氟化物体系熔盐电解制备YNi 合金
2021-03-04王玉香赖华生文小强刘雯雯洪侃
王玉香, 赖华生, 文小强, 刘雯雯, 洪侃
(1. 赣州有色冶金研究所,江西 赣州 341000;2. 江西省钨与稀土功能合金材料工程实验室,江西 赣州 341000)
稀土储氢合金中添加金属钇后会在合金表面形成Y 的氧化物保护膜而减缓合金的腐蚀与粉化,改善储氢合金的循环稳定性,同时可以提高储氢合金在室温和高温时的电化学性能,如合金的高倍率放电能力[1-4]。 但金属钇采用钙热还原法生产,价格昂贵,导致采用金属钇为原料生产含钇的稀土储氢合金成本高。 然而,预先制成熔点低且价格更低的钇镍中间合金,再按照生产和市场要求调配制成稀土储氢合金材料,不仅可以降低生产成本、减少氧化烧损,而且操作简单,合金成分易于控制。 因此,研究高效、经济的钇镍中间合金制备方法具有迫切的现实意义。
稀土中间合金一般采用熔盐电解法制备[5-7],此外,也可以通过对掺法[8]、金属热还原法[9]来制备。与对掺法、金属热还原法相比,熔盐电解法表现出成本低、成分均匀且容易控制、 质量较好、 易实现连续化生产,同时,具备突出的节能减排效果和成本优势[10-11]。因此,许多研究人员在不同的熔盐体系中,如CaF2-LiF[12-13]、NaCl-KCl[14]、KCl-LiF[15-16]和 LiF-NaCl-KCl[17],开展了RENi 金属间化合物的电化学制备研究。Sato 和Xie[18-19]研究了YNi 金属间化合物的电化学形成,采用恒电位电解法, 在NaCl-KCl 熔盐体系中获得了YNi3和 YNi5金属间化合物, 在 LiF-KCl-NaCl 熔盐体系中获得了 YNi2、YNi、Y3Ni2金属间化合物。然而,到目前为止, 熔盐电解法制备YNi 合金还未实现工业化生产。
本文借鉴 DyFe、GdFe、HoFe 等高熔点稀土中间合金熔盐电解法生产的成功经验,以YF3-LiF 为电解质体系添加氧化钇进行电解实验,对自耗阴极熔盐电解法制备YNi 合金的电解工艺条件进行研究, 并对所得YNi 合金进行表征分析, 为钇镍合金的规模化生产提供依据。
1 试验方法
1.1 原料
实验所有原材料如下:
1)Y2O3:Y2O3/TREO≥99.9%,TREO≥99%,LOI<1%;由江西南方稀土高技术股份有限公司提供。
2)YF3:F>37%,H2O<1%; 由江西南方稀土高技术股份有限公司提供。
3)LiF:LiF≥99%,F>20%;由江西南方稀土高技术股份有限公司提供。
4)Ni 棒:N4级; 由宝鸡坚美达钛镍有限公司提供。
1.2 试验过程
根据现有的电解技术条件,实验在3 000 A 电解槽中进行,实验设备如图1 所示。 YF3与LiF 按比例配比,混合均匀组成YF3-LiF 电解质。 电解槽经烘炉后,向电解槽中加入YF3-LiF 电解质,起弧熔化电解质,待YF3、LiF 完全熔化达到电解温度后,将钼坩埚放入石墨槽的中央,阴极镍棒插入预定深度,启动整流器,调整电流、电压值,按照一定的加料速度均匀加入氧化钇进行电解,每隔60 min 取出钼坩埚,将液态中间合金倒入模具中冷却,去渣得到YNi 合金。 电解基本反应如下:
图1 实验设备Fig. 1 Image of experiment equipment
2 结果与讨论
2.1 电解时间对电解过程的影响
从开炉到正常电解的21 个班次(每8 h 为1 个班次), 每天随机取3 块钇镍合金测试C 含量取平均值,7 d 内钇镍合金中C 含量随电解时间的变化如表1 所列。
表1 电解时间与合金中C 含量的变化关系Table 1 Variation of C content of YNi alloy with electrolytic time
