脂肪来源干细胞抑制病理性瘢痕形成的临床研究进展
2020-11-30黄蓉范金财
黄蓉 范金财
[摘要]皮肤病理性瘢痕是皮肤结缔组织的增生性疾病,病理改变主要以成纤维细胞大量增殖和细胞外基质沉积为主,其发病机制错综复杂,至今尚未完全阐明。近年来,随着对干细胞研究的不断深入,脂肪来源干细胞(Adipose-derived stem cells,ADSCs)逐渐显露出防治病理性瘢痕的潜力。现对病理性瘢痕病理生理的研究进展进行简单总结,并对ADSCs参与病理性瘢痕抗纤维化的可能机制进行总结。ADSCs可能通过TGF-β1(Transforming growth factor-β1)及有关信号通路的調节,免疫调节,减轻炎症反应,抑制成纤维细胞增殖及促进细胞外基质重塑来防治病理性瘢痕的纤维化。
[关键词]脂肪来源干细胞;病理性瘢痕;纤维化;炎症;免疫调节;细胞外基质重塑;成纤维细胞
[中图分类号]R619+.6 [文献标志码]A [文章编号]1008-6455(2020)10-0181-05
Clinical Research Progress of Adipose-derived Stem Cells Inhibiting The Formation of Pathological Scars
HUANG Rong, FAN Jin-cai
(Department of 9th Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College,Beijing 100144,China)
Abstract: Skin pathological scar is a proliferative disease of skin connective tissue. The pathological changes are mainly fibroblast proliferation and extracellular matrix deposition. The pathogenesis of skin pathological scar is complex and has not yet been fully elucidated. In recent years, with the deepening of stem cell research, adipose-derived stem cells (ADSCs) gradually show the potential of preventing and treating pathological scars. This article summarizes the research progress of pathophysiology of pathological scar, and summarizes the possible mechanism of ADSCs participating in anti-fibrosis of pathological scar. ADSCs may prevent and treat fibrosis of pathological scars by regulating TGF-β1(transforming growth factor-β1)and related signaling pathways, immune regulation, alleviating inflammation, inhibiting fibroblast proliferation and promoting extracellular matrix remodeling.
Keywords:ADSCs; pathologicalscar; fibrosis; inflammation; immunoregulation; extracellular matrix remodeling; fibroblasts
