APP下载

粪水酸化储存还田应用效果

2020-09-20马艳茹孟海波沈玉君丁京涛张朋月刘森泓

农业工程学报 2020年15期
关键词:酸化速效储存

马艳茹,孟海波,沈玉君,丁京涛,张朋月,刘森泓

粪水酸化储存还田应用效果

马艳茹1,2,3,孟海波1,2,沈玉君1,2,丁京涛1,2※,张朋月1,2,刘森泓1,2

(1. 农业农村部规划设计研究院农村能源与环保研究所,北京 100125;2. 农业农村部资源循环利用技术与模式重点实验室,北京 100125;3. 华中农业大学工学院,武汉 430070)

为探索酸化储存粪水对农田的施用效果,采用浓硫酸(H2SO4)酸化前后的粪水和长期储存前后粪水,开展盆栽试验研究酸化储存粪水对土壤养分和作物产量的影响。试验分别设置2个对照组:储存前和储存后的粪水,H2SO4酸化前和酸化后的粪水,每个处理分别设置4组施加量水平(5%、25%、50%和100%稀释比例的粪水)。试验结果表明:对于养殖粪水还田,应严格控制粪水还田比例,不宜施加浓度过高的粪水,宜控制在25%~50%施加量。粪水储存有利于土壤总氮(Total Nitrogen, TN)和总磷(Total Phosphate,TP)的固持,储存后土壤总养分(总氮、总磷和总钾(Total Potassium,TK))增加了11.32%~73.16%,SMS(储存60 d的粪水)(100%)处理产量提高了21.22%;粪水经过H2SO4酸化处理后,对土壤总养分影响变化较大,TN、TP和TK部分处理呈增加的趋势,HMS(25%)处理产量显著提高了27.94%;在H2SO4酸化的基础上储存粪水,土壤TN含量增加十分显著(<0.05),酸化与储存联合处理减少了粪水TN的损失,对于土壤速效养分的增加有促进作用,尤其对速效N的影响较显著(<0.05),SHMS(粪水+H2SO4储存60 d)(25%)处理产量提高了13.63%。该研究通过对比分析新鲜粪水、储存粪水、酸化粪水和酸化储存粪水的特性,探讨了畜禽养殖场粪水经酸化储存后的还田应用效果,为粪水还田提供技术支撑。

酸化;储存;粪水;还田

0 引 言

近些年来,中国畜禽养殖业逐渐向规模化、集约化方向发展,随着养殖规模的不断扩大,畜禽粪水排放量急剧增长的问题日益突出。据统计,中国畜禽粪污年产生量约38亿t,其中粪便约18亿t,粪水量约20亿t。粪水还田施用成本低、简单易行,合理施用既能解决污染问题,又能提高土壤蛋白质和氨基酸含量[1],直接或间接影响土壤肥力和持续供氮能力[2],已成为粪水资源化的重要方式,是种养结合循环农业的重要纽带。而粪水不合理的还田施用方式不仅会影响粪水肥效和水体污染,还会影响土壤质量,导致作物减产[3-4]。

目前国内外针对粪水资源化处理采取了不同技术[5],从生态和经济效益上综合来看,还田应用是最佳的选择。粪水直接农田施用应考虑以下3个因素,一是粪水中含有大量的盐分,过量施用粪水会使土壤溶液中离子浓度过高,导致植物根细胞脱水,出现“烧苗”现象;二是粪水中含有大量铵氮,不合理施用会导致进入土壤中的粪污挥发出大量氨气,灼伤作物叶片[6];三是粪水中含有粪大肠菌等有害微生物,直接施用到农田可能会导致农产品污染。因此,一般情况下养殖粪水需经储存一段时间后达到无害化要求后再进行还田[7],但粪水在储存中会挥发氨气(NH3),储存期间若处理不当,会导致肥料养分流失和氮肥价值下降[8]。国外粪水还田时特别注重养分合理利用和最大限度氮素损失[9]。丹麦开发了粪水酸化技术,通过控制pH值添加浓硫酸对粪水进行酸化,不但会降低NH3的排放[10],还能有效抑制杀死病原微生物[3]。粪水储存期间可减少甲烷(CH4)的排放并在土壤施用后降低硝化作用,提高储存后粪水的肥效。Sigurnjak研究证明酸化处理的肥料有利于N的固定,能改善作物的微量元素组成,通过增加微量营养素的吸收来提高作物的营养价值[11]。Pedersen研究发现经过酸强化的牛粪水施用于玉米,提高了其对磷的吸收,玉米品质显著提高[12]。

