APP下载

NaYF4:Yb,Er@SiO2 的高温相变及上转换发光性能研究

2021-03-04甘明龙李亚萌傅俊祥

有色金属科学与工程 2021年1期
关键词:形貌产物乙醇

甘明龙, 李亚萌, 傅俊祥

(江西理工大学材料冶金化学学部,江西 赣州341000)

掺杂镧系元素 (Ln3+) 的上转换纳米颗粒(UCNPs)是一类特殊的发光纳米材料,它可将长波长的近红外 (NIR) 激发转换为紫外 (UV) 到近红外(NIR)区域的可调谐发射[1-5]。除了大的反斯托克斯位移外,UCNPs 还具有发射带宽大、 激发态寿命长、抗光闪烁和光漂白能力强等特点[5-7]。 氟化物纳米晶由于其稳定的化学性能及较低的声子能量[6-8]是目前研究最广泛的上转换纳米材料。

晶相和表面配体会影响镧系离子掺杂氟化物纳米晶的上转换量子效率[8-10]。NaYF4有2 个晶相:立方相和六方相[10]。 六方相NaYF4声子能量低于立方相,但六方相NaYF4经简单的激光处理后可以转变为一种新的立方相NaYF4[10],新立方相NaYF4:Yb,Er 的上转换发光量子效率高于六方相NaYF4:Yb,Er。 为了提高纳米晶量子效率,一种方法是通过焙烧提高纳米晶质量和减少缺陷。 ZHOU 课题组研究了Yb3+、Tm3+共掺杂NaYF4纳米晶经焙烧后的变化, 发光强度在焙烧后得到了增强, 主要原因是NaYF4焙烧过程中发生相变[11]。但高温焙烧会导致纳米晶出现大规模聚集而影响分散性。 为克服NaYF4纳米晶在高温下的聚集,包覆SiO2保护壳是一种有效的方法[12]。XUE 等研究了立方相NaYF4包覆SiO2后在高温焙烧下的晶相变化,内核立方相NaYF4并未转变为六方相[13],这为NaYF4@SiO2在高温处理[14]后的性质研究提供了一定的参考。

本文采用固-液热分解法[15]一锅合成六方相NaYF4:Yb,Er 纳米晶,并将纳米晶进行SiO2包覆,对经过高温焙烧后的NaYF4:Yb,Er@SiO2形貌、 晶相及发光性能的改变进行研究。纳米晶的形貌与物相在不同的焙烧温度发生不同变化:在600 ℃焙烧3 h 后,纳米晶的物相不发生改变, 但向非晶态过渡;700、800 ℃焙烧3 h 后,纳米晶均转变为NaYSiO4。 随着焙烧温度的升高,产物的发光强度依次提高。

1 实 验

1.1 试剂与仪器

纯度99%的稀土乙酸盐(REAc3)和 CO-520 来自 Sigma 公司, 氟化氢钠 (NaHF2)、 原硅酸四乙酯(TEOs)、油酸(OA)、1-十八烯(ODE)、30%的氨水购自于Macklin 公司, 均为分析纯;50 mL 全套蒸馏装置购于明启玻璃仪器公司;瑞士ARL 公司X 射线衍射仪测试样品晶相,激发光源为980 nm 的光纤维激光器、 日本HORIBA 公司荧光光谱仪检测样品上转换发光性能,透射电子显微镜测试样品尺寸与形貌。

1.2 材料合成

1.2.1 合成 NaYF4:Yb,Er(NYF)纳米晶

准 确 称 量 2.40 mmol YAc3、0.54 mmol YbAc3、0.06 mmol ErAc3加入到装有 5 mL OA 和 10 mL ODE 混合液的50 mL 三颈圆底烧瓶中,在N2保护下升温至180 ℃搅拌20 min,得到淡黄色澄清液,冷却至室温,往体系中投入6.00 mmol NaHF2,在N2保护下升温至250 ℃搅拌30 min,继续N2保护下升温至305 ℃搅拌30 min,冷却至室温。 产物用乙醇从最终液中洗出后再用环己烷和乙醇1∶1 混合液洗3~5 次,将产物分散在15 mL 环己烷中。

