APP下载

纳米二氧化锰的制备及其应用研究进展

2021-01-05王金敏于红玉马董云

无机材料学报 2020年12期
关键词:二氧化锰变色纳米

王金敏, 于红玉, 马董云

纳米二氧化锰的制备及其应用研究进展

王金敏, 于红玉, 马董云

(上海第二工业大学 工学部, 环境与材料工程学院, 上海 201209)

二氧化锰作为一种重要的过渡金属氧化物, 因其储量丰富、晶型多样、性能优异而备受关注。将二氧化锰纳米化后, 其颗粒尺寸变小、比表面积变大、材料性能优化、应用领域得以拓宽。本文在引言部分从介绍二氧化锰的应用着手, 指出纳米化和晶型多变对二氧化锰的结构和性能有着重要的影响。正文部分主要从纳米二氧化锰的制备方法和纳米二氧化锰的应用两个方面对近年来的研究进展进行了总结和评述。(1)介绍了水热法、溶胶-凝胶法、化学沉淀法、固相合成法等纳米二氧化锰的制备方法, 对各种制备方法的优点与缺点以及所制备纳米二氧化锰的形貌与性能进行了总结。(2)综述了纳米二氧化锰在储能电极、电致变色器件、催化剂、生物传感器等领域的应用研究进展。纳米二氧化锰可作为电池的正极材料和超级电容器的电极材料。通过调控二氧化锰的晶型和复合制备的含锰复合氧化物用于锂离子电池的正极材料, 可提高电池的容量并改善循环稳定性。作为锂离子动力电池的正极材料已有产业化应用, 在新能源汽车领域具有良好的应用前景。由于纯二氧化锰本身的颜色主要是在棕色和黄色之间变化, 光调制幅度较小, 因此作为电致变色器件的电极材料, 通常将其与其它光调制幅度较大的材料进行复合使用。如聚苯胺/二氧化锰杂化电致变色薄膜较纯聚苯胺薄膜在形貌、结构和电致变色性能上有巨大差异, 显示出更高的光调制幅度、着色效率和循环稳定性。纳米二氧化锰在乙苯的催化转化和空气污染物的催化消除方面发挥重要作用。纳米二氧化锰能够增大电流响应、降低检出限, 使检测的灵敏度大大提高, 近年来在生物传感器领域逐渐被大家重视并得到广泛应用, 如二氧化锰纳米片辅助荧光偏振生物传感器可有效检测环境水样中Ag+, PtAu-MnO2二元纳米结构修饰的石墨烯纸在非酶葡萄糖检测中表现出良好的传感性能。在结语部分, 分析了当前纳米二氧化锰的制备和应用方面存在的问题, 指出了纳米二氧化锰在锂离子电池正极材料和电致变色器件中应用的发展方向, 并对其未来的发展前景进行了展望。

纳米二氧化锰; 水热法; 储能电极; 电致变色

二氧化锰作为重要过渡金属氧化物具有储备丰富、环境友好、工作电压窗较宽等优点, 在电极材料、电致变色、催化、生物传感器等领域都有广泛的应用前景[1-3]。二氧化锰经常含有少量的其它锰氧化物和化合水[4], 分子式表示为MnO(<2)[5-6]。将二氧化锰纳米化后, 其颗粒尺寸变小、比表面积增大[7], 从而使离子的传输速率、催化效率等都有了进一步的提升。除上述原因外, 纳米二氧化锰多变的晶型也是它受到研究人员重视的主要原因之一。二氧化锰有、、等晶型, 按[MnO6]的连接方式不同, 又可分为链状或隧道状结构[5-6]。这些原因促使纳米二氧化锰在能源、光电、环境、生物医学等领域有着广泛的应用。

纳米二氧化锰的制备方法多种多样, 主要包括水热法[8]、溶胶-凝胶法[9]、化学沉淀法[10]、固相合成法等。由不同方法制备的纳米二氧化锰的晶相、形貌、尺寸以及应用各有差异, 本文综述了纳米二氧化锰的各种制备方法的优势与不足, 及其在储能电池电极、电致变色器件、催化剂、生物传感器等领域的应用研究进展。