国外有关处理畜禽养殖粪水还田效果研究相对较多[13],粪水酸化已被证明能有效抑制田间施用过程中氨排放[14-16]和CH4排放[17],但是此技术会导致粪水中无机盐分升高,直接使用酸化粪水可能存在“烧苗”的风险。目前,酸化并储存的粪水对土壤养分的作用效果在国内还鲜有报道,为了探讨中国畜禽养殖场粪水经酸化储存后的还田施用效果,本研究对比分析了新鲜粪水、储存粪水、酸化粪水、酸化储存粪水的特性和还田应用效果,为粪水还田提供技术支撑。

1 材料与方法

1.1 试验材料

盆栽试验土壤采自北京通州地区农田,土壤基础理化性质见表1,新鲜粪水采自北京顺义区某养猪场。盆栽试验对象选用小白菜种子。试验中所有用水全部采用去离子水。

表1 田间试验土壤理化特性

1.2 试验方法

本研究共设置1个对照组和3个处理组,对照组为新鲜粪水MS处理,处理组分别为储存60 d后的粪水(SMS)处理、H2SO4酸化后的新鲜粪水(HMS)处理以及H2SO4酸化并储存60 d以后的粪水(SHMS)处理,每个处理按粪水的施用量分别设置4组不同水平,分别为5%,25%,50%和100%,如表2。将各处理粪水分别用去离子水按体积比进行稀释,即稀释后的粪水浓度百分比分别为5%、25%、50%和100%,共计16个试验组(见表2),每组试验3组平行,共48个试验盆栽。选用23.5 cm×25 cm塑料盆钵,盆栽用土全部过2 mm筛,加入蒸馏水至60%土壤田间持水量,每盆装风干土3 kg,将粪水作为基肥一次性灌施于土壤中,稳定一周后播种,每盆播入10粒种子,出苗一周后间苗,定苗4株,45 d后收获。所有盆栽置于人工温室中,温室白天和晚上温度分别控制在20~25 ℃和8~15 ℃。每隔2~3 d通过差重法补充水分,保证盆栽土壤持水量。各处理在温室内随机摆放,并间歇地调换位置,以确保生长条件一致。

表2 试验处理

1.3 样品采集及测定方法

播种后45 d采集小白菜样品,将小白菜根部剪掉,用去离子水清洗茎叶,称取取小白菜茎叶鲜质量,后置于105 ℃烘箱中杀青1 h后,再将样品放在60~70 ℃烘箱中烘干至恒质量,冷却后称质量。作物样品采用不锈钢植物样品粉碎机磨碎、过100目(0.150 mm)筛,用于测定氮、磷和钾等养分含量;同时采集土壤样品,风干后过1 mm筛,用于土壤pH值和EC测定,取部分土壤过100目筛,用于测定土壤氮、磷和钾等养分含量测定。

土壤各指标均采用常规方法测定,土壤pH值测定采用风干土用pH计(雷磁pHS-3C)测定,水土比5:1浸提法。速效氮采用碱解扩散法,速效钾采用NH4OAc浸提-火焰光度法,速效磷采用0.5 mol/L碳酸氢钠浸提钼锑抗比色法测定,土壤有机质的测定采用重铬酸钾容量法-外加热法,总氮采用元素分析仪测定,有机质采用重铬酸钾-硫酸外氧化法测定。

1.4 统计分析

所有数据输入Excel 2016(Microsoft, USA)作预处理,然后利用SPSS 20.0软件(Statistical Product and Sercice Solution, USA)进行数据统计和分析,利用Origin 9.0做图像处理。