1.2.2 SiO2包覆(NYF@S)及高温处理

取2 mL NYF(约80 mg)环己烷分散液分散在装有40 mL 环己烷的烧杯中, 加入2.5 mL CO-520,超声摇振 20 min, 再加入 180 μL TEOs 搅拌 20 min,加入350 μL 氨水, 用保鲜膜密封烧杯口搅拌24 h。产物用乙醇清洗1 次,离心后再用环己烷和乙醇1∶1混合液洗 2 次, 分散于 10 mL 乙醇中。 将 5 mL NYF@S 乙醇分散液置于干净的坩埚中,在鼓风干燥箱去除乙醇后转入马弗炉中, 选取不同温度(600,700,800 ℃)进行焙烧,时间均为 3 h。产物分别命名为 NYF@S-600,NYF@S-700,NYF@S-800。

2 结果与讨论

2.1 晶相及形貌

对产物的形貌、 尺寸及样品晶相进行TEM 检测和XRD 检测。 固-液热分解法合成的NaYF4:Yb,Er(NYF)纳米晶尺寸均匀,平均尺寸约为27 nm,NYF纳米晶包覆上SiO2后尺寸约为43 nm,SiO2壳层厚度约为 8 nm(图 1(a))。 由于 SiO2的无定形特性,NYF@S 的 XRD 衍射峰与六方相 NaYF4(PDF16-0334)一致(图 2(a))。 NYF@S 纳米晶在马弗炉中 600 ℃下焙烧3 h,纳米晶尺寸未发生变化(图1(b));纳米晶也未发生相变(图 2(a)),仍为六方相的 NaYF4(PDF16-0334),但衍射峰变弱(图 2(b)),说明 NYF@S-600向非晶态过渡,这与 TEM 图(图 1(b))看到部分纳米晶内核NaYF4与外壳SiO2的界面消失相符。部分的纳米晶内部出现中空,NYF@S-600 出现中空的可能原因有2 点:①纳米晶的内部含有少量的油酸等有机物,在600 ℃高温下,有机物分解后留下孔洞;②纳米晶内部存有晶格缺陷,高温下离子从缺陷点热运动向外扩散[16]留下孔洞。NYF@S 纳米晶在700,800 ℃下焙烧 3 h, 壳层 SiO2与内核 NaYF4发生化学反应, 生成一种新相:NaYSiO4(PDF25-0739)(图 2(a))。 结合 NaYF4及 NaYSiO4中各元素价态均未发生改变, 推测该化学反应的反应方程为式(1),其中副产物SiF4在高温状态下以气体状态逸散。

图1 各样品透射电镜图像Fig. 1 TEM images of each sample

图2 各试样XRD 谱Fig. 2 XRD patterns of each sample

图 1(c)、 图 1(d)分别为 NYF@S-700,NYF@S-800 的TEM 照片,纳米晶平均尺寸约为25 nm,粒径大幅减小,符合方程(1)中推测副产物SiF4在高温状态下以气体状态逸散。 纳米晶未出现中空现象,可能原因是焙烧时升温速率较快, 离子还未向外扩散,壳层SiO2已经开始参与生成NaYSiO4的反应, 纳米晶也未出现大规模烧结现象,NYF@S-700 的纳米颗粒表面有白色空隙, 推测为 SiO2残留。 图 2 (c)为NYF@S-700,NYF@S-800 的 XRD 部分衍射角放大对比图,NYF@S-700 与NYF@S-800 的衍射峰位置与强度一致,说明700 ℃或800 ℃的高温处理对纳米晶晶相影响一致。为了验证煅烧后与产物结合的油酸等有机物被除去, 在同样的条件下测试了各样品的红外光谱图 (图 3 (a)), 图 3 (a) 中显示,NYF@S 在 3 440, 2 934,2 359 和 1 570 cm-1处均有吸收峰, 分别对应于油酸分子中的O-H 的伸缩振动、C-H 的面内伸缩振动以及-COO-的伸缩振动[17]。焙烧后的产物在 3 440,2 934, 1 570 cm-1处几乎无吸收,说明经高温焙烧纳米晶内部大部分有机杂质被除去。 图 3(b)为NYF@S 在 600,700,800 ℃焙烧后的形貌、物相变化示意。

图3 各样品的红外光谱及NYF@S 在各温度下形貌、物相变化过程示意Fig. 3 Infrared spectrum of each sample, schematic diagram of morphology and phase transition of NYF@S at various temperatures

