SGLT2抑制剂对糖尿病患者骨折、截肢的影响
2020-12-28彭雅茗杨艳周广举
彭雅茗 杨艳 周广举
摘要:钠葡萄糖协同转运蛋白2(SGLT2)抑制剂是一种新型口服降血糖药物,其降糖机制是抑制SGLT2,减少葡萄糖的重吸收。研究发现,SGLT2抑制剂可能导致骨折、截肢风险增加。本文主要对SGLT2抑制剂对糖尿病患者骨代谢、骨密度、骨折、截肢的影响及其影响因素进行综述,旨在为高危患者的临床用药提供参考。
关键词:钠葡萄糖协同转运蛋白2抑制剂;糖尿病;骨密度;骨代谢;骨折;截肢
中图分类号:R587.7 文献标识码:A DOI:10.3969/j.issn.1006-1959.2020.23.008
文章编号:1006-1959(2020)23-0022-05
Abstract:Sodium-glucose cotransporter 2 (SGLT2) inhibitor is a new type of oral hypoglycemic drug,its hypoglycemic mechanism is to inhibit SGLT2 and reduce glucose re-absorption. It has been reported that SGLT2 inhibitor may increase the risk of fracture and amputation.The present paper seeks to summarize relevantresearch on the effects and possible influencing factors of SGLT2 inhibitor on bone metabolism, bone mineral density, fracture and amputation in patients with diabetes mellitus,toprovide reference for clinical medication of high-risk patients.
Key words:Sodium-glucose cotransporter 2 inhibitor;Diabetesmellitus;Bone mineral density;Bonemetabolism;Fracture;Amputation
数据显示,预计到2040年,全世界20~79岁的糖尿病患病人数将增加到6.42亿,患病率将达到10.4%[1]。随着糖尿病患病率和总人数的上升,新型降糖药发展迅速,SGLT2抑制剂广泛应用的同时也带来了骨折、截肢等副作用[2,3]。生理状态下,肾脏的近端小管几乎重吸收全部葡萄糖,而SGLT2主要分布在近端小管中,协同吸收钠和葡萄糖[4]。与传统降糖药作用机理不同的是,SGLT2抑制剂通过选择性阻断SGLT2,特异性抑制早期近端小管内钠和葡萄糖吸收,从而促进尿糖排泄。通过这种方式,其降低血糖并不依赖胰岛素,所以不会增加低血糖的风险。而糖尿病本身可以影响患者骨折与截肢的风险,SGLT2抑制剂的使用会进一步增加这种风险[5-7],且不同种类的SGLT2抑制剂对骨骼的影响不同[8,9]。本文主要就SGLT2抑制剂对糖尿病患者骨折和截肢风险的影响进行综述,旨在帮助临床明确其具体机制,从而改善高危患者的预后结局。
1糖尿病与骨折、截肢
1.1糖尿病对骨折的影響 研究指出,2型糖尿病(T2DM)患者比一般人群更易骨折[10]。不仅糖尿病本身能直接降低骨转换和骨强度、减少骨形成,其多种伴发因素也会导致骨折的风险增加,如糖尿病合并肥胖患者骨脆性增加,跌倒风险上升,更易发生骨折。此外,骨质疏松、少肌症、与糖尿病相关的并发症、糖尿病病程、血糖控制程度都会增加骨折的风险[10-12]。Wallander M等[13]研究发现,老年T2DM患者的骨折风险增加,主要骨折部位为髋部。Liu J等[14]研究发现,T2DM患者肢体骨折的风险较高,这种关系在腿部或踝部骨折中更为明显。Vilaca T等[5]发现糖尿病与踝部骨折风险增加相关,和腕部骨折风险减少相关。该研究认为,踝部骨折风险与体重和身体质量指数增加有关,而肥胖的糖尿病人群更易从侧方或者后方跌倒,因此腕部骨折的风险较低。