从表1 可以看出, 开始电解时,YNi 合金中的C含量较高,达到0.2%,这主要是因为起弧期间,碳棒在高温下空烧,大量的石墨粉落入电解槽,开始电解后,碳和Y 反应生产YxCy进入合金中,导致合金中C含量高。 从电解的第3 天开始,合金中的C 含量趋于稳定,C 含量可以控制在0.05%以下, 满足稀土中间合金中的C 含量要求。
从开炉到正常电解的7 d 内,电流效率随电解时间的变化见图2,从图2 可以看出,从第 2 天开始,就可以正常电解,但此时电流效率较低,这是因为开始电解时,碳和Y 反应生产的YxCy会阻碍YNi 合金的汇集,导致部分金属雾被氧化而损失。从第4 天开始,电流效率波动较小,保持在72.8%左右。
图2 电流效率随电解时间的变化Fig. 2 Variation of current efficiency with electrolysis time
2.2 电解温度对电解过程的影响
电解温度是影响合金电解生产技术经济指标和阴极沉积质量的重要因素,对电解过程的正常进行至关重要,每种合金的电解温度是不同的,在YNi 合金的电解过程中,电解温度影响Y3+的析出状态与Y 原子与Ni 的合金化。 电解温度过低,Y 原子与Ni 阴极不能合金化,形成海绵状渣;电解温度过高,电解质挥发强烈,电解无法正常进行。 从 900~1 100 ℃,每隔25 ℃做1 次实验, 考察了电解温度对合金中C 含量及电流效率的影响。
图3 所示为电解温度与合金中C 含量、 电流效率的变化关系,从图3 可以看出,电解温度对YNi 合金中C 含量有较大的影响, 在较低的温度下电解有利于降低合金中的C 含量。 在1 050 ℃以下电解时,YNi 合金中C 含量控制在0.05%以下,可以满足稀土储氢合金对原料中的C 含量要求。 但在YNi 合金的实际电解过程中, 电解温度低于950 ℃时,Y2O3在熔体中的溶解度和溶解速度降低, 大量未溶解的Y2O3沉入电解槽底部,同时电解出的YNi 合金凝聚不好,渣金分离困难。 在高于1 050 ℃电解时,YNi合金中C 含量迅速升高,主要有两方面原因,一是Y 和石墨阳极剥落到熔盐中的碳、空气中的O2作用加强;二是Y 能够与阳极所产生的氧化碳和熔体中的氧化物渣泥发生反应,生成高熔点的YxCy而滞留在YNi 合金中造成C 含量较高。 另外,电解温度太高,会加剧 LiF,YF3的挥发,增加盐耗,提高 YNi 合金的生产成本。
图3 电流效率、YNi 合金中C 含量随电解温度的变化Fig. 3 Variation of current efficiency and C content in Y-Ni alloy with electrolysis temperature
从图3 可知, 电流效率随着温度的升高先增大后减小。 温度较低时,电解质黏度增大,影响熔盐中离子和电子的扩散与传递, 导致电流效率低。 随着电解温度的提高,Y2O3在 YF3-LiF 中的溶解度增大,离解反应是吸热反应,Y3+增多,电流效率增大。 电解温度过高时, 电解质的挥发损失增大, 钇镍合金的烧损也严重, 从而使电流效率降低。 由图 3 可知电解温度控制在 975~1 050 ℃较为适合,实验中也发现在此温度段,电解质流动性好,底部无渣。
2.3 电解质组成对电解过程的影响
电解质的组成直接影响电解质的密度、黏度、表面张力、电导和金属的溶解度而影响整个电解过程[20-21]。每24 h 通过添加LiF 来调整一次熔盐, 研究Y 回收率(实际析出合金中钇含量与理论析出合金中钇含量之比)和电流效率与电解质组成的变化关系,结果见图4。
图4 电流效率、Y 回收率随电解质组成的变化关系Fig. 4 Variation of current efficiency and rare earth recovery with molten salt composition
