RZWQM2模型模拟牛场肥水施用夏玉米土壤硝态氮迁移特征
2020-09-21王贵云张克强窦国芳张继圣杜会英
王贵云,张克强,付 莉,窦国芳,张继圣,杜会英
RZWQM2模型模拟牛场肥水施用夏玉米土壤硝态氮迁移特征
王贵云1,张克强1,付 莉1,窦国芳2,张继圣3,杜会英1※
(1. 农业农村部环境保护科研监测所,天津 300191;2. 天津市滨海新区畜牧业发展服务中心,天津 300450;3. 天津嘉立荷牧业集团有限公司,天津 301803)
为研究华北平原种养结合中养殖肥水的合理施用,减少典型农田水肥施用后土壤氮淋溶对地下水的影响。该研究以河北省徐水区夏玉米为研究对象,应用RZWQM2模型验证牛场肥水施用玉米农田的可行性,对2014—2016年玉米种植前后数据进行模型参数率定与验证。验证结果表明,土壤体积含水率的均方根误差和平均相对误差值分别在0.000 6~0.070 7 cm3/cm3和0.21%~21.44%之间变化,土壤硝态氮均方根误差和平均相对误差值分别在0.000 8~2.617 3 mg/kg和0.03%~18.58%之间变化,其中牛场肥水施用土壤中硝态氮主要在0~120 cm土层发生变化,说明RZWQM2模型可以用来模拟华北平原牛场肥水施用对土壤水分、硝态氮含量及玉米产量的动态变化。利用率定和验证后的模型进行了夏玉米农田硝态氮淋溶的验证与预测,表明硝态氮淋溶浓度随肥水氮量的增加而增加。RZWQM2模型可以应用于牛场肥水施用农田的模拟,为预测和评估土壤适宜的肥水施用提供更合适的方法。
灌溉;肥水;氮;牛场;夏玉米;RZWQM2模型
0 引 言
畜禽集约化饲养程度的不断提高,造成畜禽废弃物大量集中产生,对周边环境造成了巨大的压力,严重影响了畜牧业的可持续发展[1],将养殖废弃物厌氧处理后农田利用这种生态模式已被广泛应用。夏玉米是华北地区主要种植作物之一,合理的氮素施用是获得夏玉米优质高产、实现可持续集约化生产的重要影响因素[2]。研究表明,养殖肥水农田利用能够增加作物产量[3-4],肥水施用增加冬小麦-夏玉米轮作系统累计氮利用率,减少氮在土壤中的积累[5];另一方面,养殖肥水过量灌溉加大农田氮淋溶损失强度[6],硝态氮淋溶对地下水和人体健康造成影响,如何在保护地下水水质和减少硝态氮淋溶损失的同时合理进行养殖肥水农田利用成为国内外学者研究的热点问题[7-8]。
目前,模型模拟法因操作简单、模拟准确和模拟结果代表性广等优点,被广泛应用于农田氮淋溶计算和评估中[9]。根区水质模型(Root Zone Water Quality Model,RZWQM)藕合了农业生产管理以及环境影响的模块,在保持对土壤溶质运移充分模拟的基础上,RZWQM2模型兼容了DSSAT4.0模型,能够较好的模拟农业生产系统,成为预测和评估农田氮素淋溶较为普遍的工具[10-11]。Fang等[12]研究了RZWQM2模型对华北地区冬小麦-夏玉米轮作系统的模拟情况;Li等[13]、谷丰[14]和Yang等[15]通过设置不同的氮肥施用量、土壤质地、作物覆盖等方式,探究土壤水氮运移规律;Ward等[16]结合模型模拟了一系列广泛的农业管理;Fang等[17]、Jiang等[18]和Sadhukhan等[19]在近期对模型进行了扩展和改进,模拟氧化亚氮(N2O)排放和磷(P)的流失运动。目前为止,应用RZWQM2模型模拟牛场肥水灌溉夏玉米农田的研究鲜见报道,其在华北地区牛场肥水灌溉的适用性有待进一步验证。
因此,为了更好地将养殖肥水回用于农田灌溉,定量评估养殖肥水灌溉对作物的氮素损失影响十分必要。本研究利用RZWQM2模型对华北地区2014—2016年夏玉米实测数据,对模型中土壤含水率、硝态氮含量、作物产量进行率定和验证,进一步对硝态氮淋溶液浓度实测值与模拟值进行分析验证,综合考虑土壤氮素损失与施氮量的关系,为牛场肥水灌溉农田合理施用和华北地区水肥利用提供合理的科学依据。
1 材料与方法
1.1 研究区概况
试验在河北省保定市徐水区(115°32′E,38°56′N)进行,该地区属于暖温带季风型大陆性气候,年平均气温12.3 ℃,年平均降水575 mm,年蒸发量为1 040 mm,无霜期平均184 d。该区地下水位30 m,深井抽水灌溉农田。试验区土壤为砂壤质褐土,土壤基本理化性质和机械组成如表1所示。试验用牛场肥水为经过厌氧处理的牛粪尿,肥水水质特征包括pH值为7.9、化学需氧量(Chemical Oxygen Demand,COD)为2 800 mg/L、总氮(Total Nitrogen,TN)为382 mg/L、铵态氮(NH4+-N)为244 mg/L、硝态氮(NO3--N)为3 mg/L、总磷(Total Phosphorus,TP)为62 mg/L、总钾(Total Potassium,TK)为203 mg/L、铜(Cu)为0.51 mg/L、锌(Zn)为1.08 mg/L、铬(Cr)为1.49g/L、铅(Pb)为44.23g/L、镉(Cd)为0.16g/L,总汞(Total Mercury,THg)和总砷(Total Arsenic,TAs)未检出。