伤口愈合是一个动态而复杂的过程,分为四个连续且重叠的阶段,包括止血期、炎症期、肉芽组织形成期(增生期)和组织重塑期(瘢痕形成期)[1]。伤口愈合异常可导致瘢痕过度增生,从而导致病理性瘢痕的形成,包括增生性瘢痕和瘢痕疙瘩,病理性瘢痕可导致患者外貌改变甚至病变部位的功能障碍,给患者带来巨大的社会心理压力[2]。目前,病理性瘢痕的发病机制尚未明确,尽管临床有许多治疗方法可供选择,例如:类固醇注射、激光治疗、放射治疗及压力治疗等,然而这些手段无法完全避免瘢痕组织的过度形成,也无法再生健康的真皮组织[3],因此,病理性瘢痕的治疗仍是一个挑战。脂肪移植在整形外科领域应用广泛。第一例脂肪移植始于1893年,Neuber[4]将脂肪移植应用于1例面部软组织缺损的年轻男性患者。2001年,Zuk[5]等发现脂肪组织内含有脂肪来源干细胞(Adipose-derived stem cells,ADSCs)。ADSCs分布于血管周围,具有多能分化潜能,可分化为脂肪组织,成骨组织等[6]。近年来,随着再生医学的深入研究,ADSCs防治皮肤瘢痕形成的潜力得到了实验室研究和临床应用的验证。但迄今为止,ADSCs的抗纤维化作用机制尚不明确。本文对近年来ADSCs在创伤愈合和病理性瘢痕中的研究进展综述如下。
1 病理性瘢痕的病理生理特征
研究表明病理性瘢痕以瘢痕内成纤维细胞过度增殖[7]和细胞外基质[8](Extracellular matrices,ECM)的异常积聚为特征,ECM降解不足、合成过多或两者兼而有之都有可能导致病理性瘢痕的形成。
病理性瘢痕的网状真皮层含有炎性细胞、增殖的成纤维细胞、新生血管和胶原沉积,Ogawa等[9]认为病理性瘢痕本质上是由受损网状真皮的慢性炎症引起,瘢痕疙瘩和增生性瘢痕的临床差异可能只是皮肤网状真皮层炎症的强度、频率和持续时间的差异[10]。促炎因子白介素-1α(IL-1α)、白介素-1β(IL-1β)、白介素-6(IL-6)和肿瘤坏死因子-α(Tumor necrosis factor-α,TNF-α)在瘢痕疙瘩组织中上调,Dong等[11]推测瘢痕疙瘩患者的促炎基因对创伤较敏感,在真皮损伤时更容易发生促炎因子上调。正常皮膚几乎没有氧化损伤,细胞可维持氧化应激和氧化还原能力之间的平衡。而当皮肤发生慢性炎症时,中性粒细胞分泌活性氧(Reactive oxygen species,ROS),ROS具有高度细胞毒性,可促进胶原沉积,因此促进病理性瘢痕形成。Carney等[12]在增生性瘢痕的动物模型中发现ROS清除剂的基因表达明显降低,推测在增生性瘢痕形成过程中,ROS的生成和清除受到干扰。
转化生长因子β(Transforming growth factor-β,TGF-β)家族在病理性瘢痕形成中至关重要。TGF-β家族有三个主要亚型,分别为TGF-β1、TGF-β2和TGF-β3,每个亚型都密切参与细胞增殖、分化及迁移等过程[13]。三者虽具有结构同源性,但在伤口愈合中的作用并不相同。与正常皮肤中的成纤维细胞相比,病理性瘢痕中的成纤维细胞表达过多的TGF-β及其受体[14-15]。TGF-β1是一种已知的促真皮纤维化因子,在病理性瘢痕的发病中起关键作用[16]。它可以直接或间接作用于细胞,发挥旁分泌和自分泌的作用,产生趋化迁移、增殖和分化等重要的生物学效应[17]。TGF-β1水平升高,信号通路激活导致肌成纤维细胞增殖,刺激上皮细胞向间质细胞,同时内皮细胞向间质细胞转化,导致过量的ECM合成,从而导致瘢痕外观的形成[18]。TGF-β1可上调基质金属蛋白酶(Matrix metalloproteinase,MMPs)的表达,MMPs是一类参与ECM降解的蛋白水解酶,以ECM为靶点[19],在伤口收缩和ECM重塑中起重要作用[17]。组织金属蛋白酶抑制剂1(Tissue inhibitor of metalloproteinases 1,TIMP1)是TIMP家族的一种糖蛋白[20],是ECM降解和重塑的重要调控因子之一。研究表明,瘢痕疙瘩成纤维细胞中TIMP1的siRNA敲除可导致I型胶原的降解[21]。同时,TGF-β1可将巨噬细胞和其他炎性细胞募集到伤口处,作为促炎介质发挥促纤维化作用。然而,TGF-β3可能在胎儿伤口无瘢痕愈合中发挥作用[13]。
纤溶酶原激活物抑制物1(Plasminogen activator inhibitor 1,PAI-1)是纤溶酶原激活物/纤溶酶蛋白酶系统的主要生理抑制剂[22]。PAI-1活性升高是纤维化的内在特征,其基因水平与胶原积聚程度有直接关系[23]。研究发现PAI-1通过异常细胞信号途径在瘢痕疙瘩发病中起关键作用[24]。丝裂原活化蛋白激酶(Mitogen-activated protein kinases,MAPK)途径也广泛参与了增生性瘢痕的发病过程[16]。细胞外信号调节激酶(Extracellular signal regulated kinases,ERK)是MAPK成员之一,可被TGF-β1激活,参与细胞增殖、分化和凋亡。
