细胞周期蛋白依赖性激酶12:肿瘤治疗的潜在靶点
2021-01-13吴子媚张文歆石焕英陈海飞钟明康李群益施孝金
吴子媚 张文歆 石焕英 陈海飞 钟明康 李群益 施孝金
摘 要 细胞周期蛋白依赖性激酶12(cyclin-dependent kinase 12, CDK12)参与多种生物学过程,包括基因转录、RNA剪接、mRNA翻译、内含子多聚腺苷酸化、表观遗传学修饰和DNA损伤修复等。在不同类型肿瘤中,CDK12起着原癌基因或肿瘤抑制因子的作用。因此,CDK12被认为是肿瘤治疗的潜在靶点。近期还有研究显示,CDK12在肿瘤的免疫调节中发挥着重要作用。本文简要介绍CDK12的生物学功能及其在肿瘤治疗中的研究进展。
关键词 细胞周期蛋白依赖性激酶12 肿瘤 生物标志物
中图分类号:R730.23; R979.19 文献标志码:A 文章编号:1006-1533(2021)23-0012-04
基金项目:国家自然科学基金面上项目(81973399);国家自然科学基金青年科学基金项目(82001399);上海市“医苑新星”青年医学人才培养资助计划——临床药师项目;上海市重点临床专科项目——临床药学项目(shslczdzk06502)
Cyclin-dependent kinase 12: a potential target in cancer therapy
WU Zimei, ZHANG Wenxin, SHI Huanying, CHEN Haifei, ZHONG Mingkang, LI Qunyi, SHI Xiaojin
(Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai 200040, China)
ABSTRACT Cyclin-dependent kinase 12 (CDK12) engages in diversified biological functions, including gene transcription, RNA splicing, mRNA translation, intron polyadenylation, epigenetic modification and DNA damage repair. As an oncogene or tumor suppressor in different cancers, CDK12 is considered as a potential target for cancer therapy. Recent studies have shown that CDK12 plays an important role in tumor immunity. The biological functions and the research advances of CDK12 in cancer therapy are briefly discussed in this review.
KEY WORDS cyclin-dependent kinase 12; cancer; biomarker
細胞周期蛋白依赖性激酶(cyclin-dependent kinases, CDKs)是一类蛋白丝氨酸/苏氨酸激酶,在细胞基因转录、细胞周期调控和神经元分化过程中发挥着重要的作用。CDKs通常被分为两类:一类主要与细胞周期控制相关,包括CDK1、CDK2、CDK4和CDK6等;另一类主要与基因转录相关,包括CDK7、CDK8、CDK9、CDK12和CDK13等[1]。与基因转录相关的CDKs通过磷酸化RNA聚合酶Ⅱ的羧基末端结构域(carboxyterminal domain, CTD)和其他靶标来调节基因转录。临床前研究表明,基因转录抑制可优先靶向肿瘤细胞,部分原因在于肿瘤细胞较正常细胞更依赖于高水平的超级增强子驱动的转录[2-3]。靶向基因转录已逐渐成为肿瘤治疗领域的一个研究热点,其中研究最多的两种基因转录相关激酶是CDK7和CDK9。与CDK7类似,CDK12参与细胞周期和基因转录的调控,是肿瘤治疗的一个潜在靶点。近年来,越来越多的证据表明,CDK12亦可用作一些肿瘤治疗的生物标志物,且其参与了肿瘤的免疫调节。本文简要介绍CDK12在肿瘤中的生物学功能及其在肿瘤治疗中的研究进展。