表1 土壤基本理化性质和机械组成
注:田间持水量为0.33 Pa水分含量,萎蔫点为15 Pa水分含量[20].
Note: Field water capacity is soil water content at 0.33 Pa, wilting point is soil water content at 15 Pa[20].
1.2 田间试验
试验从2014年6月—2016年9月进行,共设4个处理,CK表示不施肥处理、BSL表示牛场肥水20%+清水80%处理、BSM表示牛场肥水33%+清水67%处理、BSH表示牛场肥水50%+清水50%处理。4个处理肥水氮带入量分别为0、64、105、159 kg/hm2,磷(P2O5)带入量分别为0、24、39、59 kg/hm2,钾(K2O)带入量分别为0、40、67、101 kg/hm2。肥水施用时期为玉米种植后,施用量均为830 m3/hm2,施用量用超声波流量计量,误差1%以内。每个处理3次重复,小区面积51 m2,随机区组排列,每个小区四周1 m土体内用塑料布隔开,小区间有1 m保护行。玉米品种为“郑单958”,在每年6月中旬播种,采用条播方式,9月底收获,收获后测定产量。土壤样品在玉米收获后采集,采集深度为200 cm,每20 cm为一层,用2 mol/L氯化钾(KCl)浸提,流动注射分析仪(FIA-6000+,北京吉天仪器有限公司)测定土壤硝态氮含量。
1.3 根区水质模型(RZWQM2)参数输入
模型初始阶段数据的建立包括气象数据和土壤基础数据。气象数据包括当地降水数据、日最高气温、日最低气温、风速、相对湿度等,土层基础数据包括土壤容重、土壤pH值、饱和导水率、田间持水量、土壤含水率、剖面硝态氮和铵态氮的初始含量。试验过程中未观测参数采用模型缺省值。模型参数率定包括水分、养分和作物模块。模型率定采用Hanson等[21]和Cameira等[22]的试错法将2个模块的模拟精度调校至率定的要求,然后使用率定后的参数,对BSL处理与BSH处理进行模拟。
本研究利用的根区水质模型升级版RZWQM2,该版本结合DSSAT(Decision Support System for Agrotechnology Transfer)4.0模块在作物生长模块代替了模型中作物生长模块,DSSAT模块是一个基于物理、化学和生物过程的综合模块,其模拟了多种作物受农业管理实践和环境条件影响的水、营养物质和植物生长[23-24],因此需要对DSSAT模块中的作物数据进行参数修正。作物参数的调整原则是使作物的干物质积累、叶面积指数和产量模拟值与实测值尽可能一致。与作物环境资源综合系统(Crop Environmental Resource Synthesis,CERES)模型中相同,主要重新定义单株最大粒穗数和潜在灌浆速率的参数[25]。本研究对夏玉米“郑单958”的生长参数进行修正,其中夏玉米主要包括6个参数,各个参数具体名称及取值范围如表2所示。
1.4 根区水质模型(RZWQM2)评价指标
模型率定效果的评价是判定参数优化的关键,本研究利用3个统计检验标准评估模型模拟效果,分别为均方根误差(Root Mean Square Error,RMSE)、平均相对误差(Mean Relative Error,MRE)和相对误差(Relative Error,RE),RMSE和MRE的值越小表明模拟值与实测值的差异越小,模型的模拟结果越精准可靠。模型参数率定和验证过程中,当RMSE达到最小值为优,MRE和RE越趋近于0模拟效果为优,其中MRE最大允许偏差可以达到50%,其计算如式(1)~(3)。
表2 DSSAT模块中夏玉米“郑单958”生长参数校正结果
注:DSSAT表示农业技术转移决策支持系统,其为RZWQM2模型结合使用的模块。
Note: DSSAT stands for the Decision Support System for Agrotechnology Transfer,which is a module used in conjunction with the RZWQM2 model.