2 ADSCs防治病理性瘢痕纤维化的可能机制
间充质干细胞(mesenchymal stem cells,MSCs)可通过分泌多种细胞因子和抗纤维化因子抑制纤维化组织的形成[25]。ADSCs是MSCs的一种,与骨髓中的MSCs具有相同的特性[26],在众多纤维化疾病中表现出治疗潜力,其中包括肺纤维化、心肌梗死、肾纤维化和肝硬化等[27]。ADSCs同时具备供体发病率低、耐受长期保存等优点[28]。研究表明,干细胞移植到皮肤瘢痕组织后,分化功能受到限制,而旁分泌特性发挥更大作用[29]。结合既往研究,将ADSCs在病理性瘢痕中可能的抗纤维化机制作如下归纳:
2.1 TGF-β1及其他信号通路的调节:TGF-βs初始以二硫键连接的同二聚体前体多肽的形式存在,由潜伏相关肽(Latency associated peptide,Lap)结构和成熟的TGF-β肽组成。TGF-β活化是指TGF-β与Lap解离,前者与受体结合诱导信号传导。Lap的蛋白裂解参与该过程[30]。因此,抑制Lap裂解可能有助于ADSCs实现抗纤维化作用。TGF-β1与受体结合,导致TGF-βI型受体重新聚集,诱导下游靶点Smad2和Smad3磷酸化。后者磷酸化后介导TGF-β1刺激成纤维细胞向肌成纤维细胞分化的生物学效应[31]。体外研究表明,ADSCs可抑制TGF-β1对真皮成纤维细胞分化为肌成纤维细胞的促进作用[32]。同时,ADSCs可显著降低黏膜下纤维化和I型胶原表达[33]。Wang等[34]发现,ADSCs培养基可显著降低瘢痕疙瘩中成纤维细胞TGF-β1和I型胶原基因表达。在纤维化模型中,瘢痕内注射MSCs后,MSCs的广泛凋亡可促进TNF-α刺激基因6(TSG-6)的分泌。TSG-6可诱导TGF-β1/TGF-β3的比值向抗纤维化的方向发展[35]。TGF-β1的促纤维化作用可被TGF-β3拮抗[13],研究表明,TGF-β3可能介导MSCs对人瘢痕疙瘩成纤维细胞和ECM的抑制作用[36]。但Liu等通过研究瘢痕疙瘩成纤维细胞在ADSCs条件培养基中的增殖、迁移和凋亡,发现TGF-β3在ADSCs培养基中表达水平较低,推测TGF-β3信号通路可能并不是ADSCs治疗瘢痕疙瘩的关键途径[37]。推测TGF-β1、β2和β3三者平衡的结果与最终纤维化程度一致 [38]。
在与ADSCs共培养的增生性瘢痕成纤维细胞中观察到信号传导与转录激活因子3(Signal transduction and activators of transcription 3, Stat3)减少。Stat3是一种转录因子,被酪氨酸磷酸化后激活下游靶向基因,下游靶向基因控制ECM的产生和细胞增殖。在增生性瘢痕中,Il-6反式信号通路可激活Stat3,前者可介导ECM的产生和成纤维细胞的增殖。ADSCs可降低Il-6表达,抑制Stat3信号传导,实现病理性瘢痕纤维化抑制[39-40]。
2.2 减轻炎症反应及促进免疫调节:ADSCs的抗炎作用得到广泛研究[41]。IL-10是ADSCs旁分泌的主要抗炎因子之一。ADSCs可下调IL-6和IL-8等促炎因子mRNA的水平[42],减少病理性瘢痕中的胶原沉积[43]。Oryan等[41]在大鼠烧伤模型中将ADSCs与50%的芦荟凝胶混合后皮下注射在创面处,发现该组合可下调IL-1β和TGF-β1等促炎因子和生长因子而减轻炎症反应,ADSCs介导促炎/抗炎细胞因子比率降低可能有助于其发挥抗纤维化作用。然而,Manning等[44]发现,很少有证据支持ADSCs可直接抑制IL-1β的产生,认为ADSCs能够调节巨噬细胞活性,促进其由M1型(促炎型)向M2型(抗炎型)转变,减少巨噬细胞分泌IL-1β和TGF-β1。