2.2 光谱分析

在1 000 mW 的980 nm 的红外激光激发下,测试了各个样品的上转换发光性能,图4(a)为各样品在可见光区域的发射光谱。522,543,650 nm 处的可见光发射分别对应从 Er3+的4H11/2,4S3/2和4F9/2能级到4I15/2能级的辐射跃迁[1,7](图 4(c))。 将纳米晶的发射谱带强度进行对比 (图 4 (b)), 以初始 NaYF4:Yb,Er@SiO2(NYF@S)的上转换发光强度为基准进行归一化处理。在 522 nm(4H11/2→4I15/2)处的发射峰,NYF@S-600 的强度为NYF@S 的5 倍,NYF@S-700 发光强度得到较大的增强,是 NYF@S 的 78 倍;NYF@S-800 的发光强度为NYF@S 的106 倍。 在绿光最强的发射峰543 nm(4S3/2→4I15/2) 处,NYF@S-600,NYF@S-700,NYF@S-800 的发光强度分别是 NYF@S 的 6,66,93 倍。 而在红光的发射峰 650 nm(4F9/2→4I15/2)处,NYF@S-600,NYF@S-700,NYF@S-800 的发光强度分别是NYF@S的8,43,44 倍。

产物的发光强度随着焙烧温度的升高而增强。NYF@S-600 相较于NYF@S 除去了大量的有机杂质,所以发光强度有一定的提高。 从文献的声子能量计算可知[7,18], NaYSiO4的声子能量远高于 NaYF4,理论上NaYSiO4:Yb,Er 纳米晶的上转换荧光强度应低于NaYF4:Yb,Er 纳米晶。 但在NaYSiO4的形成过程中,高温不仅将大量的有机杂质去除,并将纳米晶的部分晶格缺陷消除[19],减少了缺陷导致的荧光猝灭,致使NYF@S-700,NYF@S-800 的发光性能相比于NYF@S,NYF@S-600 有较大的提升。去除纳米晶部分晶格缺陷和有机杂质还会减少激发电子在纳米晶内部的无辐射弛豫,图 4(b)显示 NYF@S-700、NYF@S-800 的绿光(4H11/2,4S3/2→4I15/2)与红光(4F9/2→4I15/2)的发射强度比值都有较大的增强。绿光与红光的发射强度比增大被认为减少电子从4I11/2到4I13/2能级的无辐射弛豫, 而增大受激发电子从4I11/2能级跃迁到4H11/2和4S3/2能级的几率[20]。

图4 各样品的上转换发光光谱图及发光强度对比Yb3+,Er3+离子能级图及可能的能量转移过程Fig. 4 The upconversion luminescence spectra and luminescence intensity contrast of each sample;Yb3+and Er3+energy level diagrams and possible energy transfer processes

3 结 论

1) 合成了尺寸约为 43 nm NaYF4:Yb,Er@SiO2核壳纳米晶, 纳米晶在不同的温度焙烧处理后形貌与物相发生变化:在600 ℃焙烧3 h 后,纳米晶的物相未发生变化但结晶度降低, 部分纳米晶出现中空 ;700,800 ℃焙 烧 3 h 后 , 纳 米 晶 均 转 变 为NaYSiO4。

2) 产物在980 nm 红外激光激发下显示出强烈的可见光上转换发射,随着焙烧温度的升高,产物的发光强度及绿红发射强度比依次提高,核壳纳米粒子的相变提高了纳米粒子的上转换发光强度。以上研究为Yb3+,Er3+掺杂上转换纳米粒子的晶体物相、晶格缺陷与上转换荧光性能之间的关系研究提供了借鉴。

猜你喜欢

形貌产物乙醇
乙醇的学习指导
乙醇和乙酸常见考点例忻
新催化剂推进直接乙醇燃料电池发展
孤独是现代产物,了解其历史或有助抗疫克艰 精读
乙醇蒸气放空管设置室内引发爆炸
“最田园”的乡村形貌——守护诗意乡土
美联储加息的产物研究
校园霾
镀锌产品表面腐蚀现象研究
SAC/Cu及 SAC—Bi—Ni/Cu回流焊界面金属间化合物演变