1.2糖尿病对截肢的影响 糖尿病是全球非创伤性截肢的主要病因,患者下肢截肢的风险是普通人群的15倍[6]。糖尿病患者下肢截肢的主要危险因素是糖尿病足,而糖尿病足与糖尿病神经病变、糖尿病微血管病变密切相关[6]。糖尿病微血管病变血管壁损伤,基底膜增厚,管腔狭窄甚至闭塞,出现微循环缺血、缺氧,进而导致器官功能障碍[15]。糖尿病神经病变肢体末梢保护性感觉减弱或丧失,自主神经、运动神经功能受损可引起皮肤干燥、姿势与协调缺陷、足部生物力学改变,长期将导致下肢感染、溃疡形成和深部组织的损伤,最终发展为截肢。Hicks CW等[16]的研究证实了糖尿病截肢风险与糖尿病周围神经病变相关。另外,骨髓炎对糖尿病患者截肢的发生率也有一定作用[6],外周动脉疾病也会增加糖尿病足溃疡不愈合和截肢的风险[17]。Shin JY等[18]研究指出,糖尿病病程、血糖控制程度、吸烟史、既往截肢史是糖尿病截肢的重要危险因素,男性和吸烟糖尿病患者是预防糖尿病足和截肢的首要目标。
2 SGLT2抑制剂与骨折
2.1 SGLT2抑制剂对骨代谢的影响 SGLT2抑制剂可减少近端小管细胞顶膜中钠的重吸收,化学梯度改变后钠磷酸盐共转运蛋白的活性增加,导致近端小管中磷酸盐的重吸收和甲状旁腺素(PTH)的分泌增加,并且潜在增加了成纤维细胞生长因子23(FGF23)的分泌,导致骨吸收,对骨代谢产生不利影响;此外,抑制SGLT2也能导致维生素D的浓度降低,从而影响骨骼的钙化,这可能与SGLT2抑制剂导致骨折有一定相关性[19-21]。de jong MA等[22]研究发现,与安慰剂相比,达格列净可使糖尿病患者血清磷酸盐、PTH、FGF23水平分别提高9%、16%、19%。Blevins TC 等[23]的研究认为卡格列净也与血清磷酸盐升高有关。此外,Thrailkil KM等[24]利用链脲佐菌素诱导DBA/2J小鼠低胰岛素血症高血糖模型比较卡格列净和胰岛素对骨代谢的影响,结果显示接受卡格列净的小鼠尿钙和血清FGF23水平均增加。但Yabe D等[25]研究发现恩格列净不影响患者血清25-羟基维生素D、PTH水平,恩格列净对骨代谢的影响可能较小。
2.2 SGLT2抑制剂对骨密度的影响 Schwartz AV等[26]研究认为SGLT2抑制剂引起的体重减轻使骨骼负荷减少以及肌肉脂肪合成代谢减少造成的骨丢失可能是影响骨密度(BMD)的重要因素,而低BMD是骨折发生的重要危险因素。Bilezikian JP等[27]研究发现,卡格列净可降低糖尿病患者髋部BMD水平,对患者腰椎、股骨颈、前臂远端的BMD无影响。目前尚不清楚卡格列净造成患者髋部BMD改变的原因,推测体重减轻对骨密度的影响可能存在部位特异性。Thrailkill KM等[28]通过诱导slc5a2基因突变的Jimbee小鼠模型(小鼠血糖正常、尿糖严重、尿钙过多、渗透性利尿、伴有多食和多饮)模拟SGLT2功能丧失,结果发现小鼠皮质和小梁骨部位的组织矿物质密度降低,这可能与慢性高钙尿症有关。但Jimbee小鼠血糖未见异常,与临床上使用SGLT2抑制剂的高血糖患者相反,长期服用SGLT2抑制剂对骨骼健康产生有益或有害影响,还有待观察。Bolinder J等[29]研究发现,达格列净对糖尿病患者腰椎、髋关节和股骨颈BMD无影响,Rosenstock J等[30]的研究也支持该结论,该研究认为埃格列净与BMD降低无关。
2.3 SGLT2抑制剂影响骨折 SGLT2抑制剂主要通过改变患者机体钙和磷酸盐的稳态而影响骨代谢、骨密度,这可能导致骨折风险增加。Neal B等[3]研究发现,与安慰剂相比,使用卡格列净的糖尿病患者骨折风险增加了26%,但卡格列净剂量的增加并不会增加骨折的风险。Zhou Z等[31]研究发现,卡格列净的使用与跌倒引起的不良事件风险增加有关。另外,女性和肥胖参与者比例高、糖尿病病程长、有心血管病史、基线肾小球滤过率低、年龄较大,这些差异可能是骨折风险较高的原因[8,32]。与之不同的是,Perkovic V等[33]研究发现应用卡格列净与安慰剂的糖尿病患者骨折发生率相似(HR=0.98,95%CI:0.70~1.37),但该研究的纳入患者发生骨折很少,大多数骨折由跌倒引起,也有可能是偶然发现的结果。Zinman B等[34]研究发现,随访3.1年恩格列净仍没有增加患者骨折的风险,Yabe D 等[25]及Monteiro P等[35]的研究也有类似发现。除此之外,Wiviott SD等[36]的研究也认为达格列净不会增加骨折的风险。