APP下载

煤层气开发中煤粉问题的研究现状及研究思路

2021-01-29魏迎春曹代勇崔茂林王安民

煤田地质与勘探 2020年6期
关键词:运移煤粉煤层气

魏迎春,张 劲,曹代勇,孟 涛,崔茂林,王安民

煤层气开发中煤粉问题的研究现状及研究思路

魏迎春,张 劲,曹代勇,孟 涛,崔茂林,王安民

(中国矿业大学(北京) 地球科学与测绘工程学院,北京 100083)

随着煤层气的开发,煤粉问题已逐渐成为制约煤层气开发的重要问题。由于近年来煤粉问题才开始被关注和重视,煤粉研究缺乏系统科学的研究思路和方法,从煤粉的危害、煤粉形成机制、煤粉产出规律及煤粉管控措施方面,总结了煤层气开发中产出煤粉的研究现状,指出了煤粉研究的不足,提出了一套由理论依据、研究内容、研究方法等核心环节构成的煤层气开发中煤粉问题的研究思路与方法:以煤层气地质与开发学、煤田地质学、岩石力学和流体力学等多学科理论为指导,以《煤层气勘探开发规范》《煤层气井监测方法》《测试分析技术方法》等相关技术标准和规范为依据,以历年煤层气地质资料和煤层气排采数据为基础,按资料收集→现场监测与采样→测试与数据处理→物理模拟与数值模拟→专题制图与综合分析→技术设备研发→现场工程应用的工作流程和方法,以煤粉产出的影响因素、煤粉产出机理、煤粉产出规律和煤粉管制措施等为主要研究内容,选择典型煤层气示范区,开展全面系统的煤粉研究工作,为实现煤层气高效开发提供保障。本研究思路与方法为科学研究煤粉问题提供方法学依据。

煤层气;煤粉;研究现状;研究思路;研究方法

煤层气作为非常规天然气资源是一种绿色的清洁能源,合理开发利用煤层气,对于改善我国长期以煤炭开采利用为主的能源结构、缓解国内油气资源利用压力、防治煤矿瓦斯事故、提高煤矿安全生产指数、促进我国逐步向低污染、低碳循环发展模式转变具有重要的意义。

据新一轮全国煤炭资源潜力评价,埋深在2 000 m以浅的煤炭资源量为5.90 万亿t[1],煤层气资源量也相当丰富,埋深在2 000 m以浅的煤层气地质资源量36.81 万亿m3,其中,埋深1500 m以浅的煤层气可采资源量10.87 万亿m3[2]。但我国大陆在全球构造格局中所处的特殊位置决定了煤盆地构造–热演化历史复杂,主要成煤期为晚古生代和中新生代,煤层受中、新生代多期构造热事件影响,煤变质程度较高,煤层(储层)受到不同程度的改造和破坏,不同类型的构造煤普遍发育。由于我国煤层气储层不均一性强及煤层开发中煤粉产出明显等特征,导致我国煤层气大规模开发在理论和技术方面仍存在诸多难题[3-7],其中,煤层气开发中煤粉问题日益显现,成为制约煤层气开发的难题之一。煤粉滞留在裂缝中的孔道内,逐渐降低裂缝导流能力,使煤层气井产能过早出现衰减现象;煤粉在井内沉积聚集或进入排采系统,导致埋泵和卡泵,影响煤层气的连续开采。煤粉问题已严重制约了我国煤层气井的产能。因此,如何开展煤层气开发中煤粉问题的研究和建立科学的煤粉问题研究思路与方法是煤粉研究亟需要解决的问题,为实现煤层气井高效稳定连续排采提供保障,为煤层气高效开发提供技术方法依据。

1 研究现状及存在问题

1.1 煤粉的危害研究

众多学者对煤粉产出的危害逐步达成共识[8-13],主要有以下2个方面,① 储层伤害:煤粉迁移直接堵塞煤层天然裂缝系统或堵塞支撑剂充填层孔隙,降低扩散和渗流通道的导流能力,进一步降低煤层渗透率[12,14-20],影响煤层气的高效生产。刘岩等[21](2017)分析了不同流速下煤粉对支撑裂缝导流能力的影响特征。胡胜勇等[22]、石军太等[23]分别建立了考虑煤粉运移与沉积的支撑裂缝渗透率演化模型和考虑煤粉堵塞影响的煤储层渗透率模型。赵政等[24](2020)研究了气/水两相驱替煤粉引起的煤裂缝导流衰减特征。Tao Shu等[25]分析了保德煤层气区块煤粉对煤储层流体速度敏感性及其对煤层气井产能的影响,分析了煤粉生成和运移对煤渗透率的影响[19]。② 排采故障:煤粉颗粒堵塞井底筛管及泵吸入口,导致煤层气井排水不畅,凡尔关闭不严,抽油泵漏失,大幅度降低水泵功效,不仅造成机械磨损,甚至形成黏稠胶状物进入泵内,易造成卡泵,在生产过程中需要频繁检泵,破坏煤层气井产气的连续性,影响产气潜力;液固两相流进入井筒以后,由于流速变小,一部分煤粉由于重力作用沉入井筒底部,堆积极易发生埋泵[26-29]。上述煤粉的危害方面在宏观上达成了共识,但关于不同特征的煤粉在不同储层中运移对储层伤害如何,尚有待进一步研究。