2 结果与分析
2.1 土壤水分参数率定与验证
应用BSL处理2014—2016年3季夏玉米种植前和收获后的土壤剖面实测水分数据进行模型参数的率定,率定结果如表3所示,BSL处理土壤体积含水率的模拟值与实测值变化趋势相同。模拟土壤水分的RMSE值呈现0.001 1~0.048 8 cm3/cm3的变化水平,总体表现为土壤体积含水率的模拟结果随土壤深度增加而变化;MRE值变化范围表现均在0.46%~20.66%合理变化范围内,说明土壤体积含水率实测值与模拟值拟合程度较好,为下一步的土壤水分验证提供可用基础数据。
表3 2014—2016年BSL处理率定过程中各土层土壤体积含水率的均方根误差和平均相对误差
利用率定后的土壤体积含水率参数,验证BSM处理和BSH处理2014—2016年夏玉米种植前后各层土壤体积含水率,验证结果如图1所示,总体上模拟值与实测值变化趋势相同,表现为0~120 cm土层的土壤体积含水率变化>120 cm以下的深层土壤,120 cm以下土壤体积含水率变化趋势稳定。其中不同深度土层的土壤体积含水率的RMSE值总体变化范围BSM处理为0.004 8~0.066 6 cm3/cm3,BSH处理为0.000 6~0.070 7 cm3/cm3;MRE值总体变化范围BSM处理为1.93%~21.44%,BSH处理为0.21%~20.46%;RE值总体变化范围BSM处理为-0.18%~0.26%,BSH处理为-0.14%~0.26%;总体上说明模型能够模拟土壤体积含水率变化,为下一步的硝态氮率定和验证提供可用土壤体积含水率数据。
2.2 土壤硝态氮参数率定与验证
在水分率定的基础上进行土壤剖面硝态氮含量率定和验证。通过相关性分析发现率定过程中,BSL处理的模拟值与实测值具有相关关系,回归方程为=0.946 0- 0.082 2(<0.05),2为0.971 8,表明养殖肥水施用下土壤硝态氮含量模拟值与实测值显著相关。并且通过表4看出,2014—2016年BSL处理的土壤硝态氮含量的RMSE变化范围为0.001 1~0.743 3 cm3/cm3,MRE变化范围为0.26%~18.27%,说明BSL处理各土层的土壤硝态氮含量模拟结果符合模拟要求。
注:BSM、BSH分别为牛场肥水33%+清水67%处理、牛场肥水50%+清水50%处理。下同。
Note:BSM and BSH indicate cattle farm wastewater 33%+clear water 67% treatment, and cattle farm wastewater 50%+clear water 50% treatment, respectively. The same below.