基于此,Toulis KA等[37]认为,在这种情况下达格列净对骨折风险的中性作用也可能适用于基线骨折风险高于一般糖尿病患者的人群,甚至可能适用于通常被排除在试验之外的人群,如转移性骨病或接受糖皮质激素治疗的患者,但该研究的随访时间短(12个月),也可能存在偏倚。Kashiwagi A等[38]的研究发现,应用依格列净与安慰剂患者的骨折发生率相似。Cheng L等[39]的研究认为,SGLT2抑制剂不会增加T2DM患者骨折的风险,反而会对治疗期≤52周的患者骨折产生有益的影响,其原因可能是SGLT2抑制剂能改善患者心功能和降低心力衰竭的风险,从而利于预防骨折,而当SGLT2抑制剂应用超过52周时,这些药物的预防作用也随之消失。目前多项荟萃分析均未发现SGLT2抑制剂的应用会增加骨折的风险[40-43]。需要说明的是,由于缺乏有关骨骼健康结果的详细信息,且大多数随机对照试验都是小型且短期的,因此有必要开展长期的试验进行验证,以得到更加明确的结论。
3 SGLT2抑制剂与截肢
3.1 SGLT2抑制剂影响截肢的病理生理机制 目前,SGLT2抑制剂导致截肢风险增加的潜在机制尚无定论。Leon Jimenez D等[44]研究認为,SGLT2抑制剂可激活肾素-血管紧张素-醛固酮系统,其可能与截肢风险的增加相关。Katsiki N等[9]则认为截肢风险增加可能与卡格列净的脱靶作用有关,与SGLT2抑制本身无关。Behnammanesh G等[45]的研究发现,肢体缺血与内皮功能障碍有关,卡格列净对内皮细胞增殖的影响可能会导致截肢风险增加,这种影响在达格列净和恩格列净中并没有发现。另外,SGLT2抑制剂引起的容量减少、小动脉反应性受损可导致组织灌注不足,也可能会促进组织坏死,从而导致截肢风险增加[46]。Tanaka A等[47]认为,若患者在停用卡格列净后发生截肢,则可能是由于血糖控制不佳、血细胞比容下降及糖尿病足恶化导致的。
3.2 SGLT2抑制剂对截肢的影响 Chang HY等[48]研究发现,与应用二肽基肽酶4(DPP4)抑制剂和胰高血糖素样肽1(GLP1)受体激动剂相比,新使用SGLT2抑制剂患者的总体截肢率较低,但患者截肢风险却显著增加。Yang JY等[49]也发现,与DPP4抑制剂相比,应用SGLT2抑制剂可增加糖尿病患者下肢截肢的风险。Ueda P等[50]研究发现,与GLP1受体激动剂相比,SGLT2抑制剂的应用与下肢截肢风险增加有关(HR=2.32,95%CI:1.37~3.91),其结果与患者是否存在外周动脉疾病、心血管疾病、既往截肢史是一致的。然而,Sung J等[51]研究认为,SGLT2抑制剂的应用与截肢风险之间没有关联(OR=0.70,95%CI:0.29~1.71),该研究为足部开放性伤口的糖尿病患者使用达格列净和恩格列净这两种SGLT2抑制剂提供了一定的保证。但Dawwas GK等[52]研究发现,与磺脲类药物相比,应用SGLT2抑制剂的截肢风险更低,而与DPP4抑制剂比较则无统计学差异。但该研究纳入患者较少,不能确定该结论是否具有代表性。在Neal B等[3]的研究中,应用卡格列净的截肢发生率增高,截断下肢的风险更高,且既往有截肢病史的患者截肢风险尤其高;如果卡格列净与截肢风险存在相关性,而其他SGLT2抑制剂与截肢风险无关,则应研究卡格列净独特的药理特性。另外,Udell JA等[53]的研究显示,新使用卡格列净与非SGLT2抑制剂的糖尿病患者膝盖以下下肢截肢风险没有明显增加。
Perkovic V等[33]的研究也认为卡格列净没有增加下肢的截肢风险,该研究发现患者的截肢率较高,可能是由于部分患者存在周围神经病变和截肢病史导致的。同样的,Ryan PB等[54]的研究也并未观察到卡格列净会增加下肢的截肢风险,但该研究随访时间很短,需要延长随访时间进一步观察。与之类似,Yuan Z等[55]研究发现,新使用卡格列净并不增加截肢风险(HR=0.98,95%CI:0.68~1.41)。Jabbour S等[56]的研究发现,使用达格列净也与截肢风险无关,Inzucchi SE等[57]的研究则发现使用恩格列净也不会增加截肢风险。Li D等[58]的荟萃分析发现,尽管SGLT2抑制剂与截肢风险无显著相关性,亚组分析却显示卡格列净与截肢风险增加有关(OR=1.89,95%CI:1.37~2.60),而恩格列净则没有增加截肢风险。目前虽不能证明达格列净和恩格列净与截肢存在相关性,但在出现更多证据之前,应避免对有截肢或已有足部溃疡的患者使用SGLT2抑制剂[59]。