1.2 煤粉形成机制研究

不同学者分别从排采实践和室内实验角度,对煤粉组分特征进行了分析研究。煤层气井产出的煤粉浓度变化较大,其与煤层性质(特别是构造煤发育程度)、开发方式及排采阶段等有关。煤粉成分以镜质组和无机矿物为主,颗粒粒径大部分在200 μm以下,煤粉颗粒形态主要为柱状、粒状和片状,光滑表面的煤粉颗粒成分以煤为主,粗糙表面的煤粉颗粒成分以无机矿物为主。韩城区块煤层气井产出煤粉浓度为0.325~2.262 g/L,平均为0.729 g/L[30],煤粉的成分以镜质组和黏土矿物为主,煤粉中无机矿物以黏土矿物、黄铁矿、白铁矿和方解石为主[13,31-32]。临汾区块煤层气井产出煤粉浓度为1.789~2.931 g/L,平均为2.406 g/L[33],煤粉的成分以无机矿物和镜质组为主,以硬石膏、黄铁矿和黏土矿物为主[34]。沁水盆地煤层气井的煤粉主要由受构造应力破碎形成和压裂支撑剂打磨产生,煤粉的特征和成因机制决定了煤粉的粒度、浓度以及形态[32]。科威里盆地Neyveli煤田的褐煤煤层在煤层气开发中产出的煤粉成分主要为高岭石片和煤岩颗粒[33]。煤粉中无机矿物类型及含量不同与煤层气主力开发煤层的煤岩组成及夹矸成分有关,主要受煤层形成时沉积环境和物源的影响[30]。物理模拟实验证实煤岩组分、矿物成分、煤层结构、煤体结构等影响煤粉产出[12,16,35-36]。煤粉成因分为地质作用和人为作用两类,其对应的煤粉来源一是地质作用形成的原生煤粉,二是煤层气井勘探开发中人为扰动形成的煤粉,主要有压裂造缝、支撑剂嵌入煤层、煤基质收缩、排水过程储层应力状态的变化等[8,37]。针对多分支水平井产出的煤粉,其成因主要有构造应力破坏、机械破坏、气液流冲刷和应力改变等产生的煤粉[38]。根据煤粉的来源,煤粉主要划分为充填自由煤粉、骨架颗粒煤粉和孔眼塑性区煤粉[39]。从煤粉产生机理分析,煤粉分为钻井残留煤粉、井壁失稳(坍塌和破裂)产生煤粉和煤基质破裂产生煤粉[40]。从煤岩破坏机理方面,剪切破坏、压实破坏和滑移破坏导致煤粉产出[41]。I. D. Palmer等认为软弱煤岩的力学破坏是煤粉产出的主要来源[42]。从煤粉受到流体作用力、自身重力、范德华力、布朗扩散力、双电层排斥力与波恩短程斥力等分析,建立了单相流条件下煤粉颗粒的启动力学模型,分析了煤粉颗粒的启动条件[42-44]。在煤层气早期气水两相流动时,储层中气水界面的移动诱发大量细粒滑脱[45]。碎粒煤产出煤粉量远远大于原生结构煤产出煤粉量[35],糜棱煤遇水后容易完全分解成煤粉,是煤层气井产出煤粉的主要来源[46]。综合考虑煤粉成因机制、产出位置及对生产的影响等,提出了煤粉成因机制—产出位置综合分类体系,指出了煤层自身性质是煤粉产出的基础,工程扰动是煤粉产出的诱因,而煤体结构是煤粉产出的关键[11,13]。现有的研究成果尚未能从煤储层地质条件、煤岩性质与工程扰动耦合效应分析入手,系统的揭示煤粉产出机制。

1.3 煤粉产出规律研究

控制煤粉产出是煤层气井排采管理中的重要环节,合理的煤粉控制是以煤粉产出规律为基础。通过沁水盆地南部和鄂尔多斯盆地东缘韩城区块、临汾区块和三交区块煤层气井现场排采实践及煤粉监测,针对韩城区块煤层气井产出煤粉特征,从煤粉浓度、煤粉粒度和煤粉来源方面划分了煤层气井煤粉产出的4个阶段,排采初期和产气量快速上升期是煤层气井卡泵的高峰期[26]。沁水盆地南部煤层气井在动液面初次降到煤层附近时,是煤粉产出的高峰期[8],煤层气井煤粉产出颗粒粒径呈四个阶段变化特征[40,46]。通过煤粉产出的物理模拟和数值模拟,排采速度、围压影响煤粉的产出量,煤粉产出对煤储层的渗透率有影响[47,12],煤粉颗粒产出量随颗粒粒径减小而增多,随煤粉中无机组分含量增加而增多[16,20,48]。水平井井筒迁移规律物理模拟试验表明,压差与煤粉的迁移速率呈非线性增加关系,煤粉的迁移受限于临界启动压差[49],煤层气产气通道内煤粉颗粒的启动与运移是压力梯度、流体冲刷力、流体中浮力及煤粉自身重力的综合作用结果[37]。单相水流阶段裂缝面黏附煤粉以“压力梯度”为启动,煤粉启动受颗粒尺寸、颗粒类型、裂缝缝宽和离子强度的影响[50-51],建立了煤储层液流携粉运移特征的数学模型[52],分析了单相水流条件下煤粉运移对储层渗透率的影响[53-55]。多相流条件下不同粒径煤粉启动–运移模拟表明,流量、压差、管道倾角、粒度等因素影响煤粉的启动和运移[56-57],不同粒度和不同浓度煤粉的聚集与沉降特征不同[58-59],不同矿化度水对煤粉的运移产生影响[60],分析了非稳定流下煤粉颗粒的运移规律[61]。由于不同区块,地质特征不同,煤粉产出规律存在差异,上述研究主要是针对某煤层气区块,开展的煤粉产出规律研究;在物理模拟方面,尚未采用煤粉运移可视物理模拟实验装置,开展煤粉运移可视流动物理模拟实验;在数值模拟方面,还需要进一步细化,如上述数学模型均未考虑煤粉形态的不同,不同类型构造煤储层孔裂隙不同,因此,需要开展不同地质条件、储层、排采条件的可视化煤粉产出物理模拟实验,在其基础上,结合现场煤粉监测,建立不同类型煤储层和不同通道中煤粉运移的数学模型,来更好地揭示煤粉运移规律。

1.4 煤粉管控措施研究

针对煤粉产出对煤层气开发的危害,不同学者从地质预防、储层改造、设备优选、生产预警、排采控制和工艺治理等方面提出了一系列煤粉管控措施[27]。在地质预防方面,针对韩城区块,利用测井数据预测了各类型构造煤[62-63]。通过地质分析和地球物理解释方法,利用测井数据辨识各类型构造煤与煤层结构,分析煤岩组分、煤体结构、煤层结构等储层地质条件,预测和圈定煤粉高发区域和层段,从煤粉方面为选区布井提供依据[11,27]。在储层改造方面,主要在压裂工艺、压裂液成分和压裂层位等方面制定煤粉管控措施[27]。针对煤岩力学性质,选择不同的压裂工艺,优化压裂参数。压裂液中选用不同类型的煤粉悬浮分散剂和表面活性剂[64-71]、超级分子膜控煤粉剂[72]。在压裂层位选择时,尽量避开原生煤粉发育的软煤层段即构造煤发育区段[11,65],在构造煤发育区段,采取间接压裂,压裂煤层顶板砂岩,而不是直接压裂煤层;针对无机矿物含量高的煤层,采用酸化压裂[73]。在设备优选方面,不同排采设备具有不同的适用性[27],水平井适宜采用具有较大携粉能力的螺杆泵进行排采[40,46],水量大、煤粉问题严重的斜井和水平井宜采用射流泵,负压射流泵对煤层气井底部煤粉进行高速清洗,减少煤粉在井底的沉降聚集,进而降低煤粉导致的埋泵故障发生率[43,74-75]。在生产预警方面,主要采用示功图监测和煤粉浓度监测。依据监测的煤粉浓度和煤层气区块的煤粉浓度极限值进行生产预警[40,46],针对煤粉产出导致的煤层气井排水不畅、抽油泵漏失、卡泵等井下故障,依据示功图监测进行预警[29]。在排采控制方面,张遂安等[28]基于煤粉产出的伤害特点及伤害机理,结合多年的排采经验,确立了以定压排采、有效调节煤层气井动液面高度和油套环空内气体压力来合理控制工作压差、用合适的排采强度来控制产水量进而控制煤粉适度产出等排采工作制度来控制煤粉产出,从防、控、疏、导4个方面提出了综合治理煤粉的措施[76]。根据煤层气井煤粉产出规律、排水采气和储层压力情况,不同排采阶段的煤层气井,制度不同的排采控制制度,实现排采制度精细化[73]。在工艺治理方面,采用不同的洗井工艺措施,主要有常规水洗井、酸化洗井、空心抽油杆洗泵等[73],在泵吸入口接防粉尾管或绕丝筛管。前人已提出了一系列煤粉管控措施,但随着技术的发展,对煤粉认识的深化,煤粉管控措施还有待完善和更新,应综合考虑煤储层地质条件与煤层气开发工程,从煤粉产出机理出发,提出有针对性和科学性的解决方法,更好地为煤层气高效稳定开发提供保障。