病理性瘢痕中的炎症微环境可刺激ADSCs发挥免疫调节作用。T、B淋巴细胞和巨噬细胞是慢性炎症中主要的浸润性炎症细胞,炎性细胞浸润可抑制伤口的修复和再生,导致瘢痕过度形成[45]。ADSCs可诱导巨噬细胞激活, 环氧合酶-2(cyclooxygenase-2,COX-2)在其中发挥关键作用[46]。此外,脂肪组织和软骨组织可大量表达C1q/TNF相关蛋白3(C1q/TNF related protein 3,CTRP3),作为一种抗炎因子,CTRP3可抑制巨噬细胞聚集,促进ADSCs发挥免疫调节作用,体外实验发现,CTRP3对巨噬细胞分泌TNF-α无直接影响,但可抑制巨噬细胞分泌单核细胞趋化蛋白-1(CCL2)。CCL2是一种有效的趋化因子,可将机体中循环的单核细胞募集到瘢痕组织处[47]。YU等[48]研究发现,CTRP3在ADSCs细胞膜片中上调超过200倍,ADSCs细胞膜片可通过增强CTRP3的生成,减少CCL2分泌,从而抑制巨噬细胞在伤口处的聚集。前列腺素E2(prostaglandin E2,PGE2)是ADSCs参与瘢痕内免疫调节和减轻炎症的主要可溶性介质之一,小鼠实验表明ADSCs可分泌大量PGE2,PGE2可抑制TGF-β1活化及成纤维细胞增殖,通过提高细胞内cAPM水平减少α-SMA和胶原的生成[49]。
Liu等[50]分析ADSCs培养基的蛋白质阵列后,发现在ADSCs培养基组的上清液中凋亡因子更多,其中包括Dkk-1(Dickkopf-1),Dkk-1可诱导瘢痕中成纤维细胞凋亡,例如Dkk-1可通过抑制Wnt/b-cateni信号通路抑制强直性脊柱炎中成纤维细胞的增殖和成骨潜能。然而, Liu等发现ADSCs培养基并未促进瘢痕疙瘩中成纤维细胞的实际凋亡。推测凋亡因子的升高与实际的细胞凋亡之间并无绝对相关,或细胞凋亡的发生与凋亡因子的局部浓度成剂量依赖关系[37]。
2.3 抑制细胞增殖及促进ECM重塑:成纤维细胞的异常增殖和活化,ECM的过度沉积,成纤维细胞向肌成纤维细胞的转化增强是病理性瘢痕的主要特征[51]。因此,有理由认为抑制成纤维细胞的生物活性,促进广泛的ECM重塑可能是病理性瘢痕的治疗关键。Deng等[39]通过共培养模型研究ADSCs对增生性瘢痕中成纤维细胞活性的抑制作用及其可能机制。研究发现,ADSCs可抑制成纤维细胞的增殖和迁移,部分阻断细胞周期,抑制ECM的基因表达,显著抑制胶原收缩。Wang等[34]采用离体培养研究ADSCs条件培养基对瘢痕疙瘩组织的影响,发现ADSCs可显著降低TIMP1及PAI-1的基因表达,考虑到PAI-1与胶原积累两者关系是瘢痕疙瘩形成的重要机制[52],推测ADSCs培养基可能通过调节胶原降解和相关基因表达来减少瘢痕疙瘩中ECM的沉积。
Zhang等[3]在兔耳增生性瘢痕模型损伤处皮下注射ADSCs,发现瘢痕内a-SMA和I型胶原表达减少,治疗后瘢痕区域的胶原纤维排列也有所改善。推测ADSCs对病理性瘢痕中ECM的重塑是ADSCs治疗瘢痕的机制之一,ADSCs可使ECM更加倾向于降解,而其具体机制是由于ADSCs对于ECM的影响,还是对瘢痕中肌成纤维细胞的直接作用还尚待研究[27]。同样的,Oryan等[41]发现芦荟凝胶与ADSCs混合治疗伤口后TGF-β1的表达和羟脯氨酸含量降低,抑制过量羟脯氨酸的形成可能是ADSCs联合芦荟显著降低伤口处胶原水平的原因之一。
最近,有学者提出ADSCs释放的外泌体可介导抗纤维化作用。ADSCs的外泌体包含miRNA和蛋白质组分,可介导内吞作用或膜融合的靶细胞中的信号转导[53],外泌体进入成纤维细胞细胞质后,释放活性物质,调节成纤维细胞的特性,促进成纤维细胞的迁移及增殖。
3 小结与展望
基于MSCs的瘢痕治疗是一种新兴的抗纤维化治疗策略,据此,ADSCs在病理性瘢痕中的应用探索逐渐展开。从宏观和微观上来看,ADSCs在促进创面愈合和减轻瘢痕中皆展现了治疗潜力,成为令人期待的防治病理性瘢痕的新方法。然而,尽管在动物研究和临床治疗中越来越多的证据表明ADSCs可抑制病理性瘢痕的组织纤维化,但其具体分子机制尚不清楚。基于当前研究,关键的细胞因子和旁分泌信号在病理性瘢痕病变形成與进展中起重要作用,因此,未来应朝向免疫调节可预测,细胞信号途径可恰当使用等目标继续深入研究。此外,为了避免ADSCs的致瘤性,应反复试验,在皮肤瘢痕治疗过程中充分验证其安全性。另外,当前大部分研究都是基于动物实验或是体外模型,ADSCs应用于病理性瘢痕的最佳时机及剂量等仍需更深一步的研究。
[參考文献]
[1]Demidova-Rice TN,Hamblin MR,Herman IM.Acute and impaired wound healing:pathophysiology and current methods for drug delivery,part 1: normal and chronic wounds: biology,causes,and approaches to care [J].Adv Skin Wound Care,2012,25(7):304-314.