4总结
尽管多数研究未发现卡格列净的应用会导致骨折、截肢风险增加,恩格列净、达格列净的相关研究也未明确该不良反应,但在大型试验中却发现应用卡格列净会导致患者骨折、截肢风险增加。SGLT2抑制剂可能与骨折、截肢风险有关,建议对截肢事件风险较高的人群应加强监测。对于此类患者的临床管理还应关注预防跌倒,避免已知的危险因素,控制血糖水平和保护骨折、截肢高危患者。使用SGLT2抑制剂之前应进行严谨的个体评估,对于高危患者,医生应谨慎处方SGLT2抑制剂,尤其是卡格列净。其他新上市的SGLT2抑制剂对骨骼的影响仍需进一步证实。大部分的临床研究局限于受试者少、试验代表性不足、随访时间不足、治疗时间短、骨折和截肢的发生数量少、不以骨折和截肢为主要觀察终点、没有量化到具体SGLT2抑制剂的种类等。因此,SGLT2抑制剂与骨折、截肢的相关性是否只存在于卡格列净还是一类效应,需要进一步证实,来明确这种药物诱发的不良事件的潜在机制。
参考文献:
[1]Ogurtsova K,da Rocha Fernandes JD,Huang Y,et al.IDF Diabetes Atlas:Global estimates for the prevalence of diabetes for 2015 and 2040[J].Diabetes Research and Clinical Practice,2017(128):40-50.
[2]Matthews DR,Li Q,Perkovic V,et al.Effects of canagliflozin on amputation risk in type 2 diabetes:the CANVAS Program[J].Diabetologia,2019,62(6):926-938.
[3]Neal B,Perkovic V,Mahaffey KW,et al.Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes[J].New England Journal of Medicine,2017,377(7):644-657.
[4]Alba M,Xie J,Fung A,et al.The effects of canagliflozin,a sodium glucose co-transporter 2 inhibitor,on mineral metabolism and bone in patients with type 2 diabetes mellitus[J].Current Medical Research and Opinion,2016,32(8):1375-1385.
[5]Vilaca T,Walsh J,Eastell R.Discordant pattern of peripheral fractures in diabetes:a meta-analysis on the risk of wrist and ankle fractures[J].Osteoporosis International,2019,30(1):135-143.
[6]Gherman D,Dumitrescu CI,Ciocan A,et al.Histopathological changes in major amputations due to diabetic foot - a review[J].Romanian Journal of Morphology and Embryology,2018,59(3):699-702.
[7]Kaneko M,Narukawa M.Effects of Sodium-glucose Cotransporter 2 Inhibitors on Amputation,Bone Fracture,and Cardiovascular Outcomes in Patients with Type 2 Diabetes Mellitus Using an Alternative Measure to the Hazard Ratio[J].Clinical Drug Investigation,2019,39(2):179-186.