图1 2014—2016年BSM和BSH处理土壤体积含水率验证
Fig.1 Verification of soil volumetric water content in BSM and BSH treatments from 2014 to 2016
表4 2014—2016年BSL处理率定过程中各土层硝态氮含量的均方根误差和平均相对误差
通过对BSL处理土壤硝态氮含量的率定,验证BSM处理和BSH处理下2014—2016年各层土壤硝态氮含量,验证结果如图2所示,模拟值与实测值变化趋势拟合较好,其中不同深度土层的土壤硝态氮含量的RMSE值总体变化范围BSM处理为0.000 8~0.521 4 mg/kg,BSH处理为0.016 3~2.617 3 mg/kg;MRE值总体变化范围BSM处理为0.03%~18.47%,BSH处理为0.27%~18.58%;RE值总体变化范围BSM处理为-0.12%~0.23%,BSH处理为-0.15%~0.23%;总体上BSM处理实测值土壤硝态氮低于BSH处理,模拟结果优于BSH处理。另外土壤硝态氮含量主要在0~120 cm土层变化较大,与土壤体积含水率变化土层相同,说明该模型能够较好地模拟牛场肥水施用后土壤剖面硝态氮分布及对硝态氮淋溶的模拟和预测。
图2 2014—2016年BSM和BSH处理土壤硝态氮含量验证
2.3 玉米产量模拟结果分析
通过对模型土壤体积含水率和硝态氮含量的验证,调整作物生长参数,对夏玉米产量进行率定和验证。表5为2014—2016年夏玉米产量的模拟值与实测值,各处理产量的模拟值与实测值在合理误差范围内,产量RMSE值的CK处理变化范围在216.77~894.80 kg/hm2、BSL处理变化范围在235.59~572.30 kg/hm2、BSM处理变化范围在168.90~523.08 kg/hm2、BSH处理变化范围在124.21~911.09 kg/hm2,所有处理的MRE值变化范围在0.02%~0.21%,RE值变化范围在-0.18%~0.04%,调整夏玉米生长参数后的产量模拟结果显示模型可以在合理程度内模拟牛场肥水施用于夏玉米农田。
表5 2014—2016年不同处理夏玉米产量模拟结果比较
注:±表示实测值均值±标准误;CK、BSL、BSM、BSH分别为不施肥处理、牛场肥水20%+清水80%处理、牛场肥水33%+清水67%处理、牛场肥水50%+清水50%处理。下同。
Note:±indicates the mean of measured values±standard error; CK, BSL, BSM and BSH indicate that no fertilization treatment, cattle farm manure and wastewater 20%+clear water 80% treatment, cattle farm manure and wastewater 33%+clear water 67% treatment, and cattle farm manure and wastewater 50%+clear water 50% treatment, respectively. The same below.
2.4 土壤硝态氮淋溶的验证与预测
综上率定与验证,进行不同浓度牛场肥水施用夏玉米农田土壤硝态氮淋溶的模拟,结果如表6所示。各处理硝态氮淋溶液浓度RMSE均值分别为1.18、1.60、2.24和3.81 mg/L;MRE值变化范围CK处理为9.59%~18.84%、BSL处理为5.76%~18.36%、BSM处理为5.57%~17.32%、BSH处理为3.94%~18.99%,总体变化范围为3.94%~18.99%,RE变化范围为-0.16%~0.16%,说明RZWQM2模型可以模拟2014—2016年玉米农田200 cm深度土壤硝态氮淋溶液浓度的变化。硝态氮淋溶浓度随肥水氮带入量增加变化较大,从模拟值与实测值的对比看出CK处理在200 cm深度土壤硝态氮淋溶液浓度低于其他处理。通过对2017年硝态氮淋溶液浓度的预测可以看出,长期施用养殖肥水不会增加深层土壤硝态氮淋溶液浓度。
表6 2014—2016年夏玉米季硝态氮淋溶液浓度模拟值与实测值及2017预测值
3 讨 论
3.1 牛场肥水施用夏玉米农田模型模拟的适用性
