多孔材料:固体结构与性能》中指出:“多孔材料的刚度和强度与该材料本身的相对密度呈幂指数关系,与其本体材料性能呈线性关系,其中幂指数的取值与其孔隙形状和变形模式相关。”

点阵力学超材料就是一类特殊的多孔材料。随着研究的不断深入,人们通过多样化的结构设计和优化、制备手段的不断改进等方法,不断提高材料的使用效率,在追求力学性能更高更强的同时,减少材料的使用,实现轻质超强的特点。

研究初期,人们主要将目光集中在以直杆为基本组成单元的桁架点阵力学超材料的设计和制备上。常见的桁架点阵材料按照变形模式可以分为拉伸主导型和弯曲主导型两类。拉伸主导型多孔材料是指在工作载荷下,材料内部主要承受单轴拉伸或压缩形变,其材料的刚度通常与相对密度呈一次幂指数关系;弯曲主导型多孔材料在变形时,材料内部则通常为弯曲形变,使得这类材料的刚度随相对密度呈高次幂指数关系,如平方或立方次幂。对比而言,要想在相同的相对密度条件下获得更高的结构刚度或强度,通常要选择具有拉伸主导型变形模式的结构设计。例如典型的拉伸主导型单胞有八面体型和均质立方型,见图2。如上所述,这类点阵材料在承受外力加载时,每根直杆受力状态基本以拉伸和压缩为主,在力学性能与相对密度的幂律关系中,幂指数趋近于理想值1。在桁架点阵结构设计本身已经无限接近最优的情况下,人们试图从本体材料的选择入手,进一步提高这类桁架点阵力学超材料的比力学性能(即单位密度条件下的力学性能)。

图2 典型的拉伸主导型单胞[1]

对微纳米材料的广泛研究表明,材料本身的特征尺寸对微纳米材料的力学性能影响显著。对于陶瓷材料,其在宏观尺寸下表现为脆性破坏,但是随着材料特征尺寸减小到某一临界尺度(通常为一百到几十纳米量级) 以下,材料呈现出缺陷不敏感性,其断裂强度可以达到材料的理论强度,且材料具有较好的变形能力。加州理工学院的研究者利用原子层沉积和离子刻蚀的方法,制备获得了一种薄壁厚度仅有5 ~30 nm 的中空八面体型氧化铝陶瓷点阵力学超材料,这种超材料能够承受50%的压缩应变,且在卸载之后,仍然能够恢复到初始状态,呈现优异的可恢复性(图3)[2]。通过对结构内部的薄壳变形分析表明,一方面由于薄壁厚度仅有几十纳米,即使在大弯曲变形的状态下材料内部的局部应变仍然较小,另一方面纳米量级厚度的陶瓷材料由于“缺陷不敏感性”,使得材料本身具有较高的强度和良好的变形能力而不会过早诱发破坏,从而使得该力学超材料兼具高强、高弹的力学优点。要想同时获得高强高弹特性的点阵超材料,也可以采用“核-壳” 双材料设计实现[3]。研究者通过双光子光刻技术(一种微尺度下的3D 打印技术)首先获得具有高弹性的聚合物点阵超材料模版,接着通过物理镀膜的方法将厚度为几十纳米的金属高熵合金镀层在聚合物模版表面,这就使得制备得到的点阵超材料可以同时获得聚合物带来的高弹性和高熵合金带来的高强度等双重优点。

图3 具有优异可恢复性的陶瓷桁架点阵力学超材料[2]

对于制备轻质超强点阵力学超材料,热解碳材料也是本体材料的很好选择。碳元素在元素周期表中排行第六位,单原子质量相较于其他常用的结构材料元素天然地具有轻质的优势,加上碳原子本身电子结构的特点使得其碳碳共价键不易破坏,从而使得碳材料相较于其他本体材料就具有更高的比强度。此外,研究者发现,通过双光子光刻技术得到的光刻胶材料在900°C 高温下热解得到的热解碳材料,在微米尺寸以下具有很强的尺寸效应,随着直径尺寸的降低,其压缩强度随着直径的-0.4 次幂指数关系上升,在直径低于某一临界尺寸时,其变形能力迅速增强,可承受40%以上的压缩应变,而不发生明显的破坏[4]。研究者采用相同的制备手段,获得了八面体型和均质立方型两类热解碳桁架点阵力学超材料(图4)。这些微纳米超材料能够承受20%的压缩应变,且其压缩强度接近于热解碳材料的理论极限[1]。