1 纳米二氧化锰的制备方法

1.1 水热法

水热法是指在一定温度的密闭条件下, 以水为溶剂的溶液产生压力, 使得反应物之间发生反应从而生成特定产物的制备方法[11]。水热法有诸多优点, 例如不受模板的约束、初始反应物不必具有可溶性; 通过选择适合的温度、时间等, 可以较为方便地合成纳米材料; 在密闭空间进行合成, 最大限度地减少了外界的干扰, 极大地提高了生成产物的纯度, 是一种在实际操作中较为常用的合成方法。水热合成法制备的纳米二氧化锰材料具有纯度高、分散性好、晶型完整、晶粒大小可控等优点。但由于要保持高温高压的合成环境, 较其它合成方法更繁琐。Zhao等[12]将制备好的中空碳纳米纤维加入到KMnO4溶液中, 经120 ℃水热反应2 h合成了表面有-MnO2纳米片的中空碳纳米纤维, 得到了可用于高性能非对称超级电容器的超薄MnO2纳米薄片/中空碳纳米纤维的纳米复合材料。Wu等[13]利用沸石咪唑酯框架材料作为自模板, 在碳布上水热制备了MnO2空心纳米片结构, 纳米片厚度为10 nm左右, 制备过程如图1所示。MnO2空心多面体具有较大的比表面积, 易于实现电解质的渗透、抑制体积膨胀, 而碳布基板促进电子传输, 进一步提高了锌离子的存储性能。Lu等[14]以KMnO4和乙醇混合溶液为反应溶液, 经120 ℃水热反应2 h后得到了直径为12 nm的-MnO2纳米线, 并将其应用在Li–O2电池的电催化中。利用水热合成方法可以制备形貌各异的二氧化锰纳米结构, 除上述所提到的结构外, 还有纳米颗粒、纳米棒、纳米晶须、纳米管、纳米花束以及球壳结构等[15-20]。

1.2 溶胶–凝胶法

作为一种常见的材料合成工艺, 溶胶–凝胶法主要是通过水解缩聚金属醇盐或无机盐并使其逐渐变成凝胶, 经过相应处理后得到粉体材料的合成方法[21]。溶胶-凝胶法制备的产物具有化学尺度的均匀分散性以及高纯度。但由于反应周期长, 煅烧过程会产生团聚, 因此通常与其它合成方法例如模板法等相结合使用[22], 以改善溶胶-凝胶法自身的不足, 制备出较为完善、规整的纳米材料。Wang等[23]将溶胶–凝胶法与模板法相结合, 首先配制Mn(CH3COO)2、柠檬酸和正丙醇的混合溶液, Mn2+与柠檬酸的摩尔比为1 : 2, 通过添加NH3·H2O调节pH至8.5。将该混合溶液在80 ℃下加热醚化, 提取过量的正丙醇。当溶液变成透明的粘性溶胶时, 将溶胶倒入制备好的多孔氧化铝(AAO)中, 80 ℃常压干燥2 h, 400 ℃加热12 h, 得到MnO2纳米线。图2(a, b)分别是利用磷酸将AAO扩孔20 min获得的模板A和扩孔40 min获得的模板B生成的MnO2纳米线的扫描电镜照片。赵娜英等[24]配制Mn(CH3COO)2、柠檬酸和La(NO3)3·6H2O混合溶液, 并用NH3·H2O调节溶液pH至6, 在80 ℃加热、110 ℃脱水, 煅烧10 h, 90 ℃酸化, 洗涤至中性后, 干燥, 获得镧掺杂MnO2复合材料。李哲等[25]以Mn(CH3COO)2、柠檬酸和硅藻土作为原料, 用溶胶–凝胶法制备出纳米MnO2和纳米MnO2负载硅藻土的复合材料并将其用于吸附苯酚。

1.3 化学沉淀法

化学沉淀法在高纯度纳米粒子液相合成中应用较为广泛, 是指在水溶液中通过调节反应条件将溶解于其中的金属盐转变为难溶化合物或水合氧化物而析出, 经过进一步处理得到纳米材料的方法[26]。化学沉淀法包括共沉淀法、均匀沉淀法、氧化水解法、还原法等。化学沉淀法有反应温度较低、操作简单、成本低等优点, 但也存在诸如生成物均匀性较差、易发生硬团聚等缺点。通过改变反应物浓度、调节溶液pH可以有效改善这一情况, 化学沉淀法为批量生产纳米材料提供了很好的选择。Li等[27]利用化学氧化聚合法获得Ti3C2T@PDA(聚多巴胺)粉末, 将其溶于超纯水中, 加入KMnO4溶液, 以十六烷基三甲基溴化铵(CTAB)和聚乙二醇(PEG)作为表面活性剂, 利用液相共沉淀法制备不同形貌的Ti3C2T@MnO2复合材料。其中MnO2的形貌包括纳米片状、米粒状、纳米花状、纳米线状。米粒状MnO2长度约为100 nm, 纳米片状则可以在表面活性剂的作用下团聚成纳米花状, 其直径为100 nm。Mahamallik等[28]利用KMnO4和MnCl2·4H2O (摩尔比2 : 3)通过氧化还原共沉淀法合成了MnO2纳米片。在磁力搅拌下, 将KMnO4溶液(2 mmol/L, 100 mL)以5 mL/min的速率滴加入MnCl2溶液(3 mmol/L, 100 mL)中, 分离出棕色沉淀, 在90 ℃温度下干燥4 h, 再一次将干燥的固体通过搅拌重新分散在水中, 经适当清洗得到上清液, 用离心法将物料从液体中分离出来, 在90 ℃下干燥12 h, 即得到具有微孔结构的MnO2纳米片, 其比表面积为301 m2/g, 孔径为0.364 nm (图3)。