2 研究思路及研究方法

2.1 研究思路

随着煤层气的开发,煤粉问题已逐渐成为制约煤层气开发的重要问题。由于近年来煤粉问题才开始被关注和重视,煤粉研究缺乏系统科学的研究思路和方法,本文提出了一套由理论依据、研究内容、研究方法等核心环节构成的煤层气开发中煤粉问题的研究思路与方法(图1):以煤层气地质与开发学、煤田地质学、岩石力学和流体力学等多学科理论为指导,以《煤层气勘探开发规范》《煤层气井监测方法》《测试分析技术方法》等相关技术标准和规范为依据,以历年煤层气地质资料和煤层气排采数据为基础,按资料收集→现场监测与采样→测试与数据处理→物理模拟与数值模拟→专题制图与综合分析→技术设备研发→现场工程应用的工作流程和方法,以煤粉产出的影响因素、煤粉产出机理、煤粉产出规律和煤粉管控措施等为主要研究内容,选择典型煤层气示范区,开展全面系统的煤粉研究工作,为实现煤层气高效开发提供保障。本研究思路与方法为科学研究煤粉问题提供方法学依据。

2.2 研究内容

从煤储层地质条件、煤岩性质与工程扰动耦合效应分析入手,查明煤层气开发中煤粉产出的影响因素。重点研究区域地质构造、地层及煤层发育特征、构造地质、水文地质及煤层气地质特征、煤岩性质等地质因素和煤层气井的钻井工程、压裂储层改造、排采设备及排采制度等工程因素对煤粉产出的影响。从微观角度出发,研究不同条件下煤粉生成和运移对煤储层的伤害、煤粉运移与沉降对排采设备的影响及对煤层气开发的危害。如通过原生结构煤和碎粒煤对煤粉产出影响的物理模拟实验,模拟不同煤体结构煤储层对煤粉产出影响,查明了碎粒煤对煤粉产出的影响远远大于原生结构煤。通过不同煤岩组分煤对煤粉产出影响的物理模拟实验,模拟煤岩组分不同的煤储层对煤粉产出影响,查明了镜质组含量高的煤储层产出的煤粉量大。针对韩城煤层气区块,综合分析了地质因素(区域地质构造、地层及煤层发育特征、构造地质、煤岩等)和工程因素(钻井、压裂、排采等)对煤粉产出的影响。

图1 煤层气开发中煤粉问题研究思路与方法

从煤粉的浓度、粒度、成分、形态等方面,研究煤粉特征,识别煤粉的来源,查明煤粉成因。煤粉形态主要从煤粉颗粒的圆度、外形特征、表面特征及煤粉颗粒脱落方式角度描述,查明不同形态煤粉的成因和来源。以韩城煤层气区块为例,采用显微镜和带能谱扫描电镜,对比分析了煤层气井产出的煤粉样和煤矿井下采集的煤岩样,发现煤粉特征与煤层的煤体结构有关,煤粉特征反映了煤粉的成因和来源。原生结构煤和碎裂煤生成的煤粉为柱状,碎粒煤生成的煤粉为粒状,鳞片煤和片状煤生成的煤粉为片状。原生煤粉呈现圆状或次圆状,次生煤粉呈现棱角状或次棱角状。光滑表面的煤粉主要为煤,粗糙表面的煤粉主要为无机矿物。从煤粉生成和运移的受力方面,分析不同形态和成分的煤粉在不同条件下生成、启动、运移及沉降时的受力情况,查明煤粉产出的力学机理,揭示煤粉产出、运移、沉降机理。

研究不同储层、不同流体、不同排采条件下煤粉产出特征,总结煤层气井生产特征和煤粉产出特征,揭示煤粉产出规律。重点研究不同流速和围压、不同粒度、形态和成分的煤粉、不同相态(气、水、气水两相)及成分(不同水化学类型和矿化度的水)流体、不同类型煤储层(不同煤体结构、煤层结构、煤岩组分及无机矿物含量)、不同形状和宽度的孔裂隙通道等条件下煤粉产出运移特征及规律。如,通过单因素分析方法,采用煤粉产出物理模拟实验,从产出的煤粉量、煤粉粒度、煤粉成分及形态、储层渗透率等方面,分析了驱替流速、围压、煤岩组分、煤体结构、煤层结构、煤粉粒度、矿物含量等因素对煤粉产出和运移的影响,揭示了实验条件下煤粉产出规律。

在综合分析研究区煤层气井煤粉产出的影响因素、煤粉产出机理及煤粉产出规律研究的基础上,针对煤粉对煤层气开发的影响,通过实验研究、技术研发、设备研制、地质综合分析及工程应用等方法,从地质预防、储层改造、设备优选、生产预警、排采控制和工艺治理等方面,提出有针对性和科学性的煤粉管控措施。煤粉管控措施在韩城煤层气区块的应用实施取得良好的成效和显著的经济效益。首先,在地质选区和工程部署上,避开易产出原生煤粉的碎粒煤和鳞片煤发育区域和层位。若无法避开,在储层改造时,选择间接压裂,即,压裂煤层顶板砂岩,减少原生煤粉和次生煤粉的产生。根据煤储层地质条件和各种泵的适用条件,煤层气井选择不同类型的排采泵,如自洁泵、射流泵、电潜螺杆泵或杆式泵,顺利排出煤粉。通过对煤层井产出的煤粉浓度监测和示功图监测,掌握煤粉产出的动态变化情况,调整排采制度,预防煤粉引起的排采事故发生。若排采中发生了煤粉引起的排采事故,通常采用常规洗井、酸化洗井、空心抽油杆洗泵等事故处理方法。