2 结 果

2.1 粪水储存及酸化处理前后理化特性变化

粪水的理化性质是影响还田效果的重要参考依据。试验中原粪水储存前后、H2SO酸化前后的各项指标变化见表3。原粪水和酸化后的粪水在储存60 d后pH值均显著升高(<0.05),这是由于粪水中有机物的降解产生的NH4+致使pH值升高。由表3可知,酸化会导致粪水的电导率升高,该趋势与其他文献研究类似[18],但储存后的粪水EC值均显著降低(<0.05)。氮素是粪肥还田应用的重要影响因素,储存之后的粪水NH4+-N质量分数均显著降低(<0.05),氮素以不同的无机氮形式损失出去,而原粪水经过H2SO4酸化后,NH4+-N含量增加了7.43%,说明酸化有利于减少氮以NH3的形式损失,起到了显著的氨素固持作用[19]。氮磷钾是粪水还田利用的主要养分指标,由表4可知,由于NH4+-N储存过程以NH3的形式挥发出去,因此也导致了粪水储存之后TN含量显著降低(<0.05),但经过酸化的粪水总氮含量相比未酸化处理显著升高,说明H2SO4酸化后有利于氮的固存。与TN相反,储存60 d之后的原粪水TP和TK含量均显著升高(<0.05)。

表3 储存前后处理对粪水理化性质的影响

注:同一行中不同小写字母表示有显著性差异(<0.05),各指标是3次重复试验的平均值.

Note: Different lowercase letters in the same line indicated significantly differences (<0.05), and each index is the average value of three repeated experiments.

2.2 粪水施用水平对土壤理化性质及作物产量的影响

图1显示了不同处理粪水对土壤pH值的影响,随着粪水添加比例的增大,土壤pH值与粪水施加量呈显著负相关(MS2=0.859,SMS2=0.799,HMS2=0.947,SHMS2=0.914)。总体上看,除施加100%粪水的处理,其他施用量下MS、SMS、HMS和SHMS处理的土壤pH值均在8.0以上,当施加25%和50%的粪水时,土壤pH值变化差异较小。通过组内分析发现,当粪水施加量是5%和100%时,储存或酸化的粪水对土壤pH值的影响不显著;但当施加25%和50%的粪水后,储存的粪水(SMS)对土壤pH值有一定影响(<0.05),如添加50%的粪水,储存粪水(SMS)的pH值由8.1上升至8.4。酸化的粪水(HMS)对土壤pH值的影响不显著。整体来看,土壤的pH值受粪水施加量的影响较大,土壤pH值会随着粪水添加量的增大而逐渐降低,而储存的粪水有利于提高土壤的pH值,能促进土壤有机质的分解[20-21],酸化的粪水能调节土壤pH环境,有助于作物对养分的吸收[22]。

施用粪水对土壤的总养分有不同程度的影响,见表4。总体上看,TN含量变化较大,粪水施加量是5%时,各处理对土壤TN的影响均显著(<0.05)。施加25%的粪水时,各处理粪水对土壤TN含量影响较小。施加100%的新鲜粪水(MS)和储存粪水(SMS),土壤TN含量均最低。酸化的粪水HMS 当施加量超过25%时,土壤TN含量变小,说明酸化粪水施加量较大时,土壤TN含量损失较多。而酸化储存后的粪水SHMS,随着粪水施加量的增大土壤TN含量呈上升趋势,原因是酸化可以有效控制氨挥发,减少氮素损失[23-24]。土壤TP含量的变化与粪水施加量之间无明显的变化规律,在粪水施加量为25%时,土壤TP含量相比其他水平有所增加。施用储存或酸化后的粪水相比新鲜粪水(MS),土壤TP的含量增加。施加储存粪水(SMS)的土壤TP含量增加较多。造成该现象的原因可能是粪水中的磷元素不稳定,磷在水体中形态会发生转化,有机磷会逐渐向无机磷转化,同时,溶解态磷会一定程度向颗粒态转化[25],而肥料中不稳定磷的含量高于土壤中不稳定磷的含量[4],对土壤TP的影响也较大[26]。土壤TK含量在粪水施加量为50%时,MS和HMS处理的TK增加较多,在施加100%的粪水后,MS、SMS和HMS处理的土壤TK显著减少(<0.05)。

注:图1中不同英文小写字母表示施用相同量的不同处理粪水对土壤pH影响显著(P<0.05),不同希腊字母表示施用不同量的相同处理粪水对土壤pH值影响显著(P<0.05)。

表4 土壤养分含量变化

注:同一列不同小写字母表示各个比例粪水处理的土壤养分值差异显著(<0.05)。

Note: Different lowercase letters in the same list indicated significantly differences on nutrient values of soil in each proportion of animal slurry treatments(<0.05).

