度尾文旦柚叶片矿质元素含量的适宜值
2020-09-12王贤达范国成李健
王贤达,范国成,李健
度尾文旦柚叶片矿质元素含量的适宜值
王贤达,范国成,李健
(福建省农业科学院果树研究所,福州 350013)
【】构建‘度尾文旦柚’((L.) Osbeck. cv. Duweiwendan)叶片矿质营养元素的诊断系统,推演矿质营养平衡诊断体系(BDRIS)共享优化方法。2016—2018年于产区仙游县选择有代表性且分属于不同管理者的果园20个,采集200个单株叶样及其8 660个单果样,另外采集同叶腋着生的48对孪生异形果(H-FSI正常果与L-FSI裂顶果)果皮;测试叶片与果皮的N、P、K、Ca、Mg、Cu、Zn、Fe、Mn、B、Mo、S元素,果实的内、外观品质与果顶裂宽;并基于果实可溶性固形物(TSS)与平均裂宽指数(FCAI)差异,构建主要矿质元素BDRIS诊断体系,及其微量元素临界值诊断标准。由TSS差异分析,富N、P、K与缺Mo显著降低果实TSS。由FCAI12差异分析,除疑似B过量(>177 mg·kg-1)则显著加剧裂果外,其他矿质元素未见与果实裂顶存在显著的因果关系,但未获得B毒导致裂果的直接证据;另外,孪生异形果果皮元素的成对比较分析,也未见显著差异。经检验筛选建模样本的N、P、K、Ca、Mg元素分布满足BDRIS建模要求(Normal)≥0.12;据构建BDRIS获得:树龄与BDRIS指数极显著负相关,与果实TSS显著正相关,即随树龄增长,树体矿质营养越趋向营养均衡原点,果实品质越佳,其赋予“老树果甜”果树栽培常识新阐释;BDRIS与FCAI12相关性不显著;由相关法筛查,仅当K处于病态过量时才具备果皮增厚减轻裂果可能,对生产矫治裂果无实际意义。建议叶片矿质元素临界值诊断标准“元素(<缺乏;适宜下限—适宜上限;>过量)”:N(<2.29%;2.41%—2.87%;>2.99%)、P(<0.09%;0.10%—0.14%;>0.15%)、K(<1.17%;1.39%—2.24%;>2.46%)、Ca(<1.74%;2.26%—4.21%;>4.72%)、Mg(<0.20%;0.24%—0.41%;>0.46%)、Cu(<4 mg·kg-1;6—25 mg·kg-1;>30 mg·kg-1)、Zn(24—40 mg·kg-1)、Fe(60—140 mg·kg-1)、Mn(25—140 mg·kg-1)、B(<15 mg·kg-1;30—65 mg·kg-1;>150 mg·kg-1)、Mo(<0.05 mg·kg-1;0.1—1.0 mg·kg-1)、S(0.2%—0.4%)。研究提供BDIRS诊断参数、、的共享优化算法,有效拓展BDIRS应用范畴。以丰产、优质群体为样本,建立度尾文旦柚主要矿质营养元素平衡诊断BDSIS体系,及其微量元素临界值标准;在本研究样例内,度尾文旦柚果实裂顶与植株矿质营养未发现有显著关联。
度尾文旦柚;矿质营养元素;适宜标准;平衡态综合诊断施肥法
0 引言
【研究意义】度尾文旦柚((L.) Osbeck. cv. Duweiwendan)也称度尾蜜柚,据《仙游县志1995》记载,度尾文旦柚栽种始于清末,为福建省莆田市传统名优果品之一。2018年全市度尾文旦柚栽培面积1 486 hm2,年产量约5.1万t[1]。柚原产地与主产地均为中国[2-3],度尾文旦柚为柚类文旦柚品种群中的真文旦柚类cv.Wendan,该柚类品种均具有典型的遗传共性:果形扁圆、果顶凹陷,其中无籽品种成熟时有裂顶现象[4-5],如浙江楚门文旦‘Chumen-wendan’[6-8]、四川通贤柚‘Tongxianyou’[9]、贵州思州柚‘Sizhouyou’等[10],均表现为稳定果顶开裂形态与稳定裂果率30%左右,异常气候年份裂果率高达50%[11],迄今仍无防治良方。