2.3 研究方法

煤粉产出的影响因素针对示范区,主要采用区域构造地质分析、沉积环境分析、水文地质条件分析、煤层气地质分析等地质综合分析方法、井下煤层观察及采样、煤岩测试分析、测井曲线解释、测试分析、煤层气井工程影响因素分析、煤层气井现场监测及采样、煤粉物理模拟实验、力学分析及公式推导等方法,从煤储层地质条件、煤岩性质与工程扰动耦合效应分析入手,查明煤粉产出的影响因素。煤层气开发中煤粉危害的查明主要通过煤粉生成与运移的物理模拟实验和数值模拟,利用力学分析和公式推导,建立相应的数学模型和力学模型,从微观角度出发,研究不同条件下煤粉生成和运移对煤储层的伤害、煤粉运移与沉降对排采设备的影响及对煤层气开发的危害。

煤粉特征主要从煤粉的浓度、粒度、成分、形态等方面研究。煤粉浓度主要采用煤粉液色度对比法、精密天平称重法及煤粉浓度监测仪测试法测量。不同煤粉浓度测定方法具有不同的特点,色度对比法是肉眼观察煤粉液样特征与色度标样对比,确定煤粉浓度等级,此方法确定等级快,但精度低。称重法是将恒定体积的含煤粉液体过滤、风干、利用精密天平称重、计算得到煤粉浓度,此方法操作较繁琐,但精度高。煤粉浓度监测仪具有测量精度相对较高、快捷,但该仪器易受电磁信号干扰,测量存在误差。

煤粉粒度主要采用激光粒度测试仪测试和显微镜下观察。激光粒度测试仪测试煤粉粒度精度高,但在使用激光粒度测试仪时一定要注意仪器的粒度测量范围和量程,才能更好的测试煤粉粒度。显微镜下观察煤粉粒度,比较麻烦,不够准确,而且,只能取部分煤粉样品观察,其代表性较差。煤粉成分主要运用显微镜和带能谱的扫描电镜观察及X射线衍射仪测试。显微镜观察主要通过煤粉的煤岩组分和无机矿物定量,确定其含量。带能谱的扫描电镜观察测试,主要观察测试不同形态煤粉的元素情况。X射线衍射仪测试煤粉中无机矿物的成分。煤粉形态利用带能谱的扫描电镜观察。扫描电镜能较好地显示煤粉的形态,并且针对不同形态的煤粉,可以能谱测试其元素。

煤粉产出规律研究主要采用煤粉产出物理模拟实验、数值模拟、煤层气井排采参数和煤粉监测及煤粉测试分析方法。煤粉产出物理模拟实验是通过正演方式,对煤储层中煤粉产出过程在室内进行模拟还原,展示煤粉生成与运移情况。现今所做的煤粉产出物理模拟实验装置主要采用酸蚀裂隙导流仪或岩心驱替装置,均是将煤岩心看作一个“黑匣子”,通过监测驱替出口端产出的煤粉量和渗透率变化来推测分析煤粉的产出规律。利用酸蚀裂隙导流仪开展煤粉产出物理模拟实验需把煤岩破碎后制作成煤砖,然后,根据设定的实验条件,驱替模拟煤层气开发中的煤粉产出,该装置的不足是把煤岩制作成煤砖的过程,已改变了原来煤岩的性质。利用岩心驱替装置开展煤粉产出物理模拟实验需煤岩样钻成圆柱状煤样,然后,根据设定的实验条件,驱替模拟煤层气开发中的煤粉产出,该装置的不足为圆柱状煤样比较小,若煤样为原生结构煤,在驱替的过程中,可能无法产出煤粉或产出的煤粉量在检测线以下。采用和研制可视化煤粉产出物理模拟实验装置是煤粉产出物理模拟实验研究的必然,现今研究所采用的煤粉产出物理模拟实验装置均是通过监测驱替出口端产出的煤粉量和渗透率变化来分析煤粉产出的规律,而尚未对物理模拟实验过程中煤粉运移情况和孔裂隙变化情况进行实时、直观地观测和表达。因此,本文提出了利用核磁共振成像仪与渗流仪或岩心驱替仪组成的可视化煤粉产出物理模拟实验装置,开展可视化煤粉生成与运移的物理模拟实验,研究不同煤储层中煤粉运移规律,直观揭示煤粉在煤储层中的运移状态及煤粉运移引起的储层空间的变化。

煤粉管控措施研究主要采用实验研究、技术研发、设备研制、地质综合分析及工程应用等方法。实验研究主要有压裂液、洗井液、煤粉悬浮剂和煤粉沉降剂等方面的研究和选取。技术研发应从各种管控煤粉的钻探技术、压裂技术、排采制度、工艺和方法、洗井工艺等方面进行研发。设备研制主要包括手持式现场煤粉浓度监测仪、手持式现场煤粉粒度监测仪、井底煤粉颗粒破碎仪、各种防煤粉泵、各种防煤粉筛管等煤粉管控设备。地质综合分析主要采用煤体结构测井曲线解释、井震结合及AVO 技术、地质分析方法。

3 结论

a. 从煤层气开发中煤粉的危害、煤粉形成机制、煤粉产出规律及煤粉管控措施方面,总结了煤层气开发中产出煤粉的研究现状,指出了煤粉尚待研究的方面。

b. 提出了一套由理论依据、研究内容、研究方法等核心环节构成的煤层气开发中煤粉问题的研究思路与方法,为科学研究煤粉问题提供方法学依据。

[1] 中国煤炭地质总局. 中国煤炭资源赋存规律与资源评价[M]. 北京:科学出版社,2016. China National Administration of Coal Geology. China occurrence regularity of coal resources and resource evaluation[M]. Beijing:Science Press,2016.

[2] 车长波,杨虎林,李富兵,等. 我国煤层气资源勘探开发前景[J]. 中国矿业,2008(5):1–4. CHE Changbo,YANG Hulin,LI Fubing,et al. Exploration and development prospects of coalbed methane(CBM) resources in China[J]. China Mining Magazine,2008(5):1–4.

[3] 翟光明,何文渊. 中国煤层气赋存特点与勘探方向[J]. 天然气工业,2010,30(11):1–3. ZHAI Guangming,HE Wenyuan. Occurrence features and exploration orientation of coalbed methane gas in China[J]. Natural Gas Industry,2010,30(11):1–3.

[4] 叶建平,秦勇,林大扬. 中国煤层气资源[M]. 徐州:中国矿业大学出版社,1998. YE Jianping,QIN Yong,LIN Dayang. Coalbed methane resources of china[M]. Xuzhou:China University of Mining and Technology Press,1998.

[5] 孙万禄. 中国煤层气盆地[M]. 北京:地质出版社,2005. SUN Wanlu. Coalbed methane basins of china[M]. Beijing:Geological Publishing House,2005.

[6] 王红岩,李景明,刘洪林,等. 煤层气基础理论、聚集规律及开采技术方法进展[J]. 石油勘探与开发,2004,31(6):14–16. WANG Hongyan,LI Jingming,LIU Honglin,et al. Progress of basic theory and accumulation law and development technology of coalbed methane[J]. Petroleum Exploration and Development,2004,31(6):14–16.