1.4 固相合成法

固相合成法是采用较低温度通过固化反应生成纳米二氧化锰的合成方法, 反应过程主要是通过固体反应物高速球磨等。因实验方法简单、环境污染较小、生成物产量高、反应选择性较好, 固相合成法为纳米材料的合成提供了一种简单、高效、低价的方法。但由于二氧化锰本身的固有特性, 采用此方法不宜合成单晶型的纳米级产物。吴昊天等[29]按照一定比例混合KMnO4和MnCl2·4H2O, 在研钵中研细, 80 ℃水浴3 h, 离心洗涤后, 80 ℃烘干获得纳米棒状MnO2。随着反应物MnCl2·4H2O比例的不断增大, 获得纳米棒状MnO2的直径与长度都不断增大, KMnO4和MnCl2·4H2O的摩尔比为2:2、2:3、2:4时产物的长径比分别为7、9、12。龚良玉[30]利用表面活性剂辅助固相合成法制备了直径为10~ 15 nm、长度为100~150 nm的-MnO2纳米棒。李娟等[31]将摩尔比相同的Mn(CH3COO)2与柠檬酸混合均匀, 于玛瑙研钵中研磨30 min以上。待体系颜色不再变化时, 在50~60 ℃反应10 h, 在马弗炉中300 ℃煅烧10 h。之后在2 mol/L H2SO4中于80~90 ℃酸化处理1~2 h, 冷却后用蒸馏水洗涤至中性, 105 ℃烘干10 h, 取出研细, 所得产物是粒径为20~30 nm的球形纳米-MnO2颗粒。

图3 MnO2纳米片组装体的(a) FESEM、(b, c) TEM和(d) HRTEM照片, (d)中插图为SAED花样[28]

2 纳米二氧化锰的应用

2.1 储能电极

二氧化锰可作为电池的正极材料[32], 较广泛地应用于锌/二氧化锰电池、镁/二氧化锰电池和碱性锌/二氧化锰电池等。因二氧化锰的电容性较好, 在超级电容器中可替代高价的氧化钌作为电极材料。Wang等[16]利用微波辅助水热法制备直径为200 nm的纳米花状-MnO2, 并将其作为超级电容器的电极材料。在1 mol/L Na2SO4电解质溶液中, 2.1 A/g的电流密度下测得其电容与循环性能如图4所示。-MnO2在初始400次循环中比电容快速降低, 可能是由于材料的循环收缩和膨胀以及材料在集流器上的弱结合造成电极中松散材料出现损失。经过400次循环后, 材料的比电容保持相对稳定。经过5000次循环后, 比电容为初始值的89%, 表明该材料具有良好的充放电循环稳定性。Shafi等[33]用化学沉淀法合成了-MnO2纳米晶, 对制备的样品进行不同温度的退火处理, 并进行电化学性能测试。结果显示, MnC4.5即纯相-MnO2纳米晶是超级电容器较佳的电极材料。在MnO2的不同晶型中,-MnO2在超级电容器中应用较为广泛。近年来随着技术的不断进步, 纳米MnO2在电极材料方面的应用更加多样, 涵盖面也更加广泛[34-36]。由于二氧化锰的晶型复杂, 随着反应条件的改变极易发生变化, 且随着对储能材料性能要求的不断提高, 单一材料已不能满足当前对能量密度等的需求, 调控二氧化锰的晶型和制备复合材料成为当前的研究重点。含锰复合氧化物作为电池正极材料的应用较广泛, 其中LiMn2O4正极材料为尖晶石结构, 理论容量为148 mAh/g; 以高纯度的Mn3O4作为原料, 可进一步提高其容量并改善循环稳定性, 主要是因为Mn3O4与LiMn2O4有类似的结构, 制备过程中结构不会发生剧烈变化[37]。LiMnPO4正极材料为橄榄石结构, 结构较稳定, 能量密度与放电平台均比相同结构的LiFePO4高, 但其导电性能与倍率性能较差, 循环稳定性不高[38]。针对上述问题, 科研工作者发现通过纳米化以及对晶面进行筛选可以改善这一情况, 从而提高其电化学性能[39]。上述材料作为锂离子动力电池的正极材料已有产业化应用, 在新能源汽车领域具有良好的应用前景。