[2]Monstrey S,Middelkoop E,Vranckx JJ,et al.Updated scar management practical guidelines:non-invasive and invaslve measures[J].J Plast Reconstr Aesthet Surg,2014,67(8):1017-1025.
[3] Zhang Q,Liu LN,Yong Q,et al.Intralesional injection of adipose-derived stem cells reduces hypertrophic scarring in a rabbit ear model[J].Stem Cell Res Ther,2015,6(1):145.
[4] F N.Fettransplantation[J].Versh Etsch Ged,1893,22(1):66.
[5]Zuk PA,Zhu M,Mizuno H,et al.Multilineage cells from human adipose tissue:implications for cell-based therapies[J].Tissue Eng,2001,7(2):211-228.
[6] Guasti L,Vagaska B,Bulstrode NW,et al.Chondrogenic differentiation of adipose tissue-derived stem cells within nanocaged POSS-PCU scaffolds: a new tool for nanomedicine[J].Nanomedicine, 2014,10(2):279-289.
[7]Salibian AA,Widgerow AD,Abrouk M,et al.Stem cells in plastic surgery: a review of current clinical and translational applications [J].Arch Plast Surg,2013,40(6):666-675.
[8] Cho KA,Lim GW,Joo SY,et al.Transplantation of bone marrow cells reduces CCl4-induced liver fibrosis in mice[J].Liver Int,2011, 31(7):932-939.
[9]Ogawa R.Keloid and hypertrophic scars are the result of chronic inflammation in the reticular dermis[J].Int J Mol Sci,2017,18(3):606.
[10]Ogawa R,Akaishi S.Endothelial dysfunction may play a key role in keloid and hypertrophic scar pathogenesis-Keloids and hypertrophic scars may be vascular disorders[J].Med Hypotheses,2016,96:51-60.
[11]Dong X,Mao S,Wen H.Upregulation of proinflammatory genes in skin lesions may be the cause of keloid formation (Review)[J].Biomed Rep, 2013,1(6):833-836.
[12]Carney BC,Chen JH,Kent RA,et al.Reactive oxygen species scavenging potential contributes to hypertrophic scar formation[J].J Surg Res, 2019,244:312-323.
[13]Lichtman MK,Otero-Vinas M,Falanga V.Transforming growth factor beta (TGF-β) isoforms in wound healing and fibrosis[J].Wound Repair Regen,2016,24(2):215-222.
[14]Wang R,Ghahary A,Shen Q,et al.Hypertrophic scar tissues and fibroblasts produce more transforming growth factor-beta1 mRNA and protein than normal skin and cells[J].Wound Repair Regen,2000,8(2): 128-137.
[15]Schmid P,Itin P,Cherry G,et al.Enhanced expression of transforming growth factor-beta type I and type II receptors in wound granulation tissue and hypertrophic scar[J].Am J Pathol,1998,152(2):485-493.
[16]Chen JY,Zhang L,Zhang H,et al.Triggering of p38 MAPK and JNK signaling is important for oleanolic acid-induced apoptosis via the mitochondrial death pathway in hypertrophic scar fibroblasts [J]. Phytother Res,2014,28(10):1468-1478.