[8]Erythropoulou-Kaltsidou A,Polychronopoulos G,Tziomalos K.Sodium-Glucose Co-Transporter 2 Inhibitors and Fracture Risk[J].Diabetes Therapy,2020,11(1):7-14.
[9]Katsiki N,Dimitriadis G,Hahalis G,et al.Sodium-glucose co-transporter-2 inhibitors(SGLT2i)use and risk of amputation:an expert panel overview of the evidence[J].Metabolism:Clinical and Experimental,2019(96):92-100.
[10]Compston J.Type 2 diabetes mellitus and bone[J].Journal of Internal Medicine,2018,283(2):140-153.
[11]Moayeri A,Mohamadpour M,Mousavi SF,et al.Fracture risk in patients with type 2 diabetes mellitus and possible risk factors:a systematic review and meta-analysis[J].Therapeutics and Clinical Risk Management,2017(13):455-468.
[12]Yamamoto M,Yamaguchi T,Yamauchi M,et al.Diabetic patients have an increased risk of vertebral fractures independent of BMD or diabetic complications[J].Journal of Bone and Mineral Research,2009,24(4):702-709.
[13]Wallander M,Axelsson KF,Nilsson AG,et al.Type 2 Diabetes and Risk of Hip Fractures and Non-Skeletal Fall Injuries in the Elderly:A Study From the Fractures and Fall Injuries in the Elderly Cohort(FRAILCO)[J].Journal of Bone and Mineral Research,2017,32(3):449-460.
[14]Liu J,Cao L,Qian YW,et al.The association between risk of limb fracture and type 2 diabetes mellitus[J].Oncotarget,2018,9(58):31302-31310.
[15]Ostergaard L,Finnerup NB,Terkelsen AJ,et al.The effects of capillary dysfunction on oxygen and glucose extraction in diabetic neuropathy[J].Diabetologia,2015,58(4):666-677.
[16]Hicks CW,Selvin E.Epidemiology of Peripheral Neuropathy and Lower Extremity Disease in Diabetes[J].Current Diabetes Reports,2019,19(10):86.
[17]Elgzyri T,Larsson J,Thorne J,et al.Outcome of ischemic foot ulcer in diabetic patients who had no invasive vascular intervention[J].European Journal of Vascular and Endovascular Surgery,2013,46(1):110-117.
[18]Shin JY,Roh SG,Lee NH,et al.Influence of Epidemiologic and Patient Behavior-Related Predictors on Amputation Rates in Diabetic Patients:Systematic Review and Meta-Analysis[J].International Journal of Lower Extremity Wounds,2017,16(1):14-22.
[19]Trujillo JM,Nuffer WA.Impact of Sodium-Glucose Cotransporter 2 Inhibitors on Nonglycemic Outcomes in Patients with Type 2 Diabetes[J].Pharmacotherapy,2017,37(4):481-491.
[20]Taylor SI,Blau JE,Rother KI.Possible adverse effects of SGLT2 inhibitors on bone[J].The Lancet Diabetes&Endocrinology,2015,3(1):8-10.
[21]Vinke JSJ,Heerspink HJL,de Borst MH.Effects of sodium glucose cotransporter 2 inhibitors on mineral metabolism in type 2 diabetes mellitus[J].Current Opinion in Nephrology and Hypertension,2019,28(4):321-327.
[22]de Jong MA,Petrykiv SI,Laverman GD,et al.Effects of Dapagliflozin on Circulating Markers of Phosphate Homeostasis[J].Clinical Journal of the American Society of Nephrology,2019,14(1):66-73.
[23]Blevins TC,Farooki A.Bone effects of canagliflozin,a sodium glucose co-transporter 2 inhibitor,in patients with type 2 diabetes mellitus[J].Postgraduate Medicine,2017,129(1):159-168.
[24]Thrailkill KM,Nyman JS,Bunn RC,et al.The impact of SGLT2 inhibitors, compared with insulin,on diabetic bone disease in a mouse model of type 1 diabetes[J].Bone,2017(94):141-151.
[25]Yabe D,Yasui A,Ji L,et al.Safety and tolerability of empagliflozin in East Asian patients with type 2 diabetes:Pooled analysis of phase I-III clinical trials[J].J Diabetes Investig,2019,10(2):418-428.