图4 在1 mol/L Na2SO4电解质溶液、2.1 A/g电流密度下δ-MnO2的电容保持率, 插图为相应的δ-MnO2的充放电曲线[16]

2.2 电致变色器件

电致变色是一种通过外加电压实现离子的注入与抽出, 从而达到颜色变化的现象[40-41]。由于电致变色材料具有在电场作用下改变颜色的特性, 在智能窗[42-44]、防眩后视镜[45]、显示器[46]以及防眩滑雪镜等方面均具有广泛的应用。纳米二氧化锰自身价态丰富, 颗粒尺寸较小, 比表面积较大, 离子、电子传输速率快, 因而适合应用于电致变色器件。但由于纯二氧化锰本身的颜色主要是在棕色和黄色之间变化, 光调制幅度较小, 需要将其与其它光调制幅度较大的材料进行复合。Zhou等[47]利用恒电位阳极电沉积法制备聚苯胺/二氧化锰(PANI/MnO2)杂化电致变色薄膜。PANI的电聚合和MnO2的电沉积同时发生, 合成的纳米MnO2可以作为氧化剂, 进一步改善PANI的化学聚合, 促进杂化膜的快速生长。这种独特的沉积机制产生的PANI/MnO2杂化电致变色薄膜较纯PANI膜在形貌、结构、电化学和电致变色性能上有巨大差异, 显示出更高的光学对比度、着色效率和循环稳定性(图5)。杂化膜的优异性能可以归功于其相互连接的纳米粒子的多孔形貌, 以及PANI与MnO2之间的施主—受体相互作用。Sakai等[48]通过将层状质子锰氧化物H0.13MnO2·0.7H2O降解为胶体单层, 合成了厚度为0.5 nm左右的MnO2纳米片。通过静电自组装的方法, 将MnO2纳米片沉积在氧化铟锡(ITO)透明导电玻璃上。相关电化学测试表明, 随着MnO2纳米片层数的增加, 氧化还原峰线性增强。尽管纳米片的规则堆积结构在最初的几个扫描周期中已经崩溃, 但是纳米片本身对CV循环保持稳定。MnO2纳米片电极表现出阳极电致变色, 着色效率高。吸光度的变化与MnO2纳米片的层数成正比, 通过控制MnO2纳米片的层数, 可以很容易地实现光密度的调控。Falahatgar等[49]采用浸涂溶胶-凝胶法在300 ℃的空气中, 于ITO玻璃上沉积了Zn和Mn摩尔比分别为8%、16%和25%的MnO2-ZnO纳米颗粒薄膜样品, 对薄膜的结构、表面、光学和电致变色性能进行了研究。测试结果表明, 制备的样品为无定形态, 在20和50 mV/s的扫描速率下, 薄膜的电致变色性能取决于Zn与Mn的组成比。

图5 (a) PANI、(b) MnO2和(c) PANI/MnO2在不同电压下的紫外–可见光透过率光谱, (c)中的插图为PANI/MnO2杂化膜电沉积在ITO/玻璃上的褪色态(上, 浅绿黄色)和着色态(下, 深青绿色)的照片; (d) PANI、MnO2和PANI/MnO2杂化膜在λ680nm (–0.4 V/+0.4 V, 每周期60 s)的响应时间曲线[47]

2.3 催化剂

由于纳米二氧化锰具有良好的氧化还原特性以及特有的纳米尺寸效应, 因此在催化领域有较为广泛的应用。不同形貌的纳米二氧化锰的吸附效果有所差异并且对吸附物的影响较大, 目前主要是对反应条件进行精细化的控制, 生成特定的形貌从而满足相关催化需求。Lyu等[50]采用共沉淀法合成了MgAl层状双氢氧化物(LDHs)。LDHs在550 ℃的空气中煅烧10 h获得层状双氧化物(LDOs), 将制备的LDOs加入巯丙基三甲氧基硅烷(MPTS)甲苯溶液中, 在Ar气氛中回流, 过滤得到固体。用乙醇洗涤固体, 在80 ℃下干燥, 得到LDO-Si(SH)。将LDO-Si(SH)或LDO分散于0.1 mol/L KMnO4水溶液中, 然后在Ar气氛、80 ℃下剧烈搅拌。过滤后的固体用热去离子水洗涤, 然后在90 ℃下真空干燥4 h, 得到LDH-Si(SH)-Mn或LDH-Mn。LDH-Mn和LDH-Si(SH)-Mn具有显著的乙苯转化率, 表明Mn物种主要负责氧化活性。在没有过氧化氢叔丁基(TBHP)作为引发剂的情况下, LDH-Si(SH)-Mn的乙苯转化率仅为0.7%, 而添加少量TBHP后转化率达到29.5%, 说明TBHP起到了启动催化剂的作用。Wang等[51]利用水热法和CCl4溶剂法分别制备了纳米棒状、类丝状、管状-MnO2和花状球形Mn2O3, 如图6(a)所示。各个样品的催化性能为棒状-MnO2>管状-MnO2>花状Mn2O3>线状-MnO2, 如图6(b)所示。-MnO2纳米棒的优异的催化性能可能与高氧含量和良好的低温还原性有关, 这种一维锰氧化物材料在催化消除空气污染物中有较广阔的发展前景。