[17]Zhai XX,Tang ZM,Ding JC,et al.Expression of TGF-β1/mTOR signaling pathway in pathological scar fibroblasts[J].Mol Med Rep, 2017,15(6):3467-3472.
[18]Li Y,Zhang W,Gao J,et al.Adipose tissue-derived stem cells suppress hypertrophic scar fibrosis via the p38/MAPK signaling pathway[J].Stem Cell Res Ther,2016,7(1):102.
[19]Visse R,Nagase H.Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry[J].Circ Res,2003,92(8):827-839.
[20]Stetler-Stevenson WG.Tissue inhibitors of metalloproteinases in cell signaling: metalloproteinase-independent biological activities [J].Sci Signal,2008,1(27):re6.
[21]Aoki M,Miyake K,Ogawa R,et al.siRNA knockdown of tissue inhibitor of metalloproteinase-1 in keloid fibroblasts leads to degradation of collagen type I[J].J Invest Dermatol,2014,134(3):818-826.
[22]Cale JM,Lawrence DA.Structure-function relationships of plasminogen activator inhibitor-1 and its potential as a therapeutic agent[J].Curr Drug Targets,2007,8(9):971-981.
[23]Li WY,Chong SS,Huang EY,et al.Plasminogen activator/plasmin system: a major player in wound healing? [J].Wound Repair Regen,2003,11(4): 239-247.
[24]Ghosh AK,Vaughan DE.PAI-1 in tissue fibrosis[J].J Cell Physiol, 2012,227(2):493-507.
[25]Hocking AM,Gibran NS.Mesenchymal stem cells: paracrine signaling and differentiation during cutaneous wound repair[J].Exp Cell Res, 2010,316(14):2213-2219.
[26]Puissant B,Barreau C,Bourin P,et al.Immunomodulatory effect of human adipose tissue-derived adult stem cells:comparison with bone marrow mesenchymal stem cells[J].Br J Haematol,2005,129(1):118-129.
[27]Spiekman M,Van Dongen JA,Willemsen JC,et al.The power of fat and its adipose-derived stromal cells: emerging concepts for fibrotic scar treatment[J].J Tissue Eng Regen Med, 2017,11(11):3220-3235.
[28]Gimble J,Guilak F.Adipose-derived adult stem cells: isolation, characterization, and differentiation potential[J].Cytotherapy,2003, 5(5):362-369.
[29]Li H,Fu X.Mechanisms of action of mesenchymal stem cells in cutaneous wound repair and regeneration[J].Cell Tissue Res,2012, 348(3):371-377.
[30]De Araujo Farias V,Carrillo-Galvez AB,Martin F,et al. TGF-β and mesenchymal stromal cells in regenerative medicine,autoimmunity and cancer[J].Cytokine Growth Factor Rev,2018,43:25-37.
[31]Roach KM,Feghali-Bostwick C,Wulff H,et al.Human lung myofibroblast TGFβ1-dependent Smad2/3 signalling is Ca2+-dependent and regulated by KCa3.1 K+ channels[J].Fibrogenesis Tissue Repair,2015,8:5.
[32]Spiekman M,Przybyt E,Plantinga JA,et al. Adipose tissue-derived stromal cells inhibit TGF-β1-induced differentiation of human dermal fibroblasts and keloid scar-derived fibroblasts in a paracrine fashion[J].Plast Reconstr Surg,2014,134(4):699-712.
[33]Sangkum P,Yafi FA,Kim H,et al. Effect of adipose tissue-derived stem cell injection in a rat model of urethral fibrosis [J].Can Urol Assoc J,2016,10(5-6):E175-E180.
[34]Wang X,Ma Y,Gao Z,et al.Human adipose-derived stem cells inhibit bioactivity of keloid fibroblasts [J].Stem Cell Res Ther,2018,9(1): 40.
[35]Qi Y,Jiang D,Sindrilaru A,et al.TSG-6 released from intradermally injected mesenchymal stem cells accelerates wound healing and reduces tissue fibrosis in murine full-thickness skin wounds[J].J Invest Dermatol,2014,134(2):526-537.