CDK12基因定位于17号染色体长臂1区2带,包含14个外显子。CDK12由1 490个氨基酸组成,富含脯氨酸和丝氨酸,是一种典型的剪接因子[4]。CDK12与CDK13有43%的同源序列,它们均含有一个相对保守的激酶域。CDK12一般与细胞周期蛋白K结合,使RNA聚合酶ⅡCTD中的2和5位丝氨酸磷酸化,进而影响基因转录和其他生物学过程[5]。研究表明,CDK12的缺失并不影响整体的基因转录,但会改变DNA损伤应答和DNA复制相关基因的一个子集[5-6]。Blazek等[6]的研究发现,CDK12的缺失主要减少了含有大量外显子的长基因(>10 kb)的表达,包括那些参与基因组稳定性调控的基因,如乳腺癌易感基因1、共济失调-毛细血管扩张突变的和Rad3相关的激酶、Fanconi贫血补体组D2等。此外,CDK12激酶域的突变会抑制DNA双链断裂的同源重组修复(homologous recombination repair, HRR)[6-7]。CDK12也参与mRNA的剪接[4],但目前还不清楚其基因选择性是如何实现的,以及在这一过程中还有哪些蛋白参与。除参与mRNA剪接外,CDK12还能影响内含子多聚腺苷酸化,导致mRNA 3’端加工和表达受损,进而调节转录终止[8]。CDK12在mRNA的翻译调节中亦发挥着重要作用。在翻译起始阶段,哺乳动物雷帕霉素靶蛋白复合体1(mammalian target of rapamycin complex 1, mTORC1)磷酸化翻译抑制因子eIF4E结合蛋白1(eIF4E-binding protein 1, 4E-BP1)的37和46位苏氨酸,随后CDK12再磷酸化4E-BP1的65位丝氨酸和70位苏氨酸[9]。被磷酸化的4E-BP1释放eIF4E,后者将eIF4G募集到目标mRNA的5’端,翻译启动[10]。Choi等[11]的研究证实,CDK12与mTORC1协同调节中心体、着丝粒、动粒复合物和检查点激酶1(checkpoint kinase 1, CHK1)的关键亚基的翻译,这些亚基参与细胞有丝分裂和细胞周期调控。有研究发现,果蝇中CDK12的缺失会导致异染色质蛋白1在常染色质区域的异位积累,最终下调靶基因的表达[9]。这表明CDK12可调控常染色质向异染色质的转化,而此是CDK12调控基因表达的另一种独特机制。
串联重复是指DNA中的一个或多个核苷酸前后相连接的重复。基因组研究发现,某些肿瘤基因组中含有独特的串联重复表型[12-14],这种串联重复表型在三阴性乳腺癌、卵巢癌和子宫内膜癌中的发生率高达50%,在肾上腺皮质癌、食管癌、胃癌和肺鳞癌中的发生率为10% ~ 30%,在其他肿瘤中较少见[15]。有研究发现,CDK12失活的卵巢癌基因组中存在广泛的局部串联重复(>8 kb),它们分散在基因组的非编码和编码区域中,并在基因密集区域呈富集态[16]。目前,这些与CDK12相关的串联重复的产生机制在很大程度上仍不清楚。一般来说,细胞周期调控相关的CDKs可通过多重机制阻止DNA复制的重新启动,故基因组在每个细胞周期中只被能复制1次[17]。在酵母中,如果对复制起始蛋白MCM2-7和CDC6的调控失调,可能启动串联重复形成的初始步骤[18]。研究显示,CDK12和细胞周期蛋白K可经协同作用磷酸化细胞周期蛋白E1,抑制细胞周期蛋白E1的活性,进而促进G1期的复制前复合体的组装,而细胞周期蛋白K或CDK12的敲减则能阻止此复制前复合体的组装[19]。因此,CDK12缺失可能会最终导致串联重复在细胞分裂过程中的积累。
研究表明,>5%的晚期前列腺癌存在CDK12双等位基因失活或突变[20]。Wu等[21]的研究发现,7%的转移性耐去势治疗前列腺癌(metastatic castration-resistant prostate cancer, mCRPC)患者的CDK12双等位基因失活。与乳腺癌易感基因2缺失或有错配修复缺陷的基因组特征不同,CDK12基因突变的肿瘤基因编码区中的串联重复会产生大量的融合基因,后者可能具有抗原的功能。CDK12基因突变的前列腺癌的基因融合负担至少是存在HRR缺陷或共济失调-毛细血管扩张突变的前列腺癌的3倍。与此一致,CDK12基因突变的前列腺癌的T细胞浸润总水平和扩展的T细胞克隆数均高于其他基因组亚型(除错配修复缺陷外)前列腺癌,且某些趋化因子及其受体的表达水平也增高[21]。