目前,RZWQM模型已在世界不同地区被证实具有模拟土壤水氮动力学、作物生长和产量的能力[26]。养殖肥水农田利用需要合理的浓度和氮带入量,在不影响产量前提下降低土壤硝态氮淋溶,利用数学模型模拟来确定合理的肥水施用浓度是一个较好的解决措施[27]。本研究模拟验证结果均表明各层土壤体积含水率的RMSE和MRE值分别在0.000 6~0.070 7 cm3/cm3和0.21%~21.44%之间变化,各土层硝态氮的RMSE和MRE值在0.000 8~2.617 3 mg/kg和0.03%~18.58%之间变化,其中上部土层模拟效果优于下部土层,可能是模型所使用的土壤孔隙度为默认值而非实测值[28],模型不能较好模拟水分入渗过程。经过率定和验证的作物产量和硝态氮淋溶液浓度的变化,说明RZWQM2模型在水氮淋失指标表现出较好的模拟效果。因此,RZWQM2可以较好应用在种养结合下牛场肥水施用华北平原夏玉米的模拟研究,减少养殖肥水的不合理利用。
3.2 模型模拟牛场肥水施用对土壤氮素淋溶的影响
硝态氮是一种可被植物吸收的氮,当水移动到土壤剖面以下时,硝酸盐是高度可溶的,很容易因淋溶而损失掉[29-30],淋出的硝酸盐可能会进入饱和区并导致地下水污染。在中国华北地区,孙浒等[31]研究表明玉米生育期较短且降水量和降水强度较大,硝态氮淋失量与降水量呈显著相关关系。Mckague等[32]利用RZWQM模型评估氮肥施用量和施用时间对玉米种植对地下水中硝酸盐流失的长期影响,表明模型能够模拟不同的气候和农田管理,其精度在空间变化复杂的田间应用是可行的。本研究通过对土壤硝态氮淋溶的模拟表明,夏玉米季施用牛场肥水在土壤中的硝态氮淋溶量随施氮量的增加而增加,这与郑文波等[9]通过模型预测的研究结果一致。有研究表明因为耕作系统、作物类型和种植年限的因素导致硝态氮浓度比淋失量变化更大[33],在夏季玉米生长季节,硝态氮的淋溶量要高得多[27]。本研究通过模拟结果看出,主要由于玉米季前期降水集中,硝态氮淋洗在作物根区,尤其深层土壤中存在较多硝态氮,进一步说明随着时间推移,根区淋洗的硝态氮将进一步在深部土层堆积。土壤硝态氮浓度具有高度的瞬态性和空间变异性,本质上对于一个模型而言,在夏玉米的多个根区土层重现较为困难[34],因此在利用模型对作物深层次土壤硝态氮淋溶的模拟研究应结合当地具体情况进行。
4 结 论
通过对RZWQM2模型进行参数调整,对2014—2016年3季夏玉米土壤含水率、硝态氮含量以及作物产量进行率定和验证,验证结果均表明各土层土壤体积含水率的均方根误差(Root Mean Square Error,RMSE)和平均相对误差(Mean Relative Error,MRE)值分别在0.000 6~0.070 7 cm3/cm3和0.21%~21.44%之间变化,土层硝态氮的RMSE和MRE值在0.000 8~2.617 3 mg/kg和0.03%~18.58%之间变化,模拟的土壤含水率与氮素剖面分布趋势与实测值相同。通过模拟结果看出,由于玉米季前期降水集中,深层土壤中存在较多硝态氮,通过对200 cm土层硝态氮淋溶的模拟与预测进一步说明随着时间推移,根区淋洗的硝态氮在深部土层随施氮量的增加而增加。综合考虑作物产量和水肥利用情况,证明该模型对于牛场肥水灌溉后土壤氮素损失评估的可行性,并得出中浓度牛场肥水替代化肥投入农田更利于作物生长。
[1] 杨军香,王合亮,焦洪超,等. 不同种植模式下的土地适宜载蓄量[J]. 中国农业科学,2016,49(2):339-347. Yang Junxiang, Wang Heliang, Jiao Hongchao, et al. Stock capacity in different cropping systems[J]. Scientia Agricultura Sinica, 2016, 49(2): 339-347. (in Chinese with English abstract)
[2] 巨晓棠,谷保静. 氮素管理的指标[J]. 土壤学报,2017,54(2):281-296. Ju Xiaotang, Gu Baojing. Indexes of nitrogen management[J]. Acta Pedologica Sinica, 2017, 54(2): 281-296. (in Chinese with English abstract)
[3] Valencia-Gica R B, Yost R S, Porter G. Biomass production and nutrient removal by tropical grasses subsurface drip-irrigated with dairy effluent[J]. Grass and Forage Science, 2012, 67(3): 337-349.