[36]Wu Y,Peng Y,Gao D,et al.Mesenchymal stem cells suppress fibroblast proliferation and reduce skin fibrosis through a TGF-β3-dependent activation[J].Int J Low Extrem Wounds,2015,14(1):50-62.
[37]Liu J,Ren J,Su L,et al.Human adipose tissue-derived stem cells inhibit the activity of keloid fibroblasts and fibrosis in a keloid model by paracrine signaling[J].Burns,2018,44(2):370-385.
[38]Penn JW,Grobbelaar AO,Rolfe KJ.The role of the TGF-β family in wound healing,burns and scarring: a review[J].Int J Burns Trauma, 2012,2(1):18-28.
[39]Deng J,Shi Y,Gao Z,et al.Inhibition of pathological phenotype of hypertrophic scar fibroblasts via coculture with adipose-derived stem cells[J].Tissue Eng Part A,2018,24(5-6):382-393.
[40]Ray S,Ju X,Sun H,et al.The IL-6 trans-signaling-STAT3 pathway mediates ECM and cellular proliferation in fibroblasts from hypertrophic scar[J].J Invest Dermatol,2013,133(5):1212-1220.
[41]Oryan A,Alemzadeh E,Mohammadi AA,et al.Healing potential of injectable Aloe vera hydrogel loaded by adipose-derived stem cell in skin tissue-engineering in a rat burn wound model[J].Cell Tissue Res, 2019,377(2):215-227.
[42]Sabat R,Grutz G,Warszawska K,et al.Biology of interleukin-10[J].
Cytokine Growth Factor Rev,2010,21(5):331-344.
[43]Lim CP,Phan TT,Lim IJ,et al.Cytokine profiling and Stat3 phosphorylation in epithelial-mesenchymal interactions between keloid keratinocytes and fibroblasts[J].J Invest Dermatol,2009,129(4):851-861.
[44]Manning CN,Martel C,Sakiyama-Elbert SE,et al.Adipose-derived mesenchymal stromal cells modulate tendon fibroblast responses to macrophage-induced inflammation in vitro[J].Stem Cell Res Ther,2015, 6(1):74.
[45]Rosique RG,Rosique MJ,Farina Junior JA.Curbing inflammation in skin wound healing: a review[J].Int J Inflam,2015,2015:316235.
[46]Anderson P,Souza-Moreira L,Morell M,et al.Adipose-derived mesenchymal stromal cells induce immunomodulatory macrophages which protect from experimental colitis and sepsis[J].Gut,2013,62(8):1131-1141.
[47]Boniakowski AE,Kimball AS,Jacobs BN,et al.Macrophage-mediated inflammation in normal and diabetic wound healing[J].J Immunol,2017, 199(1):17-24.
[48]Yu J,Wang MY,Tai HC,et al.Cell sheet composed of adipose-derived stem cells demonstrates enhanced skin wound healing with reduced scar formation[J].Acta Biomater,2018,77:191-200.
[49]Hegyi B,Kudlik G,Monostori E,et al.Activated T-cells and pro-inflammatory cytokines differentially regulate prostaglandin E2 secretion by mesenchymal stem cells[J].Biochem Biophys Res Commun, 2012,419(2):215-220.
[50]Zou YC,Yang XW,Yuan SG,et al.Downregulation of dickkopf-1 enhances the proliferation and osteogenic potential of fibroblasts isolated from ankylosing spondylitis patients via the Wnt/β-catenin signaling pathway in vitro[J].Connect Tissue Res,2016,57(3):200-211.
[51]Wolfram D,Tzankov A,Pulzl P,et al.Hypertrophic scars and keloids--a review of their pathophysiology, risk factors, and therapeutic management[J].Dermatol Surg,2009,35(2):171-181.
[52]Syed F,Bagabir RA,Paus R,et al.Ex vivo evaluation of antifibrotic compounds in skin scarring: EGCG and silencing of PAI-1 independently inhibit growth and induce keloid shrinkage[J].Lab Invest,2013,93(8): 946-960.
[53]Hu L,Wang J,Zhou X,et al.Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts[J].Sci Rep,2016,6:32993.
[收稿日期]2019-10-09
本文引用格式:黃蓉,范金财.脂肪来源干细胞抑制病理性瘢痕形成的临床研究进展[J].中国美容医学,2020,29(10):181-185.