[26]Schwartz AV,Johnson KC,Kahn SE,et al.Effect of 1 year of an intentional weight loss intervention on bone mineral density in type 2 diabetes:results from the Look AHEAD randomized trial[J].Journal of Bone and Mineral Research,2012,27(3):619-627.
[27]Bilezikian JP,Watts NB,Usiskin K,et al.Evaluation of Bone Mineral Density and Bone Biomarkers in Patients With Type 2 Diabetes Treated With Canagliflozin[J].Journal of Clinical Endocrinology and Metabolism,2016,101(1):44-51.
[28]Thrailkill KM,Bunn RC,Uppuganti S,et al.Genetic ablation of SGLT2 function in mice impairs tissue mineral density but does not affect fracture resistance of bone[J].Bone,2020(133):115254.
[29]Bolinder J,Ljunggren O,Johansson L,et al.Dapagliflozin maintains glycaemic control while reducing weight and body fat mass over 2 years in patients with type 2 diabetes mellitus inadequately controlled on metformin[J].Diabetes,Obesity&Metabolism,2014,16(2):159-169.
[30]Rosenstock J,Frias J,Pall D,et al.Effect of ertugliflozin on glucose control,body weight,blood pressure and bone density in type 2 diabetes mellitus inadequately controlled on metformin monotherapy(VERTIS MET)[J].Diabetes,Obesity&Metabolism,2018,20(3):520-529.
[31]Zhou Z,Jardine M,Perkovic V,et al.Canagliflozin and fracture risk in individuals with type 2 diabetes:results from the CANVAS Program[J].Diabetologia,2019,62(10):1854-1867.
[32]Watts NB,Bilezikian JP,Usiskin K,et al.Effects of Canagliflozin on Fracture Risk in Patients With Type 2 Diabetes Mellitus[J].Journal of Clinical Endocrinology and Metabolism,2016,101(1):157-166.
[33]Perkovic V,Jardine MJ,Neal B,et al.Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy[J].New England Journal of Medicine,2019,380(24):2295-2306.
[34]Zinman B,Wanner C,Lachin JM,et al.Empagliflozin, Cardiovascular Outcomes,and Mortality in Type 2 Diabetes[J].New England Journal of Medicine,2015,373(22):2117-2128.
[35]Monteiro P,Bergenstal RM,Toural E,et al.Efficacy and safety of empagliflozin in older patients in the EMPA-REG OUTCOME(R) trial[J].Age and Ageing,2019,48(6):859-866.
[36]Wiviott SD,Raz I,Bonaca MP,et al.Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes[J].New England Journal of Medicine,2019,380(4):347-357.
[37]Toulis KA,Bilezikian JP,Thomas GN,et al.Initiation of dapagliflozin and treatment-emergent fractures[J].Diabetes,Obesity&Metabolism,2018,20(4):1070-1074.
[38]Kashiwagi A,Shestakova MV,Ito Y,et al.Safety of Ipragliflozin in Patients with Type 2 Diabetes Mellitus:Pooled Analysis of Phase II/III/IV Clinical Trials[J].Diabetes Therapy,2019,10(6):2201-2217.
[39]Cheng L,Li YY,Hu W,et al.Risk of bone fracture associated with sodium-glucose cotransporter-2 inhibitor treatment:A meta-analysis of randomized controlled trials[J].Diabetes and Metabolism,2019,45(5):436-445.
[40]Tang HL,Li DD,Zhang JJ,et al.Lack of evidence for a harmful effect of sodium-glucose co-transporter 2(SGLT2)inhibitors on fracture risk among type 2 diabetes patients:a network and cumulative meta-analysis of randomized controlled trials[J].Diabetes, Obesity&Metabolism,2016,18(12):1199-1206.
[41]Donnan JR,Grandy CA,Chibrikov E,et al.Comparative safety of the sodium glucose co-transporter 2(SGLT2)inhibitors:a systematic review and meta-analysis[J].BMJ Open,2019,9(1):e022577.
[42]Ruanpeng D,Ungprasert P,Sangtian J,et al.Sodium-glucose cotransporter 2(SGLT2)inhibitors and fracture risk in patients with type 2 diabetes mellitus:A meta-analysis[J].Diabetes/Metabolism Research and Reviews,2017,33(6).