因此,研究裂果与树体矿质营养的关系,对优质度尾文旦柚的生产有重要指导意义。【前人研究进展】目前,可供度尾文旦柚生产参考的叶片矿质营养诊断标准仅限于近缘琯溪蜜柚‘Guanxi-miyou’[12-14]。但2个品种在自然树形、叶形、果形、单果质量与品质均存在显著区别[15],度尾文旦柚还有果实裂顶的问题。自20世纪50年代以来,柑橘叶片矿质营养适宜值标准研究已渐趋成熟,并研究出许多主栽品种的叶片矿质养分诊断标准[16]。然而,2014年前所有构建诊断标准均为柑橘品种的高产样本群体[17],迄今只有纽荷尔脐橙(‘Newhall’)叶片矿质元素适宜值研究[18]侧重于果实品质,但基本没有关于裂果的研究。【本研究切入点】在继承高产样本群体制标基础上,根据度尾文旦柚品种的果实裂顶特征,增设平均裂宽指数FCAI与果实品质TSS两项阈值,构建更为优质与低耗的制标样本群体。【拟解决的关键问题】研究度尾文旦柚叶片矿质元素适宜值范围,并建立矿质营养平衡BDRS诊断体系,为果树叶片矿质营养诊断与研究提供参考。
1 材料与方法
1.1 样品采集
样品采集地位于福建省仙游县度尾文旦柚主产区,N25°18′33″—N25°23′01″,海拔120—300 m,年平均气温20.6℃,极端最低气温-2.3℃,年降水量1 624 mm,属中亚热带季风气候,主要土壤类型为红壤。
2016—2018年,选择20个栽培面积≥3 hm2(酸柚砧‘Sour-pummelo’、树龄6—39 a),具有生产代表性且不同生产管理者的度尾文旦柚果园,每园选2—6棵丰产样株,其中果实严重裂顶与果实较轻裂顶各1—3株。每年于果实成熟期(10月上旬)采收果实与叶片样品,叶片采集方法参照《亚热带果树营养诊断样品采集技术规范DB35/T 742- 2007》,果实采集依树龄不同随机采集30—60果/株(幼树≥30,老树≤60)。3年共采集200个单株(2016—2018年分别采样61、59、80株)叶样、果样,累积单果样8 660个(2016—2018年分别采样3 060、2 680、2 920个)。
2019年为再次验证裂果与矿质营养关系,根据度尾文旦柚果形指数(FSI)与果顶平均裂宽指数(FCAI)极显著相关<1E-16原理[11],在成熟期采集同叶腋着生的高果形指数(H-FSI)正常果与低果形指数(L-FSI)裂顶果(裂宽FCW≥5 mm)的‘孪生异形’果,共采集48对,取果皮烘干测试。
1.2 测试项目
单果品质:单果质量(SFW)、果形指数(FSI;TD/VD)、果皮厚度(RTTD;最大横径处)、可溶性固形物(TSS)、果顶裂宽(FCR)。
叶片与果皮矿质元素测定:N用凯氏定氮法;P、K、Ca、Mg、Cu、Zn、Fe、Mn、B、Mo用等离子光谱法(ICP);S用X射线荧光法测定。
试验期3年仙游县气象站7—9月雨量记录(第二次生理落果后至采收期;下文简称Rain789):2016年1 401 mm(距平888 mm)、2017年284 mm(距平-230 mm)、2018年807 mm(距平293 mm)。
1.3 方法
1.3.1 基于果实品质差异的矿质养分对比分析 可溶性固形物(TSS)差异分析,按TSS≥TSSmean和TSS<TSSmean分组,并进行差异分析,当元素年份间即协变量差异不显著时选择方差分析结果,否则选择协方差分析结果。
果实裂宽平均指数(fruit crack average index,FCAI)差异分析,FCAI算法参照王贤达等[19],其中下文分析中FCAI=FCAI12。按FCAI≥FCAImean和FCAI<FCAImean分组,并进行差异分析。