2.4 生物传感器

生物传感器是一种结合对生物或生物衍生敏感元件的精密分析器件, 与理化换能器产生间断或连续的数字信号, 被分析物的含量由信号强度与被分析物成比例关系来确定。纳米二氧化锰由于具有宏观量子隧道效应、小尺寸效应等纳米效应, 能够增大电流响应, 降低检出限, 使检测的灵敏度大大提高, 近年来在生物传感器领域逐渐被大家重视并得到广泛应用。为了使生物传感器中的二氧化锰更好地与检测物接触, 可以将它与比表面积较大的其它材料进行复合或提高其自身的比表面积。Qi等[52]以MnO2纳米片作为辅助, 利用配体-DNA相互作用和基于荧光偏振的方法来检测Ag+。在预先形成的普罗黄素(配体)-DNA复合物中加入Ag+可诱导释放普罗黄素, 从而引起荧光极化的微弱变化, MnO2纳米片可以放大这种荧光变化。图7表明, 荧光偏振差值(ΔFP)与Ag+的浓度之间具有良好的线性关系。该方法进一步阐明存在MnO2纳米片时加入Ag+的过程中引起荧光偏振变化的机理。这些研究表明, 目前的MnO2纳米片辅助荧光偏振生物传感器是一种很有前途的检测环境水样中Ag+的工具。Xiao等[53]制备了一种基于PtAu合金和MnO2二元纳米复合材料修饰的石墨烯纸的新型柔性电化学传感器。通过一步无模板电沉积在衬底上生长珊瑚状PtAu-MnO2纳米复合材料, 使PtAu合金、MnO2与基体密切接触。柔性电极具有独特的结构和电化学性能, 如更好的均匀性、更大的活性比表面积和更快的电子转移。在非酶葡萄糖检测中, PtAu-MnO2二元纳米结构修饰的石墨烯纸表现出良好的传感性能。

图6 (a)纳米棒状、类丝状、管状α-MnO2和花状球形Mn2O3的SEM照片; (b)在甲苯浓度为10–3、甲苯/O2的摩尔比为1/400和空速为20000 mL/(g·h)的条件下甲苯的转化率随反应温度的变化曲线[51]

图7 在MnO2纳米片(80 μg/mL)存在下, 加入不同浓度Ag+的荧光偏振值(FP), 插图为ΔFP与Ag+的浓度之间的线性关系[52]

3 结语

虽然纳米二氧化锰的制备及应用取得了显著进展, 但仍需要研究纳米二氧化锰的可控制备方法及制备与性能之间的关系, 以期进一步提升性能, 满足更高的使用要求。当前含锰氧化物在电池正极材料的应用已经进入了产业化阶段。现有新能源汽车的发展大幅度提升了对电池正极材料的能量密度的要求, 而锂电池在向着高容量、低成本的发展过程中含锰复合材料起着重要推动作用。由于二氧化锰的晶型多变、反应过程中存在副反应, 使其发展存在诸多壁垒。为了改善二氧化锰材料的性能, 未来除了体相掺杂、表面包覆、使用梯度材料等方法, 还需要对材料的形貌与尺寸进行精细控制, 提高材料的循环性能。未来纳米二氧化锰的研究与高容量富锂正极/碳负极锂离子电池正极材料的发展密切相关, 将向着与其他材料复合的方向发展, 从而更好地满足正极材料对性能的需求。由于单一纳米二氧化锰作为电致变色材料的光调制幅度较小, 未来主要是与其它材料复合来增强材料的性能, 或者与光调制幅度较大的材料制备互补型电致变色器件来改善电致变色器件的性能。只有不断探索材料性能与材料自身的尺寸、晶型、形貌等之间的关系, 掌握其规律, 纳米二氧化锰才能被更好地开发与利用, 实现产业化应用。

[1] SUN K, LI S Y, WAIGI M G,. Nano-MnO2-mediated transformation of triclosan with humic molecules present: kinetics, products, and pathways., 2018, 25(15): 14416–14425.