与CDK12基因突变的前列腺癌可能更具免疫原性的推论相符的证据还有,在4例mCRPC患者中,2例CDK12基因突变的患者对细胞程序性死亡受体-1(programmed cell death protein-1, PD-1)抑制剂治疗有反应[21]。此外,有研究显示,在乳腺癌中,抑制CDK12可诱导免疫原性细胞死亡,联用PD-1抑制剂后还能增强树突状细胞和T细胞的浸润能力[22]。这些数据提示,CDK12缺失可能有益于免疫检查点抑制剂的治疗。为验证此推论,临床上正在进行多项相关试验,包括一项伊匹单抗联合纳武单抗治疗CDK12基因突变的转移性肿瘤患者的Ⅱ期研究(NCT03570619)。
THZ1最初被发现是一种CDK7抑制剂,后被证实对CDK12也有抑制作用[23]。THZ1抑制CDK12的质量浓度是抑制CDK7质量浓度的3.75倍[24]。THZ531是THZ1衍生物,其对CDK12的抑制效力是对CDK7抑制效力的50多倍(半数抑制质量浓度分别为158和8 500 nmol/L)[25]。需指出的是,THZ531可通过上调三磷酸腺苷结合转运蛋白B超家族成员1和三磷酸腺苷结合转运蛋白G超家族成员2的表达而实现药物外排,这是一种潜在的耐药机制[26]。THZ531分别与CDK12、CDK13和CDK7中1 039、1 017和312位的半胱氨酸残基共价结合[26]。靶向1 039位的半胱氨酸残基意味着具有CDK12选择性。Gao等[26]还筛选到了没有THZ531等样药物外排作用的化合物E9。Ito等[27]合成并发现了化合物2,后者能抑制RNA聚合酶ⅡCTD中2位丝氨酸的磷酸化,抑制人类表皮生长因子受体2(human epidermal growth factor receptor 2, HER2)過表达乳腺癌细胞的生长[28]。尽管目前已找到几种有研究价值的化合物,但至今尚无CDK12抑制剂上市。
令人惊喜的是,近年来的研究表明,CDK12基因突变或缺失可增强聚(二磷酸腺苷-核糖)聚合酶[poly(ADP-ribose) polymerase, PARP]抑制剂、络铂类药物、细胞周期检查点(如CHK1)抑制剂和免疫检查点抑制剂的抗肿瘤作用[21, 29-31]。在乳腺癌易感基因突变的三阴性乳腺癌中,肿瘤细胞DNA存在HRR缺陷,而PARP抑制剂能抑制DNA的损伤修复,进而产生合成致死的效应[32-33]。但是,肿瘤细胞可通过未知机制修复HRR缺陷,由此表现出对PARP抑制剂的耐药[34],而联用CDK12抑制剂可克服肿瘤细胞对PARP抑制剂的原发性和获得性耐药。此外,CHK1抑制剂能选择性地杀灭CDK12基因突变或缺失的细胞,其机制可能与CDK12本身就具有CHK1调控作用有关[31]。CDK12基因突变的卵巢癌细胞的CHK1表达减少,而CDK12基因突变细胞的生存广泛依赖于残余CHK1的活性,故这些细胞对低剂量CHK1抑制剂敏感[31]。
对于myc过表达的肿瘤,靶向CDK12是一种有前途的治疗策略[35],这是因为:一方面,CDK12可在myc 3’端募集转录终止因子来调节myc的转录[36];另一方面,CDK12可增强mTORC1靶基因的翻译,这些靶基因中包括myc转录、翻译所必需的基因[11]。尤文肉瘤患者中最常见的染色体易位是融合蛋白EWS/FLI[37],而CDK12/13抑制剂能以EWS/FLI依赖性方式损害DNA损伤修复,提示CDK12/13抑制剂可治疗此类尤文肉瘤患者[38]。HER2过表达的肿瘤也可能对CDK12抑制剂敏感[28]。
CDK12参与多种生物学过程,包括基因转录、RNA剪接、mRNA翻译、内含子多聚腺苷酸化和表观遗传学修饰等。抑制CDK12可抑制某些特定肿瘤亚型的肿瘤生长。CDK12已成为肿瘤治療的重要潜在靶点。临床前研究显示,在一些肿瘤中,CDK12会增强肿瘤的免疫调节,进而增强肿瘤对免疫抑制剂的敏感性。不过,我们目前对CDK12调控哪类基因表达的选择机制不甚了解,对CDK12参与肿瘤免疫调节的确切机制也不清楚。尽管至今还无CDK12抑制剂上市,但随着对CDK12在肿瘤中作用的研究的深入,可能会为肿瘤治疗提供一种新的策略。
参考文献
[1] Malumbres M. Cyclin-dependent kinases [J]. Genome Biol, 2014, 15(6): 122.