表4中列出了各处理粪水对土壤速效养分的影响。不同施加比例之间的土壤速效养分差异显著(<0.05)。新鲜粪水处理下的土壤速效N含量随着粪水施加量的增大呈下降趋势,MS处理的土壤速效N含量,100%水平比5%水平降低了33.69%。施用酸化和储存的粪水SMS、HMS和SHMS,粪水施加量由5%增加到25%时,土壤速效N含量显著增大,分别增加了41.63%、53.01%和16.71%;50%水平相比5%水平,SMS和HMS处理的土壤速效N含量分别增加了8.72%和50.55%;100%水平相比5%水平,SMS、HMS和SHMS处理的土壤速效N含量分别增加了42.40%、47.61%和17.29%,说明粪水经过酸化或储存后有利于速效N的增加。由表可看出,不同比例的粪水对土壤速效磷影响显著(<0.05),随着粪水施加量的增大,土壤速效P含量显著上升。MS、SMS、HMS和SHMS处理施加100%浓度的粪水相比5%浓度的粪水,速效P含量分别增加了130.21%、14.71%、8.0%和19.19%,说明土壤速效P与粪水施加量呈显著正相关。MS、SMS、HMS和SHMS处理的相关系数2分别为0.966、0.864、0.423和0.296。不同比例的粪水对土壤速效K影响显著(<0.05),随着粪水施加量的增大,土壤速效K含量显著上升。MS、SMS、HMS和SHMS处理施加100%浓度的粪水相比5%浓度的粪水,速效K含量分别增加了85.35%、11.79%、108.42%和61.80%。MS、SMS、HMS和SHMS处理的正相关系数2分别为0.904、0.815、0.732和0.661。

图2表示各处理粪水不同施加量对作物产量的影响。由图可知,粪水的施加量对作物的产量有显著的影响,随着粪水施加量的增大,作物产量呈下降趋势。施加5%比例和25%比例的粪水,作物产量差异不显著。施加50%比例和100%比例的粪水,作物产量差异显著(<0.05),随着粪水施加量的增大,产量呈下降的趋势,当粪水施加量大于25%时,产量显著降低(<0.05),当施加量为100%时,产量最低,由此说明粪水不宜直接施加于叶菜类的作物,施加量较高(>25%)会抑制作物的生长。

注:图2中不同英文小写字母表示施用相同量的不同处理粪水对作物产量影响显著(P<0.05),不同希腊字母表示施用不同量的相同处理粪水对作物产量影响显著(P<0.05)。

3 讨 论

3.1 粪水储存对土壤理化性质和作物产量的影响

分析施用储存前后粪水对土壤养分含量的影响,总体上看,储存后土壤总养分TN、TP和TK增加了11.32%~73.16%。对比储存前后的MS处理和SMS处理发现,土壤TN含量显著降低,TP和TK含量显著增加,5%、25%、50%和100%水平下,储存后土壤TN分别下降了11.43%、15.46%、20.19%和3.42%,土壤TP分别上升了35.94%、18.39%、6.41%和33.33%,土壤TK分别上升了17.03%、9.81%、8.33%和15.99%。对比新鲜粪水(MS)处理和经过H2SO4酸化储存(SHMS)处理,TN含量显著上升(<0.05),TP和TK含量变化不显著,土壤TN含量分别上升了6.86%、5.8%、17.31%和76.71%。对比经过H2SO4酸化的储存前处理(HMS)和储存后处理(SHMS),TN含量显著上升,5%、25%、50%和100%水平下,TN分别上升了44.96%、20.99%、37.08%和47.43%,TP和TK含量其他水平下变化不显著。由此可以看出,粪水经过储存有利于TK、TP养分的固持,并不利于固氮。但在H2SO4酸化的基础上储存粪水,TN含量增加十分显著,说明酸化与储存联合有利于减少粪水总氮含量的损失。

对比新鲜粪水(MS)和储存后粪水(SMS),速效N和速效P含量显著上升,除5%水平下降了13.85%之外,25%、50%和100%水平下,储存后土壤速效N分别升高了22.23%、21.94%和84.99%,速效P分别上升了58.93%、18.20%、18.45%和29.54%,速效K的50%和100%水平呈显著降低的趋势,降低了20.23%和36.85%。对比新鲜粪水(MS)和H2SO4酸化储存的粪水(SHMS),速效N和速效P含量总体呈上升趋势,除5%水平速效N减少了12.18%之外,其他水平分别上升了2.67%、2.17%和55.32%,速效P分别上升了93.15%、37.07%、34.87%和8.23%,速效K含量显著降低(<0.05),各水平速效K含量分别降低了11.13%、11.51%、30.61%和22.42%。对比经过H2SO4酸化的粪水(HMS)和酸化储存的粪水(SHMS),速效P显著上升,速效K显著降低,各水平速效P分别上升了17.35%、36.40%、31.38%和29.54%,速效K分别降低了17.84%、16.59%、19.31%和36.22%。可以看出,无论是否经过酸化,施用储存之后粪水的土壤速效P含量均会显著增加,土壤速效K含量呈减少的趋势,而土壤速效N含量变化趋势并不十分稳定,储存后总体呈上升趋势。