1.3.2 矿质元素适宜值 直接证据制定:由叶片矿质元素自变量分析获得的直接证据制定,特别是过量、缺乏值的确定;间接证据制定:由果实品质因变量分析获得的间接证据制定,其自变量适宜值取80%置信范围,或视数据分布偏度(Skewness)取80%分位数;引用证据制标,对缺乏制标依据的元素引用近缘琯溪蜜柚诊断标准[14],或根据高接比对差异[20]推断。
1.3.3 BDRIS建立 2004年鉴于“诊断施肥综合法DRIS”(Diagnosis and Recommendation Integrated System)存在两类理论缺陷,有研究者依据多维正态分布二次型理论,及等概率平衡观点,建立优于DRIS,并与临界值诊断形式统一的“平衡诊断施肥综合法BDRIS”(Balance DRIS),或由意义延伸也可称“矿质营养平衡指数”。在不涉及颉颃作用时,即元素相关矩阵=(单位矩阵),BDRIS简化临界值诊断[21]。为避免误诊,BDRIS建模要求:①假设所有元素样本分布满足正态(Normal)≥0.15;②假设元素颉颃关系稳定,有唯一相关矩阵。若条件满足,可视优质、丰产植株群体的矿质元素的联合概率为多维正态分布()—(;,),其多维正态二次型分布服从2分布((x,x,…,x) =()·-1·()—2()),据此可方便对元素平衡状态作出诊断。诊断步骤:①数据标准化处理(式(1)),提供具可比性的相对临界值诊断,并据正态概率0.80、0.95界定统一指标:适宜≤|±1.28|<高量、低量<|±1.96|≤缺乏、过量;②BDRIS平衡诊断,据式(2)、式(3)提供等概率平衡综合指数(2)%,界定指标:平衡≤80%<亚平衡<95%≤非平衡。③元素平衡指数诊断(式4),应用cos法计算的元素平衡指数可对各元素需求排序。
y=(x-Mean)/Std(1)
(y,y,…,y)=Y·-1·(2)
=[2()] (3)
(x)=[2()]·y/sqrt(∑i2) (4)
1.3.4 统计与分析方法 统计分析应用SAS 8.1。BDRIS的SAS语言诊断程序参照李健等[21]。
2 结果
2.1 基于果实品质差异的矿质养分比对分析
2.1.1 可溶性固形物含量(TSS)差异分析 如表1所示,叶片N、Mo分组方差差异显著,叶片K分组协方差差异显著,以及协方差差异近显著水平=0.0655,其中N、P、K分组差异<0,Mo差异>0,即样本植株群体富N、P、K及缺Mo对果实TSS有不利影响。由单果重SFW分组差异也表明,低TSS组因营养过剩而导致果实极显著偏大。经TSS与对应元素相关、偏相关分析(偏变量rain789)筛查,结果显示叶片:N≤2.99%、n=76、=-0.186、=0.1070;≤0.151%、n=94、=-0.171、=0.1034;K≤2.46%、n=69、=-0.198、=0.1077;Mo≥0.05 mg·kg-1、n=31、=0.312、=0.0873。由此表明,约有1/5—1/3样本处于N、P、K富营养过剩状态,约3/4样本缺Mo。根据果树叶片矿质营养诊断制标的过量、缺乏值采取证据认定[18,22],建议将筛选阈值分别作为N、P、K过量值的参考上限,与缺Mo的参考下限。
相关分析筛选Mo≥0.05 mg·kg-1阈值与《美国甜橙类叶片营养诊断标准》低量下限吻合[23],证实度尾文旦柚生产存在较普遍的缺Mo症。一般认为红壤柑橘缺Mo随土壤pH降低而加剧[16]。据仙游县土肥站度尾文旦柚主产区果园土壤普查(n=300):pH 3.5—6.3、Mean=4.54,相较福建自然红壤pH 4.9—5.1[24]存在明显酸化;另外,据柑桔园土壤pH最适范围5.0—6.5[25]诊断,86%果园土壤pH<5.0。由此推测仙游度尾文旦柚产区果园缺Mo与土壤pH酸化有关。建议在仙游县度尾文旦柚产区施行N、P、K肥减控,在幼果期喷施钼酸铵0.1%。