[2] Galbraith MD, Bender H, Espinosa JM. Therapeutic targeting of transcriptional cyclin-dependent kinases [J]. Transcription, 2019, 10(2): 118-136.
[3] Bradner JE, Hnisz D, Young RA. Transcriptional addiction in cancer [J]. Cell, 2017, 168(4): 629-643.
[4] Ko TK, Kelly E, Pines J. CrkRS: a novel conserved Cdc2-related protein kinase that colocalises with SC35 speckles [J]. J Cell Sci, 2001, 114(Pt 14): 2591-2603.
[5] Chirackal Manavalan AP, Pilarova K, Kluge M, et al. CDK12 controls G1/S progression by regulating RNAPII processivity at core DNA replication genes [J]. EMBO Rep, 2019, 20(9): e47592.
[6] Blazek D, Kohoutek J, Bartholomeeusen K, et al. The cyclin K/Cdk12 complex maintains genomic stability via regulation of expression of DNA damage response genes [J]. Genes Dev, 2011, 25(20): 2158-2172.
[7] Ekumi KM, Paculova H, Lenasi T, et al. Ovarian carcinoma CDK12 mutations misregulate expression of DNA repair genes via deficient formation and function of the Cdk12/CycK complex [J]. Nucleic Acids Res, 2015, 43(5): 2575-2589.
[8] Dubbury SJ, Boutz PL, Sharp PA. CDK12 regulates DNA repair genes by suppressing intronic polyadenylation [J]. Nature, 2018, 564(7734): 141-145.
[9] Pan L, Xie W, Li KL, et al. Heterochromatin remodeling by CDK12 contributes to learning in Drosophila [J]. Proc Natl Acad Sci U S A, 2015, 112(45): 13988-13993.
[10] Gingras AC, Raught B, Sonenberg N. Regulation of translation initiation by FRAP/mTOR [J]. Genes Dev, 2001, 15(7): 807-826.
[11] Choi SH, Martinez TF, Kim S, et al. CDK12 phosphorylates 4E-BP1 to enable mTORC1-dependent translation and mitotic genome stability [J]. Genes Dev, 2019, 33(7/8): 418-435.
[12] Stephens PJ, McBride DJ, Lin ML, et al. Complex landscapes of somatic rearrangement in human breast cancer genomes[J]. Nature, 2009, 462(7276): 1005-1010.
[13] Ng CK, Cooke SL, Howe K, et al. The role of tandem duplicator phenotype in tumour evolution in high-grade serous ovarian cancer [J]. J Pathol, 2012, 226(5): 703-712.
[14] McBride DJ, Etemadmoghadam D, Cooke SL, et al. Tandem duplication of chromosomal segments is common in ovarian and breast cancer genomes [J]. J Pathol, 2012, 227(4): 446-455.
[15] Menghi F, Barthel FP, Yadav V, et al. The tandem duplicator phenotype is a prevalent genome-wide cancer configuration driven by distinct gene mutations [J]. Cancer Cell, 2018, 34(2): 197-210.e5.
[16] Popova T, Manié E, Boeva V, et al. Ovarian cancers harboring inactivating mutations in CDK12 display a distinct genomic instability pattern characterized by large tandem duplications[J]. Cancer Res, 2016, 76(7): 1882-1891.
[17] Nguyen VQ, Co C, Li JJ. Cyclin-dependent kinases prevent DNA re-replication through multiple mechanisms [J]. Nature, 2001, 411(6841): 1068-1073.
[18] Green BM, Finn KJ, Li JJ. Loss of DNA replication control is a potent inducer of gene amplification [J]. Science, 2010, 329(5994): 943-946.
[19] Lei T, Zhang P, Zhang X, et al. Cyclin K regulates prereplicative complex assembly to promote mammalian cell proliferation [J]. Nat Commun, 2018, 9(1): 1876.
[20] Robinson D, Van Allen EM, Wu YM, et al. Integrative clinical genomics of advanced prostate cancer [J]. Cell, 2015, 161(5): 1215-1228.