[7] 秦车影. 赵庄井田煤层气成藏条件研究[J]. 能源与环保,2020,42(10):92–99.

QIN Cheying. Study on CBM reservoiring condition in Zhaozhuang mine field[J]. China Energy and Environmental Protection,2020,42(10):92–99.

[8] 陈振宏,王一兵,孙平. 煤粉产出对高煤阶煤层气井产能的影响及其控制[J]. 煤炭学报,2009,34(2):229–232. CHEN Zhenhong,WANG Yibing,SUN Ping. Destructive influences and effectively treatments of coal powder to high rank coalbed methane production[J]. Journal of China Coal Society,2009,34(2):229–232.

[9] 李仰民,王立龙,刘国伟,等. 煤层气井排采过程中的储层伤害机理研究[J]. 中国煤层气,2010,7(6):39–43.LI Yangmin,WANG Lilong,LIU Guowei,et al. Study on coal reservoir damage mechanism in dewatering and extraction process of CBM wells[J]. China Coalbed Methane,2010,7(6):39–43.

[10] 白建梅,孙玉英,李薇,等. 高煤阶煤层气井煤粉产出对渗透率影响研究[J]. 中国煤层气,2011,8(6):18–21. BAI Jianmei,SUN Yuying,LI Wei,et al. Study of the impact of coal dust yield on permeability rate in high rank CBM well[J]. China Coalbed Methane,2011,8(6):18–21.

[11] 曹代勇,袁远,魏迎春,等. 煤粉的成因机制–产出位置综合分类研究[J]. 中国煤炭地质,2012,24(1):10–12. CAO Daiyong,YUAN Yuan,WEI Yingchun,et al. Comprehensive classification study of coal fines genetic mechanism and origin site[J]. Coal Geology of China,2012,24(1):10–12.

[12] 曹代勇,姚征,李小明,等. 单相流驱替物理模拟实验的煤粉产出规律研究[J]. 煤炭学报,2013,38(4):624–628. CAO Daiyong,YAO Zheng,LI Xiaoming,et al. Rules of coal powder output under physical simulation experiments of single-phase water flow displacement[J]. Journal of China Coal Society,2013,38(4):624–628.

[13] 魏迎春,曹代勇,袁远,等. 韩城区块煤层气井产出煤粉特征及主控因素[J]. 煤炭学报,2013,38(8):1424–1429. WEI Yingchun,CAO Daiyong,YUAN Yuan,et al. Characteristics and controlling factors of pulverized coal during coalbed methane drainage in Hancheng area[J]. Journal of China Coal Society,2013,38(8):1424–1429.

[14] 张芬娜,綦耀光,徐春成,等. 煤粉对煤层气井产气通道的影响分析[J]. 中国矿业大学学报,2013,42(3):428–435. ZHANG Fenna,QI Yaoguang,XU Chuncheng,et al. Analysis of the impact of gas production channel for coalbed methane well by pulverized coal[J]. Journal of China University of Ming & Technology,2013,42(3):428–435.

[15] 邹雨时,张士诚,张劲,等. 煤粉对裂缝导流能力的伤害机理[J]. 煤炭学报,2012,37(11):1890–1894. ZOU Yushi,ZHANG Shicheng,ZHANG Jin,et al. Damage mechanism of coal powder on fracture conductivity[J]. Journal of China Coal Society,2012,37(11):1890–1894.

[16] 李小明,曹代勇,姚征,等. 基于流态物理模拟试验的煤粉排出机理研究[J]. 煤炭科学技术,2015,43(2):76–79. LI Xiaoming,CAO Daiyong,YAO Zheng,et al. Study on mechanism of pulverized coal discharge based on flow-state physical simulation[J]. Coal Science and Technology,2015,43(2):76–79.

[17] GUO Zhenghuai,HUSSAIN F,CINAR Y. Permeability variation associated with fines production from anthracite coal during water injection[J]. International Journal of Coal Geology,2015,147–148.

[18] GUO Zhenghuai,LE-HUSSAIN F,CINAR Y. Physical and analytical modelling of permeability damage in bituminous coal caused by fines migration during water production[J]. Journal of Natural Gas Science and Engineering,2016,35:331–346.

[19] BAI Tianhang,CHEN Zhongwei,SAIIED M A,et al. Experimental investigation on the impact of coal fines generation and migration on coal permeability[J]. Journal of Petroleum Science and Engineering,2017,159:257–266.

[20] WEI Yingchun,LI Chao,CAO Daiyong,et al. The effects of particle size and inorganic mineral content on fines migration in fracturing proppant during coalbed methane production[J]. Journal of Petroleum Science and Engineering,2019,182:106355.

[21] 刘岩,苏雪峰,张遂安. 煤粉对支撑裂缝导流能力的影响特征及其防控[J]. 煤炭学报,2017,42(3):687–693. LIU Yan,SU Xuefeng,ZHANG Sui’an. Influencing characteristics and control of coal powder to proppant fracture conductivity[J]. Journal of China Coal Society,2017,42(3):687–693.

[22] 胡胜勇,郝勇鑫,陈云波,等. 煤粉运移与沉积对支撑裂缝渗透率动态影响规律[J/OL]. 煤炭学报:1–10. https://doi.org/10. 13225/j.cnki.jccs.2020.1306. HU Shengyong,HAO Yongxin,CHEN Yunbo,et al. Dynamic influence law of coal powder migration and deposition on propped fracture permeability[J/OL]. Journal of China Coal Society:1–10. https://doi.org/10.13225/j.cnki.jccs.2020.1306.

[23] 石军太,吴嘉仪,房烨欣,等. 考虑煤粉堵塞影响的煤储层渗透率模型及其应用[J]. 天然气工业,2020,40(6):78–89. SHI Juntai,WU Jiayi,FANG Yexin,et al. A new coal reservoir permeability model considering the influence of pulverized coal blockage and its application[J]. Natural Gas Industry,2020,40(6):78–89.

[24] 赵政,倪小明,刘泽东,等. 气/水两相驱替煤粉引起的煤裂缝导流衰减特征实验研究[J/OL]. 煤炭学报:1–12. https://doi. org/10.13225/j.cnki.jccs.2019.1299. ZHAO Zheng,NI Xiaoming,LIU Zedong,et al. Experimental study on the attenuation characteristics of coal fissure induced by gas-water two-phase drive[J/OL]. Journal of China Coal Society:1–12. https://doi.org/10.13225/j.cnki.jccs.2019.1299.

[25] TAO Shu,TANG Dazhen,XU Hao,et al. Fluid velocity sensitivity of coal reservoir and its effect on coalbed methane well productivity:A case of Baode Block,northeastern Ordos Basin,China[J]. Journal of Petroleum Science and Engineering,2017,152:229–237.