[4] 乔冬梅,齐学斌,樊向阳,等. 养猪废水灌溉对冬小麦作物-土壤系统影响研究[J]. 灌溉排水学报,2010,29(1):32-35. Qiao Dongmei, Qi Xuebin, Fan Xiangyang, et al. The influence of livestock wastewater irrigation on winter wheat crop-soil system[J]. Journal of Irrigation and Drainage, 2010, 29(1): 32-35. (in Chinese with English abstract)
[5] 杜会英,冯洁,郭海刚,等. 麦季牛场肥水灌溉对冬小麦-夏玉米轮作土壤氮素平衡的影响[J]. 农业工程学报,2015,31(3):159-165. Du Huiying, Feng Jie, Guo Haigang, et al. Effects of dairy effluents irrigation on N balance in soil under winter wheat-summer maize rotation system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transaction of the CSAE), 2015, 31(3): 159-165. (in Chinese with English abstract)
[6] 高懋芳,邱建军,李长生,等. 应用Manure-DNDC模型模拟畜禽养殖氮素污染[J]. 农业工程学报,2012,28(9):183-189. Gao Maofang, Qiu Jianjun, Li Changsheng, et al. Modelling nitrogen pollution from livestock breeding using Manure-DNDC model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transaction of the CSAE), 2012, 28(9): 183-189. (in Chinese with English abstract)
[7] Du Huiying, Gao Wenxuan, Li Jiajia, et al. Effects of digested biogas slurry application mixed with irrigation water on nitrate leaching during wheat-maize rotation in the North China Plain[J]. Agricultural Water Management, 2019, 213: 882-893.
[8] Hernández D, Polo A, Plzaz C. Long-term effects of pig slurry on barley yield and N use efficiency under semiarid Mediterranean conditions[J]. European Journal of Agronomy, 2013, 44: 78-86.
[9] 郑文波,王仕琴,刘丙霞,等. 基于RZWQM模型模拟太行山低山丘陵区农田土壤硝态氮迁移及淋溶规律[J]. 环境科学,2019,40(4):252-260. Zheng Wenbo, Wang Shiqin, Liu Bingxia, et al. Simulating migration and leaching of leaching of nitrate nitrogen in farmland soil profile in hilly area of Taihang mountain with RZWQM model[J]. Environmental Science, 2019, 40(4): 252-260. (in Chinese with English abstract)
[10] 沈仕洲,张克强,王风,等. 基于RZWQM模型的华北平原冬小麦–夏玉米土壤硝态氮淋溶和氨挥发评估方法研究[J].生态与农村环境学报,2018,34(9):769-775. Shen Shizhou, Zhang Keqiang, Wang Feng, et al. The assessment method of nitrate nitrogen leaching and ammonia volatilization of winter wheat-summer maize rotation in North China Plain based on RZWQM model[J]. Journal of Ecology and Rural Environment, 2018, 34(9): 769-775.(in Chinese with English abstract)
[11] 薛长亮,张克强,杨德光,等. RZWQM 模拟小麦–玉米轮作系统氮素运移及损失特征[J]. 中国生态农业学报,2015,23(2):150-158. Xue Changliang, Zhang Keqiang, Yang Deguang, et al. RZWQM simulation of nitrogen transport and loss under winter wheat/summer maize rotation system in the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2015, 23(2): 150-158. (in Chinese with English abstract)
[12] Fang Quanxiao, Ma Liwang, Yu Qiang, et al. Irrigation strategies to improve the water use efficiency of wheat-maize double cropping systems in North China Plain[J]. Agricultural Water Management, 2010, 97: 1165-1174.
[13] Li Maona, Wang Yunling, Adeli A, et al. Effects of application methods and urea rates on ammonia volatilization, yields and fine root biomass of alfalfa[J]. Field Crops Research, 2018, 218: 115-125.
[14] 谷丰. 典型砂姜黑土区农田土壤水分养分动态变化特征及模拟[D]. 北京:中国农业大学,2018. Gu Feng. Characteristic and Modeling of Soil Water and Nutrition Dynamics in a Typical Calcic Vertisol[D]. Beijing: China Agricultural University, 2018. (in Chinese with English abstract)
[15] Yang Wei, Feng G, Adeli A, et al. Long-term effect of cover crop on rainwater balance components and use efficiency in the no-tilled and rained corn and soybean rotation system[J]. Agricultural Water Management, 2019, 3(22): 27-39.
[16] Ward S, Brain G, Qi Zhiming, et al. Development of the DNDC model to improve soil hydrology and incorporate mechanistic tile drainage: A comparative analysis with RZWQM2[J]. Environmental Modelling and Software, 2020, 123: 104577-104592.
[17] Fang Quanxiao, Ma Liwang, Halvorson AD, et al. Evaluating four nitrous oxide emission algorithms in response to N rate on an irrigated corn field[J]. Environmental Modelling and Software, 2015, 72(10): 56-70.