储存粪水(SMS)较新鲜粪水(MS),作物产量总体呈上升的趋势,除5%水平之外,25%、50%和100%水平的产量分别增加了10.63%、20.86%和21.22%。但经过H2SO4酸化储存的粪水(SHMS)较酸化粪水(HMS),作物产量呈下降的趋势,5%、25%、50%水平处理产量分别减少了11.64%、11.19%和19.10%。可以看出,施用储存粪水对作物均有增产的效果。

3.2 粪水酸化后施用对土壤养分及作物产量的影响

分析H2SO4酸化粪水对土壤总养分的影响,酸化粪水(HMS)较新鲜粪水(MS),土壤TN含量显著降低,TP含量显著增加,除100%水平之外,5%、25%和50%水平下,HMS处理的土壤TN含量分别降低了26.29%、12.56%和14.42%。各水平土壤TP含量分别增加了20.21%、3.45%、14.10%和12.82%。H2SO4酸化储存粪水(SHMS)较储存粪水(SMS),土壤TN含量显著上升(<0.05),各水平TN含量分别增加了20.65%、25.14%、46.99%和82.98%,TP和TK总体呈降低的趋势,各水平TP含量分别降低了9.20%、13.59%、13.25%和13.41%;除100%水平之外,5%、25%和50% 水平的土壤TK含量分别降低了14.35%、11.70%和10.47% 。由此看出,H2SO4酸化粪水有利于磷元素的累积,会造成部分氮元素的损失,其原因可能是酸化作用影响粪水储存过程中有机质的周转,从而影响施用后土壤无机氮的释放[27]。但是酸化粪水经过储存后,促进了土壤TN含量的上升,主要原因可能是酸化储存的过程降低了粪水的氨气、N2O排放,减少了氮的损失[28]。

H2SO4酸化粪水(HMS)较新鲜粪水(MS),土壤速效N、速效P和速效K含量呈上升的趋势,25%、50%和100%水平下,酸化后土壤速效N含量分别增加了4.18%、33.22%和51.29%,土壤速效P含量分别增加了64.59%、0.48%、2.66%和19.69%;5%、25%和100%水平下,土壤速效K含量分别增加了8.16%、6.09%和21.62%。H2SO4酸化储存的粪水(SHMS)较储存粪水(SMS),土壤速效N和速效K含量呈下降的趋势,除了5%水平之外,各水平土壤速效N含量分别降低了16.00%、16.21%和16.04%。5%、25%和50%水平下,速效K含量分别降低了11.79%、7.76%和13.01,速效P含量显著增加(<0.05),各水平分别增加了21.53%、15.96%、13.86和0.68%。总体上看,H2SO4酸化的粪水,有利于土壤速效养分的增加,尤其利于土壤速效N的显著增加[29],其他研究也表明了硫酸酸化的粪水可以增加土壤速效养分的吸收[30]。不同处理粪水下作物生长效果如图3所示。

注:每行从右至左,依次为未施用粪水(CK),施用5%、25%、50%和100%粪水比例的盆栽;每列从上至下,依次为施用MS、SMS、HMS和SHMS处理粪水的盆栽。

粪水酸化后的处理较未酸化的处理,作物产量总体呈上升的趋势,各施用比例中,施用25%比例的粪水,作物产量变化趋势稳定、增加显著。HMS处理较MS处理,当粪水施用水平是25%时,产量增加了27.94%。SHMS处理较SMS,25%水平下,产量增加了0.79%,总体上看,施用25%比例的H2SO4酸化粪水(HMS)的作物产量增加最显著,相对于新鲜粪水(MS),酸化储存后的粪水不仅达到无害化,作物产量也提高了13.63%。