[26] 魏迎春,张傲翔,姚征,等. 韩城区块煤层气排采中煤粉产出规律研究[J]. 煤炭科学技术,2014,42(2):85–89. WEI Yingchun,ZHANG Aoxiang,YAO Zheng,et al. Research on output laws of pulverized coal during coal bed methane drainage in Hancheng block[J]. Coal Science and Technology,2014,42(2):85–89.

[27] 魏迎春,李超,曹代勇,等. 煤层气开发中煤粉产出机理及管控措施[J]. 煤田地质与勘探,2018,46(2):68–73.WEI Yingchun,LI Chao,CAO Daiyong,et al. The output mechanism and control measures of the pulverized coal in coalbed methane development[J]. Coal Geology & Exploration,2018,46(2):68–73.

[28] 张遂安,曹立虎,杜彩霞. 煤层气井产气机理及排采控压控粉研究[J]. 煤炭学报,2014,39(9):1927–1931. ZHANG Sui’an,CAO Lihu,DU Caixia. Study on CBM production mechanism and control theory of bottom-hole pressure and coal fines during CBM well production[J]. Journal of China Coal Society,2014,39(9):1927–1931.

[29] 姚征,曹代勇,熊先钺,等. 基于示功图监测的煤粉相关井下故障预警[J]. 煤炭学报,2015,40(7):1595–1600.YAO Zheng,CAO Daiyong,XIONG Xianyue,et al. Forecast of coal fines-related downhole failures based on monitoring dynamometer card[J]. Journal of China Coal Society,2015,40(7):1595–1600.

[30] WEI Yingchun,LI Chao,CAO Daiyong,et al. New progress on the coal fines affecting the development of coalbed methane[J]. Acta Geologica Sinica-English Edition,2018,92(5):2060–2062.

[31] WEI Yingchun,CAO Daiyong,YUAN Yuan,et al. Characteristics of pulverized coal during coalbed methane drainage in Hancheng block,Shaanxi Province,China[J]. Energy Exploration & Exploitation,2013,31(5):745–757.

[32] ZHAO Xianzheng,LIU Shiqi,SANG Shuxun,et al. Characteristics and generation mechanisms of coal fines in coalbed methane wells in the southern Qinshui Basin,China[J]. Journal of Natural Gas Science and Engineering,2016,34:849–863.

[33] PRANESH V,BALASUBRAMANIAN S,Kumar R S,et al. Kaolinite flakes and coal fines production in lignite core under ambient conditions:A case study of Neyveli lignite field at Cauvery Basin,southern India[J]. Journal of Natural Gas Science and Engineering,2019,64:72–80.

[34] 魏迎春,张傲翔,曹代勇,等. 临汾区块煤层气井排采中产出煤粉特征[J]. 煤田地质与勘探,2016,44(3):30–35.WEI Yingchun,ZHANG Aoxiang,CAO Daiyong,et al. Characteristics of pulverized coal during coalbed methane drainage in Linfen block[J]. Coal Geology & Exploration,2016,44(3):30–35.

[35] YAO Zheng,CAO Daiyong,WEI Yingchun,et al. Experimental analysis on the effect of tectonically deformed coal types on fines generation characteristics[J]. Journal of Petroleum Science and Engineering,2016,146:350–359.

[36] 姚征,曹代勇,魏迎春,等. 水岩反应中泥质夹层生成固相微粒的实验研究[J]. 煤炭学报,2019,44(7):2188–2196. YAO Zheng,CAO Daiyong,WEI Yingchun,et al. Experimental research on the generation of solid fines from muddy intercalation in water-rock reaction[J]. Journal of China Coal Society,2019,44(7):2188–2196.

[37] 曹立虎,张遂安,张亚丽,等. 煤层气水平井煤粉产出及运移特征[J]. 煤田地质与勘探,2014,42(3):31–35. CAO Lihu,ZHANG Sui’an,ZHANG Yali,et al. Investigation of coal powder generation and migration characteristics in coalbed methane horizontal well[J]. Coal Geology & Exploration,2014,42(3):31–35.

[38] 白建梅,陈浩,祖世强,等. 煤层气多分支水平井煤粉形成机理初步认识[C]//煤层气勘探开发理论与技术. 北京:石油工业出版社,2010:425–431.BAI Jianmei,CHEN Hao,ZU Shiqiang,et al. CBM multi-branch horizontal wells pulverized coal formation mechanismC]//Coalbed methane exploration and development of theory and technology. Beijing:Petroleum Industry Press,2010:425–431.

[39] 王旱祥,兰文剑. 煤层气井煤粉产生机理探讨[J]. 中国煤炭,2012,38(2):95–97. WANG Hanxiang,LAN Wenjian. Discussion on formation mechanism of coal powder in coalbed methane well[J]. China Coal,2012,38(2):95–97.

[40] 刘升贵,贺小黑,李惠芳. 煤层气水平井煤粉产生机理及控制措施[J]. 辽宁工程技术大学学报(自然科学版),2011,30(4):508–512. LIU Shenggui,HE Xiaohei,LI Huifang. Production mechanism and control measures of coal powder in coalbed methane horizontal well[J]. Journal of Liaoning Technical University (Natural Science),2011,30(4):508–512.

[41] 杨延辉,汤达祯,杨艳磊,等. 煤储层速敏效应对煤粉产出规律及产能的影响[J]. 煤炭科学技术,2015,43(2):96–99. YANG Yanhui,TANG Dazhen,YANG Yanlei,et al. Influence on velocity sensitivity effect of coal reservoir to production law of pulverized coal and gas productivity[J]. Coal Science and Technology,2015,43(2):96–99.

[42] PALMER I D,MOSCHOVIDIS Z A,CAMERON J R. Coal failure and consequences for coalbed methane wells[J]. Society of Petroleum Engineers,2005.

[43] HUANG Fansheng,KANG Yili,YOU Lijun,et al. Massive fines detachment induced by moving gas-water interfaces during early stage two-phase flow in coalbed methane reservoirs[J]. Fuel,2018,222:193–206.

[44] 张芬娜,綦耀光,莫日和,等. 单相流煤层气井裂隙煤粉受力分析及启动条件[J]. 煤矿开采,2011,16(6):11–13. ZHAN Fenna,QI Yaoguang,MO Rihe et al. Force analysis of uniflow coaldust in cracks of mine for CBM and starting condition[J]. Coal Mining Technology,2011,16(6):11–13.

[45] 綦耀光,张芬娜,刘冰,等. 煤层气井产气通道内煤粉运动特征分析[J]. 煤炭学报,2013,38(9):1627–1633. QI Yaoguang,ZHANG Fenna,LIU Bing,et al. Calculation on discharge flow of pulverized coal in gas production channel for coalbed methane well[J]. Journal of China Coal Society,2013,38(9):1627–1633.

[46] 陈文文,王生维,秦义,等. 煤层气井煤粉的运移与控制[J]. 煤炭学报,2014,39(增刊2):416–421. CHEN Wenwen,WANG Shengwei,QIN Yi,et al. Migration and control of coal powder in CBM well[J]. Journal of China Coal Society,2014,39(Sup.2):416–421.