[18] Jiang Qianjing, Qi Zhiming, Chandra AM, et al. Mitigating greenhouse gas emissions in subsurface-drained field using RZWQM2[J]. Science of Total Environment, 2019, 646: 377-389.
[19] Sadhukhan D, Qi Zhiming, Zhang Tiequan, et al. Development and evaluation of a phosphorus (P) module in RZWQM2 for phosphorus management in agricultural fields[J]. Environmental Modelling and Software, 2019, 113(3): 48-58.
[20] 刘海涛. 华北平原高产区农田土壤条件与水氮利用效率定量评价[D]. 北京:中国农业大学,2018. Liu Haitao. Evaluating Soil Profile Properties and Water Nitrogen Use Efficiencies of High Yield Region in the North China Plain[D]. Beijing: China Agricultural University, 2018. (in Chinese with English abstract)
[21] Hanson J D, Rojas K W, Shaffer M J. Calibrating the root zone water quality model[J]. Agronomy Journal, 1999, 91(2): 171-177.
[22] Cameira M R, Fernando R M, Ahuja L R, et al. Simulating the fate of water in field soil-crop environment[J]. Journal of Hydrology, 2005, 315(1/4): 1-24.
[23] Ma Liwang, Hoogenboom G, Ahuja L R, et al. Development and evaluation of the RZWQM-CROPGRO hybrid model for soybean production[J]. Agronomy Journal, 2005, 97(4): 1172-1182.
[24] Ma Liwang, Hoogenboom G, Ahuja L A, et al. Evaluation of the RZWQM-CERES-Maize hybrid model for maize production[J]. Agricultural Systems, 2006, 87(3): 274-295.
[25] Anar M J, Lin Zhulu, Hoogenboom G, et al. Modeling growth, development and yield of Sugarbeet using DSSAT[J]. Agricultural Systems, 2019, 169: 58-70.
[26] Malone R W, Herbstritt S, Ma Liwang, et al. Corn stover harvest N and energy budgets in central Iowa[J]. Science of the Total Environment, 2019, 663: 776-792.
[27] Li Zhuoting, Wen Xiumei, Hu Chunsheng, et al. Regional simulation of nitrate leaching potential from winter wheat-summer maize rotation croplands on the North China Plain using the NLEAP-GIS model[J]. Agriculture, Ecosystems and Environment2020, 294: 106861-106874.
[28] Kumar A, Kanwar R S, Singh P, et al. Evaluation of the root zone water quality model for predicting water and NO3-N movement in an lowa soil[J]. Soil & Tillage Research, 1999, 50(3/4): 223-236.
[29] Zheng Wenbo, Wang Shiqin, Tan Kangda, et al. Nitrate accumulation and leaching potential is controlled by land-use and extreme precipitation in a headwater catchment in the North China Plain[J]. Science of the Total Environment, 2020, 707: 136-168.
[30] Li Shengxiu, Wang Zhaohui, Hu Tiantian, et al. Chapter 3 nitrogen in dryland soils of China and its management[J]. Advances in Agronomy, 2009, 101: 123-181.
[31] 孙浒,张吉旺,靳立斌. 玉米高产与氮肥高效协同实现存在的问题及其途径[J]. 玉米科学,2014,22(1):143-148. Sun Hu, Zhang Jiwang, Jin Libin, et al. Problems and approaches of achieving high yield and high nitrogen use efficiency in maize production[J]. Journal of Maize Sciences, 2014, 22(1): 143-148. (in Chinese with English abstract)
[32] Mckague K, Rudra R P, Ahmed S I, et al. Simulating effects of MERN and other BMPs on subsurface drainage water quality and crop yield in Southern Ontario[J]. Canadian Biosystems Engineering, 2006, 48(1): 31-40.
[33] Ernst S, Clay H, Walter R, et al. Does no-tillage decrease nitrate leaching compared to ploughing under a long-term crop rotation in Switzerland[J]. Soil & Tillage Research, 2020, 199: 1-10.
[34] Sara E, Thomson N R, David L R. Evaluation of nutrient beneficial management practices on nitrate loading to groundwater in a Southern Ontario agricultural landscape[J]. Canadian Water Resources Journal/Revue Canndienne Des Ressources Hydriques, 2020, 45(1): 90-107.