[2] SEO J K, SHIN J W, CHUNG H,. Intercalation and conversion reactions of nanosized-MnO2cathode in the secondary Zn/MnO2alkaline battery., 2018, 122(21): 11177–11185.

[3] XUE F, WU S, WANG M X,. A three-dimensional graphene/ CNT/MnO2hybrid as supercapacitor electrode., 2018, 190(1): 156–163.

[4] GU X, YUE J, LI L J,. General synthesis of MnO(MnO2, Mn2O3, Mn3O4, MnO) hierarchical microspheres as lithium-ion battery anodes., 2015, 184: 250–256.

[5] FENG Q, KANOH H, OOI K. Manganese oxide porous crystals., 1999, 9(2): 319–333.

[6] POST J E. Manganese oxide minerals: crystal structures and economic and environmental significance., 1999, 96(7): 3447–3454.

[7] JIA Z J, WANG J, WANG Y,. Interfacial synthesis of-MnO2nano-sheets with a large surface area and their application in electrochemical capacitors., 2016, 32(2): 147–152.

[8] HUANG Y J, LI W S. Preparation of manganese dioxide for oxygen reduction in zinc air battery by hydro thermal method., 2013, 28(3): 341–346.

[9] WEN J G, RUAN X Y, ZHOU Z T. Characterization of MnO2aerogels preparedsupercritical drying technique., 2009, 24(3): 521–524.

[10] XIAO X Z, YI Q F. Synthesis and electochemical capacity of MnO2/SMWCNT/PANI ternarycomposites., 2013, 28(8): 825–830.

[11] DARR J A, ZHANG J Y, MAKWANA N M,. Continuous hydrothermal synthesis of inorganic nanoparticles: applications and future directions., 2017, 117(17): 11125–11238.

[12] ZHAO P, YAO M Q, REN H B,. Nanocomposites of hierarchical ultrathin MnO2nanosheets/hollow carbon nanofibers for high-performance asymmetric supercapacitors., 2019, 463: 931–938.

[13] WU F F, GAO X B, XU X L,. Boosted Zn storage performance of MnO2nanosheet-assembled hollow polyhedron grown on carbon clotha facile wet-chemical synthesis., 2020, 13(6): 1537–1545.

[14] LU C J, ZHU F Q, YIN J G,. Synthesis of-MnO2nanowiresfacile hydrothermal method and their application in Li-O2battery., 2018, 33(9): 1029–1034.

[15] ZHU K, WANG C, CAMARGO P H C,. Investigating the effect of MnO2band gap in hybrid MnO2-Au materials over the SPR-mediated activities under visible light., 2019, 7(3): 925–931.

[16] WANG L, MA W L, LI Y H,. Synthesis of-MnO2with nanoflower-like architecture by a microwave-assisted hydrothermal method., 2017, 82: 85–91.

[17] MA Z C, WEI X Y, XING S T,. Hydrothermal synthesis and characterization of surface-modified-MnO2with high Fenton-like catalytic activity., 2015, 67: 68–71.

[18] LIU D Y, DONG L M, SHAN L W,. Preparation of Fe-MnO2/RGO electrode and electrochemical properties., 2019, 546(1): 41–47.

[19] XIE Y M, WANG L J, GUO Q Y,. Preparation of MnO2/porous carbon material with core-shell structure and its application in supercapacitor., 2018, 29(10): 1–8.

[20] MATHUR A, HALDER A. One step synthesis of bifunctional iron-doped manganese oxide nanorods for rechargeable zinc-air batteries., 2019, 9(5): 1245–1254.

[21] JITTIARPORN P, BADILESCU S, Al SAWAFTA M N,. Electrochromic properties of Sol-Gel prepared hybrid transition metal oxides - a short review., 2017, 2(3): 286–300.

[22] MOHAMED M A, SALLEH W N W, JAAFAR J,. Carbon as amorphous shell and interstitial dopant in mesoporous rutile TiO2: bio-template assisted Sol-Gel synthesis and photocatalytic activity., 2017, 393: 46–59.

[23] WANG X Y, WANG X Y, HUANG W G,. Sol-Gel template synthesis of highly ordered MnO2nanowire arrays., 2005, 140(1): 211–215.

[24] 赵娜英, 卞洁鹏, 杨雪健, 等. 溶胶–凝胶法制备掺镧改性纳米MnO2. 化工新型材料, 2019, 47(5): 164–171.