3 结 论

1)对于养殖粪水还田,应严格控制粪水还田的浓度,一方面,土壤的pH值与粪水的施加浓度呈显著负相关,且施用储存粪水有利于提高土壤的pH值;另一方面,不宜施加过多的粪水,粪水施加量较高会抑制作物的产量,宜将施用量控制在25%~50%的稀释比例范围,总之,合理施用储存粪水和H2SO4酸化的低浓度粪水有利于作物产量的提高。

2)粪水储存有利于土壤总氮和总磷养分的固持,总体上看,施用储存粪水对土壤总养分含量有促进作用,有利于磷元素的累积,对作物有增产的效果。粪水经过H2SO4酸化后,土壤养分趋势变化也较大,产量增加显著。而在H2SO4酸化的基础上储存粪水,土壤总氮含量和速效N含量均显著提高(<0.05),减少了土壤氮素的损失。

[1] Christel W, Bruun S, Magid J, et al. Pig slurry acidification, separation technology and thermal conversion affect phosphorus availability in soil amended with the derived solid fractions, chars or ashes[J]. Plant and Soil, 2015, 401: 93-107.

[2] Yan L, Liu Q, Liu C, et al. Effect of swine biogas slurry application on soil dissolved organic matter (DOM) content and fluorescence characteristics[J]. Ecotoxicol Environ Saf, 2019, 184: 109616.

[3] Nicholson F A, Groves S J, Chambers B J. Pathogen survival during livestock manure storage and following land application[J]. Bioresource Technology, 2005, 96(2): 135-143.

[4] He Z, Honeycutt C W, Griffin T S. Comparative investigation of sequentially extracted phosphorus fractions in a Sandy Loam Soil and a Swine Manure[J]. Communications in Soil Science and Plant Analysis, 2011, 34: 1729-1742.

[5] 薛同宣,张开心,李成浩,等. 规模化养猪场粪水处理和资源化利用关键技术[J]. 农业工程,2019,9(9):63-66.

Xue Tongxuan, Zhang Kaixin, Li Chenghao, et al. Key technologies for treatment and resource utilization of large-scale pig farms[J]. Agricultural Engineering, 2019, 9(9): 63-66. (in Chinese with English abstract)

[6] Evans L, VanderZaag A C, Sokolov V, et al. Ammonia emissions from the field application of liquid dairy manure after anaerobic digestion or mechanical separation in Ontario, Canada [J]. Agricultural and Forest Meteorology, 2018, 258: 89-95.

[7] Owusu-Twum M Y, Polastre A, Subedi R, et al. Gaseous emissions and modification of slurry composition during storage and after field application: Effect of slurry additives and mechanical separation[J]. Journal of Environmental Management, 2017, 200: 416-422.

[8] Ali B, Shah G A, Traore B, et al. Manure storage operations mitigate nutrient losses and their products can sustain soil fertility and enhance wheat productivity [J]. Journal of Environmental Management, 2019, 241: 468-478.

[9] Regueiro I, Coutinho J, Balsari P, et al. Acidification of pig slurry before separation to improve slurry management on farms[J]. Environmental Technology, 2016, 37(15): 1906-1913.

[10] Regueiro I, Coutinho J, Gioelli F, et al. Acidification of raw and co-digested pig slurries with alum before mechanical separation reduces gaseous emission during storage of solid and liquid fractions[J]. Agriculture, Ecosystems & Environment, 2016, 227: 42-51.

[11] Sigurnjak I, Michels E, Crappe S, et al. Does acidification increase the nitrogen fertilizer replacement value of bio-based fertilizers? [J]. Journal of Plant Nutrition and Soil Science, 2017, 180(6): 800-810.

[12] Pedersen I F, Rubaek G H, Sorensen P. Cattle slurry acidification and application method can improve initial phosphorus availability for maize [J]. Plant and Soil, 2017, 414(1/2): 143-158.

[13] Cameira M d R, Valente F, Li R, et al. Band application of acidified slurry as an alternative to slurry injection in Mediterranean winter conditions: Impact on nitrate leaching[J]. Soil and Tillage Research, 2019, 187: 172-181.

[14] Prado J, Chieppe J, Raymundo A, et al. Bio-acidification and enhanced crusting as an alternative to sulphuric acid addition to slurry to mitigate ammonia and greenhouse gases emissions during short term storage[J]. Journal of Cleaner Production, 2020, 263: 121443.