Simulation of the soil nitrate nitrogen migration characteristics of summer maize fertilized with dairy manure and wastewater using RZWQM2
Wang Guiyun1, Zhang Keqiang1, Fu Li1, Dou Guofang2, Zhang Jisheng3, Du Huiying1※
(1-,,300191,; 2,300450,; 3.,.,301803,)
The continuous improvement of the intensive breeding of livestock and poultry had resulted in a large amount of livestock waste, which caused seriously affected the sustainable development of animal husbandry. The ecological model of farmland reuse after anaerobic treatment of breeding waste has been widely used. Wastewater application increased the cumulative nitrogen utilization rate of the winter wheat-summer corn rotation system and reduced the accumulation of nitrogen in the soil; on the other hand, excessive irrigation of farming manure and wastewater increased the intensity of nitrogen leaching losses in the farmland, and nitrate nitrogen leaching affected groundwater and human health. As a result, how to protect groundwater quality and reduce nitrate nitrogen leaching loss while rationally using farming fertilizer and water farmland had become a hot issue for domestic and foreign scholars. This study took summer corn in Xushui District of Hebei Province as the research object, using the RZWQM2 model to verify the feasibility of irrigating the corn on the farmland with dairy effluents, and uses the data from 2014 to 2016 corn to verify the model parameters. The verification results showed that the RMSE values of the water content of each soil layer vary from 0.000 6 cm3/cm3to 0.070 7 cm3/cm3and the MRE values from 0.21% to 21.44%, and the RMSE values of the soil layer nitrate-nitrogen from 0.000 8 mg/kg to 2.617 3 mg/kg and the MRE values from 0.03% to 18.58%. The results showed that the RZWQM2 model after calibration and verification can be used to simulate the dynamic changes of soil water, nitrogen and crop yields under the application of dairy effluents on summer corn planting in the North China Plain. The utilization rate and verification model carried out the verification and prediction of nitrate nitrogen leaching, which showed that the application of dairy effluents mainly occurred in the 0-120 cm soil layer, and the leaching amount of the deep layer increased with the increase of nitrogen application. It can be seen from the simulation results that due to the concentration of pre-season rainfall in corn, there is more nitrate nitrogen in the deep soil. The simulation and prediction of nitrate-nitrogen leaching in the 200 cm soil layer further illustrated that the leaching of the root zone over time nitrate nitrogen in deep soil layers increased with increasing nitrogen application rate. The results showed that the RZWQM2 model can be better applied to farms for applying dairy effluents, and provided a more suitable method for predicting and evaluating the appropriate amount of dairy effluents brought into the soil. But in essence, for a model, it was difficult to reproduce the soil layer in the multiple root zone of summer maize. Therefore, the simulation study of the nitrate-nitrogen leaching in the deep soil of the crop should be combined with the specific local conditions. Comprehensive consideration of crop yield and water and fertilizer utilization proves the feasibility of the model for the assessment of soil nitrogen loss after irrigation of cattle farm fertilizer and water, and it was concluded that the replacement of fertilizer with medium-concentration cattle farm fertilizer and water in farmland is more conducive to crop growth.
irrigation; wastewater; nitrogen; dairy; summer maize; RZWQM2 model
王贵云,张克强,付莉,等. RZWQM2模型模拟牛场肥水施用夏玉米土壤硝态氮迁移特征[J]. 农业工程学报,2020,36(14):47-54.doi:10.11975/j.issn.1002-6819.2020.14.006 http://www.tcsae.org
Wang Guiyun, Zhang Keqiang, Fu Li, et al. Simulation of the soil nitrate nitrogen migration characteristics of summer maize fertilized with dairy manure and wastewater using RZWQM2[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(14): 47-54. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.14.006 http://www.tcsae.org
2020-04-29
2020-06-11
公益性行业(农业)科研专项(201503106);天津市现代奶牛产业技术体系创新团队建设专项(ITTCRS2018006)
王贵云,主要从事农业废弃物资源化利用及模型模拟研究。Email:guiyun225@qq.com
杜会英,博士,副研究员,主要从事养殖废弃物面源污染防控方面研究。Email:duhuiying@caas.cn
10.11975/j.issn.1002-6819.2020.14.006
S275
A
1002-6819(2020)-14-0047-08