[25] 李哲, 汤化伟, 王百年. 纳米MnO2负载硅藻土对苯酚废水的吸附性能研究. 合肥工业大学学报(自然科学版), 2016, 39(5): 695–700.

[26] THEISS F L, AYOKO G A, FROST R L. Synthesis of layered double hydroxides containing Mg2+, Zn2+, Ca2+and Al3+layer cations by co-precipitation methods-a review., 2016, 383: 200–213.

[27] LI X L, ZHU J F, JIAO Y H,. Manganese dioxide morphology on electrochemical performance of Ti3C2T@MnO2composites., 2020, 35(1): 119–125.

[28] MAHAMALLIK P, SAHA S, PAL A. Tetracycline degradation in aquatic environment by highly porous MnO2nanosheet assembly., 2015, 276: 155–165.

[29] 吴昊天, 张振忠, 赵芳霞, 等. 低温固相法制备的纳米-MnO2的性能. 电池, 2015, 45(3): 157–159.

[30] 龚良玉. 固相合成MnO2纳米棒的电容性能及其PbO改性研究. 青岛农业大学学报(自然科学版), 2011, 28(2): 157–161.

[31] 李娟, 夏熙. 纳米MnO2的固相合成及其电化学性能的研究(Ι): 纳米-MnO2的合成及表征. 高等学校化学学报, 1999, 20(9): 1434–1437.

[32] SHIN J, SEO J K, YAYLIAN R,. A review on mechanistic understanding of MnO2in aqueous electrolyte for electrical energy storage systems., 2019: 1–32.

[33] SHAFI P M, BOSE A C. Structural evolution of tetragonal MnO2and its electrochemical behavior., 2016, 1731(1): 050038.

[34] HAN S D, KIM S, LI D G,. Mechanism of Zn insertion into nanostructured-MnO2: a nonaqueous rechargeable Zn metal battery., 2017, 29(11): 4874–4884.

[35] ZERAATI A S, ARJMAND M, SUNDARARAJ U. Silver nanowire/MnO2nanowire hybrid polymer nanocomposites: materials with high dielectric permittivity and low dielectric loss.2017, 9(16): 14328–14336.

[36] REHMAN S, TANG T Y, ALI Z,. Integrated design of MnO2@carbon hollow nanoboxes to synergistically encapsulate polysulfides for empowering lithium sulfur batteries., 2017, 13(20): 1700087.

[37] LUO P F, HUANG Z. Fabrication of scandium-doped lithium manganese oxide as a high-rate capability cathode material for lithium energy storage., 2019, 338: 20–24.

[38] WANG Y M, WANG F, FENG X J. Porous nest-like LiMnPO4microstructures assembled by nanosheets for lithium ion battery cathodes., 2018, 29(2): 1426–1434.

[39] 李俊豪, 冯斯桐, 张圣洁, 等. 高性能磷酸锰锂正极材料的研究进展. 材料导报, 2019, 33(9): 2854–2861.

[40] ZHAO J X, WANG G H, ZHANG Q,. An underlying intercalation ion for fast-switching and stable electrochromism., 2019, 30(13): 12753–12756.

[41] LIU Y R, RYOTA S, CHEUK L H,. Electrochromic triphenylamine-based cobalt (II) complex nanosheets., 2019, 7(30): 9159–9166.

[42] CHEN C W, BRIGEMAN A N, HO T J,. Normally transparent smart window based on electrically induced instability in dielectrically negative cholesteric liquid crystal., 2018, 8(3): 691.

[43] TONG Z Q, LIU S K, LI X G,. Achieving rapid Li-ion insertion kinetics in TiO2mesoporous nanotube arrays for bifunctional high-rate energy storage smart windows., 2018, 10: 3254–3261.

[44] CANNAVALE A, AYR U, FIORITO F,. Smart electrochromic windows to enhance building energy efficiency and visual comfort., 2020, 13(6): 1449.

[45] BECHINGER C, FERRERE S, ZABAN A,. Photoelectrochromic windows and displays., 1996, 383(6601): 608–610.

[46] CHO S I, KWON W J, CHOI S J,. Nanotube-based ultrafast electrochromic display., 2005, 17(2): 171–175.

[47] ZHOU D, CHE B Y, LU X H. Rapid one-pot electrodeposition of polyaniline/manganese dioxide hybrids: a facile approach to stable high-performance anodic electrochromic materials., 2017(5): 1758–1766.

[48] SAKAI N, EBINA Y, TAKADA K,. Electrochromic films composed of MnO2nanosheets with controlled optical density and high coloration efficiency., 2005, 152(12): E384–E389.

[49] FALAHATGAR S S, GHODSI F E, TEPEHAN F Z,. Electrochromic performance of Sol-Gel derived amorphous MnO2-ZnO nanogranular composite thin films., 2015, 427: 1–9.