[47] 刘升贵,张新亮,袁文峰,等. 煤层气井煤粉产出规律及排采管控实践[J]. 煤炭学报,2012,37(增刊2):412–415. LIU Shenggui,ZHANG Xinliang,YUAN Wenfeng,et al. Regularity of coal powder production and concentration control method during CBM well drainage[J]. Journal of China Coal Society,2012,37(Sup.2): 412–415.

[48] 张公社,田文涛,陶杉,等. 煤层气储层煤粉运移规律试验研究[J]. 石油天然气学报,2011,33(9):105–108+168. ZHANG Gongshe,TIAN Wentao,TAO Shan,et al. Experimental research of coal grain migration rules of coalbed methane[J]. Journal of Oil and Gas Technology,2011,33(9):105–108.

[49] ZHANG Aoxiang,CAO Daiyong,WEI Yingchun,et al. Characterization of fines produced during drainage of coalbed methane reservoirs in the Linfen Block,Ordos Basin[J]. Energy Exploration & Exploitation,2020,38(5):1664–1679.

[50] 曹立虎,张遂安,石惠宁,等. 沁水盆地煤层气水平井井筒煤粉迁移及控制[J]. 石油钻采工艺,2012,34(4):93–95.CAO Lihu,ZHANG Sui’an,SHI Huining,et al. Coal dust migration and treatment for coalbed methane horizontal wells in Qinshui Basin[J]. Oil Drilling & Production Technology,2012,34(4):93–95.

[51] HUANG Fansheng,KANG Yili,YOU Zhenjiang,et al. Critical conditions for massive fines detachment induced by single–phase flow in coalbed methane reservoirs:Modeling and experiments[J]. Energy & Fuels,2017,31:6782–6793.

[52] 刘新福,刘春花,吴建军,等. 煤储层排采液流携粉运移模型与产出规律[J]. 煤炭学报,2018,43(3):770–775. LIU Xinfu,LIU Chunhua,WU Jianjun,et al. Migration models of pulverized coal flowing with fluid and its production in CBM channels for the coal reservoirs[J]. Journal of China Coal Society,2018,43(3):770–775.

[53] GAO Dapeng,LIU Yuewu,WANG Tianjiao,et al. Experimental investigation of the impact of coal fines migration on coal core water flooding[J]. Sustainability,2018,10(11),4102.

[54] GUO Zhenghuai,Phung N H V,HUSSAIN F. A laboratory study of the effect of creep and fines migration on coal permeability during single-phase flow[J]. International Journal of Coal Geology,2018,200:61–76.

[55] HAN Wenlong,WANG Yanbin,FAN Jingjing,et al. An experimental study on coal fines migration during single phase water flow[J]. Geofluids,2020,2020.

[56] 皇凡生,康毅力,李相臣,等. 单相水流诱发裂缝内煤粉启动机理与防控对策[J]. 石油学报,2017,38(8):947–954. HUANG Fansheng,KANG Yili,LI Xiangchen,et al. Incipient motion mechanisms and control measures of coal fines during single phase water flow in coalbed fractures[J]. Acta Petrolei Sinica,2017,38(8):947–954.

[57] 慕甜,马东民,陈跃,等. 煤层气井多相流条件下不同粒径煤粉启动–运移规律[J]. 煤炭科学技术,2020,48(5):188–196. MU Tian,MA Dongmin,CHEN Yue,et al. Start-migration law of coal powder with different particle sizes under multi-phase flow conditions in coalbed methane wells[J]. Coal Science and Technology,2020,48(5):188–196.

[58] 魏迎春,崔茂林,张劲,等. 煤层气开发中不同粒度煤粉的聚集沉降实验[J]. 煤田地质与勘探,2020,48(5):1–9. WEI Yingchun,CUI Maolin,ZHANG Jin,et al. Aggregation and sedimentation experiments of coal fines with different particle sizes during CBM development[J]. Coal Geology & Exploration,2020,48(5):1–9.

[59] 杜军军,刘联涛,崔金榜,等. 煤层气井不同类型煤粉的静态沉降规律[J]. 煤炭学报,2018,43(增刊1):203–209. DU Junjun,LIU Liantao,CUI Jinbang,et al. Static settlement of different types of pulverized coal in CBM wells[J]. Journal of China Coal Society,2018,43(Sup.1):203–209.

[60] CHEQUER L,VAZ A,BEDRIKOVETSKY P. Injectivity decline during low-salinity waterflooding due to fines migration[J]. Journal of Petroleum Science and Engineering,2018,165:1054–1072.

[61] ZHONG Ziyao,WU Xiaodong,HAN Guoqing,et al. Experimental investigation on particle transport of coal fines in unsteady terrain slug flow[J]. Journal of Petroleum Science and Engineering,2018:747–758.

[62] 陈跃,汤达祯,许浩,等. 基于测井信息的韩城地区煤体结构的分布规律[J]. 煤炭学报,2013,38(8):1435–1442. CHEN Yue,TANG Dazhen,XU Hao,et al. The distribution of coal structure in Hancheng based on well logging data[J]. Journal of China Coal Society,2013,38(8):1435–1442.

[63] 张晓玉,王安民,张傲翔,等. 韩城区块构造煤类型及其产出煤粉特征分析[J]. 中国煤炭地质,2014,26(8):91–94.ZHANG Xiaoyu,WANG Anmin,ZHANG Aoxiang,et al. Tectonoclastic coal types and characteristic analysis of coal fines in Hancheng block[J]. Coal Geology of China,2014,26(8):91–94.

[64] 王丹,赵峰华,宋波,等. 分散剂影响煤粉采出效果的实验研究[J]. 煤炭学报,2015,40(1):149–153. WANG Dan,ZHAO Fenghua,SONG Bo,et al. Experimental study of coal powder production affected by using dispersant[J]. Journal of China Coal Society,2015,40(1):149–153.

[65] 杨宇,曹煜,田慧君,等. 压裂中煤粉对煤储层损害机理分析与防控对策[J]. 煤炭科学技术,2015,43(02):84–87. YANG Yu,CAO Yu,TIAN Huijung,et al. Mechanism anlaysis of coal fines damaged to coal reservoirs and prevention countermeasures during fracturing[J]. Coal Science and Technology,2015,43(02):84–87.

[66] 罗莉涛,刘卫东,朱文卿,等. 港西三区聚表二元驱中表面活性剂优化筛选[J]. 科学技术与工程,2015,15(20):238–243. LUO Litao,LIU Weidong,ZHU Wenqing,et al. Research on optimization selection method of surfactant of polymer surfactant binary flooding for the west areas reservoir in dagang oilfield[J]. Science Technology and Engineering,2015,15(20):238–243.