随着对桁架点阵力学超材料的研究不断成熟,人们指出桁架结构存在如下两点不足:第一,桁架节点相交处存在明显的应力集中,会使得破坏从节点处萌生,导致整体结构较早失效;第二,除均质立方型桁架点阵外,大部分的桁架点阵超材料都具有各向异性,这也制约了桁架点阵超材料在实际中的应用。

图4

将点阵力学超材料的基本单元从桁架替换为平板,从而增加相交单元的接触体积,可以提高载荷的传递能力,降低交接处的应力集中。立方体型、八面体型和混合型[5]是常见的三种平板点阵力学超材料(图5)。更进一步,以曲面壳结构为基本组成单元,由于其曲率半径保持连续,且内部完全不存在相交区域,从而可以近乎完全地消除应力集中。极小曲面是目前得到广泛研究的一类几何设计,对于给定的边界条件,极小曲面具有局域最小的表面积,在真实制造中具有给定边界条件下的最小相对密度,例如金刚石型、螺旋二十四面体型等曲面点阵力学超材料(图6) 已被研究者证明是拉伸主导型的曲面点阵结构[6]。

图5 平板点阵力学超材料[5]

图6 曲壳点阵力学超材料[6]

此外,人们还将目标聚焦在通过结构优化设计来实现一些具有复杂单胞的微纳米点阵材料,从而具有各向同性的力学性能。Hashin-Shtrikman 极限(简称为H-S 极限)可以准确地预测多组分材料在比例含量确定的特定条件下,可以获得的各向同性条件下的弹性模量极大值。研究表明,例如之前提到的均质立方型桁架点阵是一类力学表现为各向同性的桁架点阵超材料,但是不论其杨氏模量、剪切模量还是体模量均远远低于H-S 极限预测得到的极大值。进一步地,人们发现,极小曲面点阵力学超材料一般具有较强的各向异性,但是通过控制形状参数并最小化曲面的弯曲弹性势能可以设计得到各向同性曲面点阵,且结构模量均大于均质立方型桁架点阵,更为接近H-S 极限[7]。近期研究也表明,平板点阵结构明显具有最高效率的载荷传递能力。通过优化立方体-八面体混合型结构参数,将立方体和八面体部分平板厚度比例控制为约1.54,此时得到的平板点阵结构不仅具有各向同性的特点,而且其杨氏模量、剪切模量和体模量还能达到H-S 极限(图5(c))[5]。

这类微纳米点阵力学超材料,不仅具有上述优异的力学性能,此外结合构成超材料本身的实体材料具有的物化性质,可以广泛地用于生物医药、可变形电子器件、能源环境等领域的先进结构设计,在未来有巨大的应用前景。如研究者通过调控单胞的几何参数得到不同刚度的力学超材料,将这些超材料作为骨细胞培养的骨架,研究发现不同刚度的骨架对于骨细胞的生长速率有明显影响,未来可通过利用超材料进行骨组织的培养,从而制造出更适合人体环境的假体[8]。研究者还利用该超材料比表面积大(单位质量的表面积) 的优点,在利用其作为结构材料的基础上,可以更高效地与外界发生化学反应,从而可以实现电池电极[9]或利用太阳能杀菌[10]等功能,实现这类力学超材料的结构功能一体化设计。

3D 增材制造技术的快速发展加速了点阵力学超材料的理论设计和实验验证,实现了从宏观到微观的尺寸跨越,从桁架到平板再到曲面的结构单元设计,大大拓展了结构材料数据库的范围。我们相信,随着微纳米研究技术的不断发展和成熟,人们将会设计和制备出性能更为优异的点阵力学超材料,并将它们应用到实际的生产和生活中。

猜你喜欢

幂指数桁架曲面
源于学生试题疑问的数学建模例谈
桁架式吸泥机改造
部分相干幂指数相位涡旋光束的传输特性研究*
摆臂式复合桁架机器人的开发
相交移动超曲面的亚纯映射的唯一性
圆环上的覆盖曲面不等式及其应用
基于逼近理想点幂指数评估的防空导弹型谱分析与研究
Loader轴在双机桁架机械手上的应用
一类度互质的无标度网络研究
基于曲面展开的自由曲面网格划分