[15] Fangueiro D, Hjorth M, Gioelli F. Acidification of animal slurry. A review [J]. Journal of Environmental Management, 2015, 149: 46-56.

[16] Bastami M S, Jones D L, Chadwick D R. Microbial diversity dynamics during the self-acidification of dairy slurry [J]. Environmental Technology, 2020, 1.

[17] Fangueiro D, Pereira J L S, Macedo S, et al. Surface application of acidified cattle slurry compared to slurry injection: Impact on NH3, N2O, CO2and CH4emissions and crop uptake[J]. Geoderma, 2017, 306: 160-166.

[18] Hjorth M, Cocolo G, Jonassen K, et al. Continuous in-house acidification affecting animal slurry composition[J]. Biosystems Engineering, 2015, 132: 56-60.

[19] Ali B, Shah G A, Traore B, et al. Manure storage operations mitigate nutrient losses and their products can sustain soil fertility and enhance wheat productivity[J]. J Environ Manage, 2019, 241: 468-478.

[20] Scheid D L, da Silva R F, da Silva V R, et al. Changes in soil chemical and physical properties in pasture fertilised with liquid swine manure [J]. Sci Agric, 2020, 77(5): 10.

[21] Mergen C A, Loss A, dos Santos E, et al. Chemical attributes in biogenic and physicogenic aggregates of soil submitted to swine manure application[J]. Rev Bras Cienc Agrar, 2019, 14(1): 8.

[22] Park S H, Lee B R, Jung K H, et al. Acidification of pig slurry effects on ammonia and nitrous oxide emissions, nitrate leaching, and perennial ryegrass regrowth as estimated by (15)N-urea flux [J]. Asian-Australasian Journal of Animal Sciences, 2018, 31(3): 457-466.

[23] Fangueiro D, Hjorth M, Gioelli F. Acidification of animal slurry: A review[J]. J Environ Manage, 2015, 149: 46-56.

[24] Zhang Z, Xu Z, Song X, et al. Membrane processes for resource recovery from anaerobically digested livestock manure effluent: Opportunities and challenges[J]. Current Pollution Reports, 2020, 6(2): 123-136.

[25] 付广青,靳红梅,叶小梅,等. 猪和奶牛粪污厌氧发酵中固相磷形态变化分析[J]. 生态与农村环境学报,2014,30(2):239-245.

Fu Guangqing, Jin Hongmei, Ye Xiaomei, et al. Variation in forms of solid phase phosphorus in pig and dairy cow manures under anaerobic digestion[J]. Journal of Ecology and Rural Environment, 2014, 30(2): 239-245. (in Chinese with English abstract)

[26] 徐秋桐,张莉,章明奎. 不同有机废弃物对土壤磷吸附能力及有效性的影响[J]. 农业工程学报,2014,30(22):236-244.

Xu Qiutong, Zhang Li, Zhang Mingkui. Effects of different organic wastes on phosphorus sorption capacity and availability in soils[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(22): 236-244. (in Chinese with English abstract)

[27] Sørensen P, Eriksen J. Effects of slurry acidification with sulphuric acid combined with aeration on the turnover and plant availability of nitrogen [J]. Agriculture, Ecosystems & Environment, 2009, 131(3/4): 240-246.

[28] 李路路,董红敏,朱志平,等. 酸化处理对猪场原水和沼液存储过程中气体排放的影响[J]. 农业环境科学学报,2016,35(4):774-784.

Li Lulu, Dong Hongmin, Zhu Zhiping, et al. Effects of acidification on gas emissions from raw pig slurry and biogas liquid during storage[J]. Journal of Agro-Environment Science, 2016, 35(4): 774-784. (in Chinese with English abstract)

[29] Gomez-Munoz B, Case S D, Jensen L S. Pig slurry acidification and separation techniques affect soil N and C turnover and N2O emissions from solid, liquid and biochar fractions [J]. J Environ Manage, 2016, 168: 236-244.

[30] Soares A S, Miranda C, Teixeira C A, et al. Impact of different treatments on Escherichia coli during storage of cattle slurry[J]. J Environ Manage, 2019, 236: 323-327.