[21] Wu YM, Cie?lik M, Lonigro RJ, et al. Inactivation of CDK12 delineates a distinct immunogenic class of advanced prostate cancer [J]. Cell, 2018, 173(7): 1770-1782.e14.
[22] Li Y, Zhang H, Li Q, et al. CDK12/13 inhibition induces immunogenic cell death and enhances anti-PD-1 anticancer activity in breast cancer [J]. Cancer Lett, 2020, 495: 12-21.
[23] Kwiatkowski N, Zhang T, Rahl PB, et al. Targeting transcription regulation in cancer with a covalent CDK7 inhibitor [J]. Nature, 2014, 511(7511): 616-620.
[24] Olson CM, Liang YK, Leggett A, et al. Development of a selective CDK7 covalent inhibitor reveals predominant cellcycle phenotype [J]. Cell Chem Biol, 2019, 26(6): 792-803. e10.
[25] Zhang T, Kwiatkowski N, Olson CM, et al. Covalent targeting of remote cysteine residues to develop CDK12 and CDK13 inhibitors [J]. Nat Chem Biol, 2016, 12(10): 876-884.
[26] Gao Y, Zhang T, Terai H, et al. Overcoming resistance to the THZ series of covalent transcriptional CDK inhibitors [J]. Cell Chem Biol, 2018, 25(2): 135-142.e5.
[27] Ito M, Tanaka T, Toita A, et al. Discovery of 3-benzyl-1-(trans-4-((5-cyanopyridin-2-yl)amino)cyclohexyl)-1-arylurea derivatives as novel and selective cyclin-dependent kinase 12 (CDK12) inhibitors [J]. J Med Chem, 2018, 61(17): 7710-7728.
[28] Choi HJ, Jin S, Cho H, et al. CDK12 drives breast tumor initiation and trastuzumab resistance via WNT and IRS1-ErbB-PI3K signaling [J]. EMBO Rep, 2019, 20(10): e48058.
[29] Bajrami I, Frankum JR, Konde A, et al. Genome-wide profiling of genetic synthetic lethality identifies CDK12 as a novel determinant of PARP1/2 inhibitor sensitivity [J]. Cancer Res, 2014, 74(1): 287-297.
[30] Joshi PM, Sutor SL, Huntoon CJ, et al. Ovarian cancerassociated mutations disable catalytic activity of CDK12, a kinase that promotes homologous recombination repair and resistance to cisplatin and poly(ADP-ribose) polymerase inhibitors [J]. J Biol Chem, 2014, 289(13): 9247-9253.
[31] Paculová H, Kramara J, ?ime?ková ?, et al. BRCA1 or CDK12 loss sensitizes cells to CHK1 inhibitors [J]. Tumour Biol, 2017, 39(10): 1010428317727479.
[32] Lord CJ, Ashworth A. PARP inhibitors: synthetic lethality in the clinic [J]. Science, 2017, 355(6330): 1152-1158.
[33] Ashworth A, Lord CJ. Synthetic lethal therapies for cancer: what’s next after PARP inhibitors? [J]. Nat Rev Clin Oncol, 2018, 15(9): 564-576.
[34] Johnson SF, Cruz C, Greifenberg AK, et al. CDK12 inhibition reverses de novo and acquired PARP inhibitor resistance in BRCA wild-type and mutated models of triple-negative breast cancer [J]. Cell Rep, 2016, 17(9): 2367-2381.
[35] Zeng M, Kwiatkowski NP, Zhang T, et al. Targeting MYC dependency in ovarian cancer through inhibition of CDK7 and CDK12/13 [J]. Elife, 2018, 7: e39030.
[36] Davidson L, Muniz L, West S. 3’ end formation of pre-mRNA and phosphorylation of Ser2 on the RNA polymerase II CTD are reciprocally coupled in human cells [J]. Genes Dev, 2014, 28(4): 342-356.
[37] Ludwig JA. Ewing sarcoma: historical perspectives, current state-of-the-art, and opportunities for targeted therapy in the future [J]. Curr Opin Oncol, 2008, 20(4): 412-418.
[38] Iniguez AB, Stolte B, Wang WJ, et al. EWS/FLI confers tumor cell synthetic lethality to CDK12 inhibition in Ewing sarcoma [J]. Cancer Cell, 2018, 33(2): 202-216.e6.