从图4 可以看出,Y 的收率随着YF3含量的增加而增大,这是由于YF3含量较低时,电解质的密度降低,氧化钇与电解质的密度差增大,导致更多的氧化钇未溶解便沉入电解槽底部, 同时还易出现阳极效应。 电解质组成决定了电解质的密度和黏度,而密度和黏度影响电流效率,选择合适的电解质组成,对提高电流效率至关重要。 由图4 可知, 电流效率随着YF3含量的增加先增大后减小,熔盐成分质量比YF3∶LiF 小于85∶15 时,熔体的黏度适中,形成的钇镍合金和熔体的密度差较大,YNi 合金能够很顺利沉入承接坩埚,因而电流效率较高;在实验过程中发现当熔盐成分质量比 YF3∶LiF 大于 85∶15 时, 熔体黏度较高,流动性差,钇镍合金与电解质分离困难而难以正常电解。
2.4 阴极电流密度对电解过程的影响
阴极电流密度是影响熔盐电解技术经济的重要因素之一,保持电解温度和电解质组成不变,调节电流 强 度 , 分 别 设 定 阴 极 电 流 密 度 为8.0,8.5,9.0,9.5,10.0,10.5,11.0 A/cm2, 考察阴极电流密度对电流效率和Y 收率的影响, 结果如图5 所示。Y 收率在阴极电流密度小于9.0 A/cm2偏低,在大于9.5 A/cm2后基本稳定, 表明在阴极电流密度小于9.0 A/cm2时,Y2O3比较难电解。
从图5 可以看出,阴极电流密度的变化对电流效率产生较大的影响, 阴极电流密度小于10.0 A/cm2时,电流效率随着阴极电流密度的增加而增大,阴极电流密度大于10.0 A/cm2时, 随着阴极电流密度的增加,电流效率反而减小,主要是因为当阴极电流密度较小时,Y3+在Ni 阴极上还原的速度较慢, 形成的YNi 合金少,适当提高阴极电流密度,可提高YNi 合金的析出速率, 单位阴极表面析出的YNi 合金量增加,能相对减少YNi 合金的溶解和二次反应,因而提高电流效率;但阴极电流密度过大时,会使镍阴极区的温度过高,电解质循环加剧,二次反应增强,使电流效率降低。
图5 电流效率、Y 回收率随阴极电流密度的变化关系Fig. 5 Variation of current efficiency and rare earth recovery with cathode current density
2.5 钇镍合金表征分析
对电解温度为 1 000 ℃,YF3∶LiF(质量比)为 85∶15、阴极电流密度为10.0 A/cm2电解得到的钇镍合金进行分析表征。钇镍合金的成分分析、XRD 图谱分别见表 2、图 6。
表2 钇镍合金成分分析Table 2 Composition analysis of YNi alloy 单位:质量分数,%
图 6 YNi 合金的 XRD 图谱Fig. 6 XRD pattern of YNi alloy
从表2 和图6 可以看出,熔盐电解法制备的钇镍合金由 YNi2相和 YNi 相组成, 合金中 Y 含量为52.6%,推算出合金中YNi2含量为44.56%,YNi 含量为55.44%。
采用金属钇制备稀土储氢合金时,要求金属钇的化学成分需满足XB/T 218—2007 标准中产品牌号174020 的质量标准,即 w(C)≤0.05%、w(Si)≤0.05%、w(Ca)≤0.15%、w(O)≤0.5%、w(Mg)≤0.05%。对比表 2可知, 熔盐电解法制备的钇镍合金杂质元素含量更低,可以满足稀土储氢合金的使用要求。
3 结 论
1) 在 YF3-LiF 体系熔盐电解生产 YNi 合金,从开炉到正常电解需2 d 左右,从第4 天开始,电流效率波动较小,保持在72.8%左右;
2)电解过程中,电解温度、电解质组成、阴极电流密度对电流效率、Y 收率及合金中C 含量有重要影响,较好的工艺条件为:电解温度为1 000 ℃,电解质YF3与LiF 质量比为 85∶15,阴极电流密度为 10.0 A/cm2;
3) 钇镍合金由 YNi2相和 YNi 相组成,Y 含量为52.6%,杂质元素含量低,满足稀土储氢合金的使用要求。