Application effect of the acidification storage of animal slurry returning to field

Ma Yanru1,2,3, Meng Haibo1,2, Shen Yujun1,2, Ding Jingtao1,2※, Zhang Pengyue1,2, Liu Senhong1,2

(1.100125; 2.and Rural Affairs100125; 3.,430070)

In recently years, China's livestock and poultry breeding industry has gradually developed in the direction of large-scale and centralization. With the continuous expansion of the scale of breeding, the problem of rapid increase of animal slurry emissions is becoming more and more seriously. Animal slurry were applicated reasonably can not only solve the problem of pollution, but also improving soil nutrients. There is a large amount of ammonium nitrogen in animal slurry. Unreasonable application will lead to the emission of a large amount of ammonia gas from animal slurry into the soil. In generally, the animal slurry should be stored for a period of time and then returned to the field. During the storage period, methane (CH4) emission was reduced, and the fertilizer efficiency of stored manure may improve. Acidification is a way to improve storage quality. At present, there are more studies abroad on the effect of treating animal slurry return to the field. However, the effect of the acidification storage of animal slurry on soil nutrients has been rarely reported in China. In order to explore the application effect about fresh (MS), acidification (HMS), storage (SMS), and acidification storage (SHSM) of animal slurry to field. The pot experiments were conducted to study the effect of animal slurry on soil nutrients and crop yield by using concentrated sulfuric acid and long-term storage of animal slurry. Two control groups were set up for the experiment: Animal slurry before and after storage, and animal slurry before and after acidification of H2SO4. Four different levels (5%, 25%, 50% and 100%) were set for each treatment. The results indicated that the concentration of animal slurry to the field should be strictly controlled (the level at 25%-50%). Animal slurry stored was benefit to the total nitrogen (TN) and total phosphorus (TP) of soil nutrients. After storage, the total nutrients (TN, TP, and total potassium (TK)) increased by 11.32%-73.16%, and the crop yield of SMS(100%) increased by 21.22%. However, after the acidification with H2SO4, the effect of animal slurry on the total soil nutrients changed significantly. Compared with MS, the TP content of HMS increased by 20.21%, 3.45%, 14.10% and 12.82%, and the content of available phosphorus increased by 64.59%, 0.48%, 2.66% and 19.69% at the level of 5%-100%, respectively. The crop yield of HMS(25%) increased by 27.94%. On the basis of the H2SO4acidized and stored, the TN content of soil increased very significantly (<0.05), the TN content increased by 20.65%, 25.14%, 46.99% and 82.98% at four different level. Acidification and storage processing to reduce the loss of TN have promoting effect to the increase of soil available nutrients, especially for the effect of available nitrogen significantly (<0.05), and the crop yield of SHMS(25%) increased by 13.63%. Reasonable application of stored manure slurry and low concentration of animal slurry acidified by H2SO4can increase crop yield. In generally, the application of stored animal slurry can promote the total nutrients content of soil, promoting the accumulation of phosphorus, and increasing the crop production. However, it is not suitable to apply too high concentration of animal slurry, which will inhibit the yield of crops. The application amount should be controlled within the range of 25% as far as possible.

acidification; storage; animal slurry; returning to field

马艳茹,孟海波,沈玉君,等. 粪水酸化储存还田应用效果 [J]. 农业工程学报,2020,36(15):245-251.doi:10.11975/j.issn.1002-6819.2020.15.030 http://www.tcsae.org

Ma Yanru, Meng Haibo, Shen Yujun, et al. Application effect of the acidification storage of animal slurry returning to field[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(15): 245-251. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.15.030 http://www.tcsae.org

2020-03-24

2020-06-28

农业农村部规划设计研究院自主研发项目“畜禽养殖粪水酸化贮存及施用技术研究(2018ZZYF0101)”

马艳茹,博士生,主要从事农业废弃物资源化利用技术研发。Email:mayanru168@163.com

丁京涛,博士,高级工程师,主要从事农业废弃物资源化利用技术研发。Email:dingjingtao@163.com

10.11975/j.issn.1002-6819.2020.15.030

X71

A

1002-6819(2020)-15-0245-07

猜你喜欢

酸化速效储存
不同酸化剂对畜禽养殖粪水无机氮形态转化的影响
10 Threats to Ocean Life
如何合理使用速效救心丸?
冬季养羊这样储存草料
危险物品储存和运输安全
别把急救药当常用药
松鼠怎样储存食物
浅谈油井作业压裂酸化及防砂堵水技术研究
浅论水平井压裂酸化技术的改造
土壤速效钾测定方法的影响因素