[43]Fralick M,Kim SC,Schneeweiss S,et al.Fracture Risk After Initiation of Use of Canagliflozin:A Cohort Study[J].Annals of Internal Medicine,2019,170(3):155-163.
[44]Leon Jimenez D,Lopez Chozas JM,Espino Montoro A,et al.Could renin-angiotensin-aldosterone system activation explain the amputations associated with canagliflozin?The nitric oxide hypothesis[J].Diabetes Research and Clinical Practice,2019(148):10-13.
[45]Behnammanesh G,Durante ZE,Peyton KJ,et al.Canagliflozin Inhibits Human Endothelial Cell Proliferation and Tube Formation[J].Frontiers in Pharmacology,2019(10):362.
[46]Khouri C,Cracowski JL,Roustit M.SGLT-2 inhibitors and the risk of lower-limb amputation:Is this a class effect[J].Diabetes, Obesity&Metabolism,2018,20(6):1531-1534.
[47]Tanaka A,Node K.Increased amputation risk with canagliflozin treatment:behind the large cardiovascular benefit[J].Cardiovascular Diabetology,2017,16(1):129.
[48]Chang HY,Singh S,Mansour O,et al.Association Between Sodium-Glucose Cotransporter 2 Inhibitors and Lower Extremity Amputation Among Patients With Type 2 Diabetes[J].JAMA Intern Med,2018,178(9):1190-1198.
[49]Yang JY,Wang T,Pate V,et al.Sodium-glucose co-transporter-2 inhibitor use and risk of lower-extremity amputation:Evolving questions,evolving answers[J].Diabetes,Obesity&Metabolism,2019,21(5):1223-1236.
[50]Ueda P,Svanstrom H,Melbye M,et al.Sodium glucose cotransporter 2 inhibitors and risk of serious adverse events:nationwide register based cohort study[J].BMJ,2018(363):k4365.
[51]Sung J,Padmanabhan S,Gurung S,et al.SGLT2 inhibitors and amputation risk:Real-world data from a diabetes foot wound clinic[J].J Clin Transl Endocrinol,2018(13):46-47.
[52]Dawwas GK,Smith SM,Park H.Cardiovascular outcomes of sodium glucose cotransporter-2 inhibitors in patients with type 2 diabetes[J].Diabetes,Obesity&Metabolism,2019,21(1):28-36.
[53]Udell JA,Yuan Z,Ryan P,et al.Cardiovascular outcomes and mortality after initiation of canagliflozin:Analyses from the EASEL Study[J].Endocrinol Diabetes Metab,2020,3(1):e00096.
[54]Ryan PB,Buse JB,Schuemie MJ,et al.Comparative effectiveness of canagliflozin,SGLT2 inhibitors and non-SGLT2 inhibitors on the risk of hospitalization for heart failure and amputation in patients with type 2 diabetes mellitus:A real-world meta-analysis of 4 observational databases(OBSERVE-4D[J].Diabetes, Obesity&Metabolism,2018,20(11):2585-2597.
[55]Yuan Z,DeFalco FJ,Ryan PB,et al.Risk of lower extremity amputations in people with type 2 diabetes mellitus treated with sodium-glucose co-transporter-2 inhibitors in the USA:A retrospective cohort study[J].Diabetes,Obesity&Metabolism,2018,20(3):582-589.
[56]Jabbour S,Seufert J,Scheen A,et al.Dapagliflozin in patients with type 2 diabetes mellitus:A pooled analysis of safety data from phase IIb/III clinical trials[J].Diabetes, Obesity&Metabolism,2018,20(3):620-628.
[57]Inzucchi SE,Iliev H,Pfarr E,et al.Empagliflozin and Assessment of Lower-Limb Amputations in the EMPA-REG OUTCOME Trial[J].Diabetes Care,2018,41(1):e4-e5.
[58]Li D,Yang JY,Wang T,et al.Risks of diabetic foot syndrome and amputation associated with sodium glucose co-transporter 2 inhibitors:A Meta-analysis of Randomized Controlled Trials[J].Diabetes and Metabolism,2018,44(5):410-414.
[59]Papadokostaki E,Rizos E,Tigas S,et al.Canagliflozin and Amputation Risk:Evidence So Far[J].International Journal of Lower Extremity Wounds,2020,19(1):21-26.
收稿日期:2020-08-09;修回日期:2020-08-17
編辑/王朵梅