[50] LYU W M, YANG L, FAN B B,. Silylated MgAl LDHs intercalated with MnO2nanowires: highly efficient catalysts for the solvent-free aerobic oxidation of ethylbenzene., 2015, 263: 309–316.

[51] WANG F, DAI H X, DENG J G,. Manganese oxides with rod-, wire-, tube-, and flower-like morphologies: highly effective catalysts for the removal of toluene., 2012, 46(7): 4034–4041.

[52] QI L, YAN Z, HUO Y,. MnO2nanosheet-assisted ligand-DNA interaction-based fluorescence polarization biosensor for the detection of Ag+ions., 2017, 87: 566–571.

[53] XIAO F, LI Y Q, GAO H C,. Growth of coral-like PtAu-MnO2binary nanocomposites on free-standing graphene paper for flexible nonenzymatic glucose sensors., 2013, 41: 417–423.

Progress in the Preparation and Application of Nanostructured Manganese Dioxide

WANG Jinmin, YU Hongyu, MA Dongyun

(School of Environmental and Materials Engineering, College of Engineering, Shanghai Polytechnic University, Shanghai 201209, China)

As an important transition metal oxide, manganese dioxide (MnO2) has attracted more and more attention due to its abundant reserves, varied crystal types and excellent material properties. Nanostructured MnO2has smaller size and larger specific surface area, that makes it can further optimize its material properties and expand its application fields. In the introduction, this article starts with the introduction of the application of manganese dioxide, and points out that nanostructuring and variability in crystal form have an important influence on the structure and properties of manganese dioxide. The main text summarizes and reviews the research progress in recent years from two aspects: the preparation methods and the applications of nanostructured MnO2. (1) This paper introduces the progress in the preparation methods of nanostructured MnO2including hydrothermal, Sol-Gel, chemical precipitation, solid-phase synthesis. Then the advantages and disadvantages of preparation methods, the morphologies and properties of nanostructured MnO2are summarized. (2) The applications of nanostructured MnO2including energy-storage electrodes, electrochromic devices, catalysts and bio-sensors are reviewed. Nanostructured MnO2can be used as the cathode material of batteries and the electrode material of supercapacitors. Manganese- containing composite oxides prepared by adjusting the crystal form of MnO2and compounding are used as the cathode material of the lithium ion batteries, which can increase the capacities and improve the cycle stability of batteries. It has been industrialized as a cathode material for lithium-ion power batteries, and has good application prospects in the field of new energy vehicles. As the electrode material of electrochromic devices, MnO2is usually used by combining with other materials with large optical modulations since the color of pure MnO2mainly changes between brown and yellow and its optical modulation is small. For example, polyaniline/MnO2hybrid electrochromic film has a great difference in morphology, structure and electrochromic performance compared with pure polyaniline film, showing higher optical modulation, coloration efficiency and cycle stability. Nanostructured MnO2plays important roles in the catalytic conversion of ethylbenzene and the catalytic elimination of air pollutants. Nanostructured MnO2can increase the current response, reduce the detection limit, and greatly improve the sensitivity of detection. In recent years, it has been gradually paid attention to and widely used in the field of biosensors. For example, MnO2nanosheets assisted fluorescence polarization biosensors can be effective in detection of Ag+in environmental water samples, PtAu-MnO2binary nanostructures modified graphene paper show good sensing performance in non-enzymatic glucose detection. In conclusion part, current existing problems are analyzed.The development direction of nanostructured MnO2applied in lithium-ion battery cathode materials and electrochromic devices are pointed out. The future prospects for development of nanostructured MnO2are discussed.

nanostructured manganese oxide; hydrothermal; energy-storage electrodes; electrochromism

TQ174

A

1000-324X(2020)12-1307-08

10.15541/jim20200105

2020-03-02;

2020-05-07

国家自然科学基金(61775131, 61376009); 上海高校特聘教授(东方学者)岗位计划(2013-70)

National Natural Science Foundation of China (61775131, 61376009); The Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning (2013-70)

王金敏(1975–), 男, 教授. E-mail: wangjinmin@sspu.edu.cn

WANG Jinmin (1975–), male, professor. E-mail: wangjinmin@sspu.edu.cn

猜你喜欢

二氧化锰变色纳米
再也不怕打针的纳米微针
探究催化剂的作用创新实验设计
神奇纳米纸
会变色的淘米水
锰矿石中二氧化锰的快速测定
变色花
为什么削皮后的苹果易变色
二氧化锰的用量对双氧水分解反应的影响初探
成语新说
究竟什么才算纳米产品