[67] 刘通义,兰昌文,彭建,等. 煤层压裂用悬浮分散剂BC–11的研究[J]. 应用化工,2015,44(4):670–672. LIU Tongyi,LAN Changwen,PENG Jian,et al. Study on suspension dispersion agents BC-11 used in coal-bed fracturing[J]. Applied Chemical Industry,2015:44(4):670–672.

[68] 魏迎春,李超,曹代勇,等. 煤层气洗井中不同粒径煤粉的分散剂优选实验[J]. 煤炭学报,2017,42(11):2908–2913. WEI Yingchun,LI Chao,CAO Daiyong,et al. Experiment on screening dispersants of pulverized coal with different sizes in CBM well-washing technology[J]. Journal of China Coal Society,2017,42(11):2908–2913.

[69] 宋金星,刘程瑞. 基于改性表面活性剂的煤储层表面物理改性增产机理分析[J]. 煤矿安全,2020,51(06):202–206. SONG Jinxing,LIU Chengrui. Mechanism analysis of physical modification and increasing production of coal reservoir surface based on modified surfactant[J]. Safety in Coal Mines,2020,51(6):202–206.

[70] 魏迎春,李超,曹代勇,等. 煤层气洗井中煤粉分散剂对煤岩的影响[J]. 煤炭学报,2018,43(7):1951–1958.WEI Yingchun,LI Chao,CAO Daiyong,et al. Effect of pulverized coal dispersant on coal in the CBM well-washing technology[J]. Journal of China Coal Society,2018,43(7):1951–1958.

[71] 李超,魏迎春,崔宝磊. 煤粉分散稳定性的影响因素分析[J]. 煤田地质与勘探,2018,46(1):73–77. LI Chao,WEI Yingchun,CUI Baolei. Analysis on influencing factors of dispersion stability of pulverized coal[J]. Coal Geology & Exploration,2018,46(1):73–77.

[72] 刘子雄,刘汝敏,韩冠楠,等. 煤层气井压裂裂缝内超级分子膜控煤粉可行性研究[J]. 煤炭科学技术,2020,48(5):182–187. LIU Zixiong,LIU Rumin,HAN Guannan,et al. Feasibility study of super molecular film controlled coal powder in fracturing crack of coalbed methane well[J]. Coal Science and Technology,2020,48(5):182–187.

[73] 熊先钺. 韩城区块煤层气连续排采主控因素及控制措施研究[D]. 北京:中国矿业大学(北京),2014.XIONG Xianyue. Research on control factors and measures of continuous coal bed methane drainage in Hancheng Block[D]. Beijing:China University of Mining and Technology(Beijing),2014.

[74] 刘冰,綦耀光,张芬娜,等. 煤层气井射流冲煤粉装置冲击深度的研究[J]. 煤炭学报,2014,39(4):713–718.

LIU Bing,QI Yaoguang,ZHANG Fenna,et al. The impinging depth of coal particles cleanout jet device for coalbed methane well[J]. Journal of China Coal Society,2014,39(4):713–718.

[75] 吴庆彬. 射流泵在煤层气排采中的自动控制[J]. 化工自动化及仪表,2014,41(8):943–945.WU Qingbin. Auto-control of jet pumps in CBM production[J]. control and instruments in chemical industry,2014,41(8):943–945.

[76] 李斌,刘欣佳,张潇,等. 煤粉对储层的伤害机理与防治措施研究[J]. 煤炭技术,2020,39(8):115–118. LI Bin,LIU Xinjia,ZHANG Xiao,et al. Study on damage mechanism of coal fines to reservoir stratum and treating measures[J]. Coal Technology,2020,39(8):115–118.

Research status and thoughts for coal fines during CBM development

WEI Yingchun, ZHANG Jin, CAO Daiyong, MENG Tao, CUI Maolin, WANG Anmin

(College of Geoscience & Surveying Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China)

With the development of coalbed methane, the of coal fines has gradually become an important problem restricting the development of coalbed methane. Since the problem of coal fines has only been paid attention in recent years, the research on coal fines lacks systematic and scientific research ideas and methods. The research status of coal fines in CBM development was summarized and the research shortages on coal fines were pointed out from the aspects of hazard, formation mechanism, output rule and control measures of coal fines. A set of research ideas and methods of coal fines in CBM development, which were composed of theoretical basis, research contents, research methods and other core links, were proposed. The research ideas and methods: guided by multidisciplinary theories such as coalbed methane geology and development, coalfield geology, rock mechanics and fluid mechanics, and guided by the "Coalbed Methane Exploration and Development Specifications", "Coalbed Methane Well Monitoring Methods", "Testing and Analysis Technical Methods" and other relevant technical standards and specifications as the basis, based on the past years of coalbed methane geological data and coalbed methane drainage data, according to data collection, on-site monitoring and sampling, testing and data processing, physical simulation and numerical simulation, thematic mapping and Comprehensive analysis, technical equipment research and development, on-site engineering application workflow and methods, with the main research content of the influencing factors of coal fines production, coal fines production mechanism, coal fines production law and coal fines control measures, and select typical coal seams in the gas demonstration zone, a comprehensive and systematic research on coal fines were carried out to provide a guarantee for the efficient development of coalbed methane. The research ideas and methods provide a methodological basis for scientific research on coal fines issues.

CBM; coal fines; research status; research thoughts; research methods

请听作者语音介绍创新技术成果等信息,欢迎与作者进行交流

P618

A

10.3969/j.issn.1001-1986.2020.06.016

1001-1986(2020)06-0116-09

2020-11-11;

2020-11-30

国家自然科学基金项目(41972174,41402134);国家留学基金项目(201906435004)

National Natural Science Foundation of China(41972174,41402134),China Scholarship Council(201906435004)

魏迎春,1977 年生,女,山东巨野人,博士,副教授,从事煤与煤层气地质、勘探与开发方面的教学和科研工作. E-mail:wyc@cumtb.edu.cn

魏迎春,张劲,曹代勇,等. 煤层气开发中煤粉问题的研究现状及研究思路[J]. 煤田地质与勘探,2020,48(6):116–124.

WEI Yingchun,ZHANG Jin,CAO Daiyong,et al. Research status and thoughts for coal fines during CBM development[J]. Coal Geology & Exploration,2020,48(6):116–124.

(责任编辑 范章群)

猜你喜欢

运移煤粉煤层气
高炉喷吹煤粉添加助燃剂生产实践
曲流河复合点坝砂体构型表征及流体运移机理
东营凹陷北带中浅层油气运移通道组合类型及成藏作用
2019年《中国煤层气》征订单
煤层气吸附-解吸机理再认识
开采过程中上覆急倾斜岩层运移规律模拟与研究
川西坳陷孝泉-新场地区陆相天然气地球化学及运移特征
煤层气排采产气通道适度携煤粉理论
DFS-C02V煤层气井高产因素简析
高炉煤粉精细化喷吹技术