表1 基于果实可溶性固形物差异的叶片矿质营养方差分析
年份=2;n=120;协变量:Rain789(7—9月果实生长期降水量) Years=2; n=120; Co-factor: Rain789 (7-9 month fruit growth period rainfall)
2.1.2 果实裂宽平均指数FCAI12差异分析 基于FCAI差异的叶片矿质营养元素仅B的差异达显著水平(表2),其高FCAI组相较低FCAI组B平均高9.75 mg·kg-1,且总体样本含B为62—285 mg·kg-1,处于适宜至毒害的富B病态范围,平均值132 mg·kg-1也处在高量范围[16]。经偏相关(偏因子rain789)筛查,当叶片B<177 mg·kg-1时,B与FCAI的=0.111、=0.1432、n=177,考虑生产应用取安全系数0.85,推荐叶片B过量的上限(150 mg·kg-1)。表2结果还表明,在本研究样例及12种矿质营养元素的范畴内,除B素外,其他矿质元素未见与度尾文旦柚裂顶存在明显的因果关系;但B素也非果实裂顶的决定因素,因为即便B≤65 mg·kg-1为适宜值,FCR、FCAI依然居高不下,分别达35.0%、14.6%。
为更严格证实矿质元素与果实裂顶关系,再经48对孪生异形果果皮的矿质元素进行成对比较分析(表3),结果再次表明在所测试12个矿质元素中,未见显著差异。
表2 基于裂果平均指数差异的叶片矿质营养方差分析
年份=3;n=200;协变量:Rain789(7—9月果实生长期降水量) Years=3; n=200; Co-factor: Rain789 (7-9 month fruit growth period rainfall)
表3 孪生异形果果皮矿质元素成对比较分析
2.2 矿质营养诊断适宜标准
2.2.1 主要营养元素BDRIS建立 据柑橘叶片矿质营养制标样本群体选择规范[16],将(表1、2)TSS≥ TSSMean与FCAI<FCAIMean的高TSS与低FCAI样本为建模群体。经正态显著性检验主要营养元素N、P、K、Ca均满足(Normal)≥0.15,仅Mg略低于要求(Normal)=0.1275。结果虽不尽理想,但在建模样本有限情况下(n=110),仍可近似接受;否则可视分布偏态Skewness状况删除Max、Min极值,即牺牲少量样本满足(Normal)≥0.15。另外,有关微量元素与S分布与文献报道一致[21],均呈正偏畸态Skewness>>0 &(Normal)<0.0001,不具备BDRIS建模条件。
根据可溶性固形物含量(TSS)差异分析结果,研究样本的N、P、K有富营养化倾向,为此需要对BDRIS的平均值参数进行修正。假设2.2.1筛选的N、P、K过量上限XUL为正态分布概率(X≤XUL)=0.975,则XUL=+1.96×,修正平均值为=XUL-1.96×。经修正后的BDRIS诊断参数见表4。主要营养元素N、P、K、Ca、Mg临界值诊断标准也按正态理论,适宜值范围XSR=±1.28×,过量XOver≥+1.96×、缺乏XLack≤1.96×。相对临界值标准为标准化值X=(X-)/,适宜≤|±1.28|,过量与缺乏≥|±1.96|。据此,统一各元素诊断比较纲量。
如表5所示,BDRIS指数与树龄Tree-age、TSS分别呈极显著、显著负相关,与SFW呈显著正相关,与叶片N、P、K均呈极显著正相关;TSS与Tree-age呈显著负相关,与叶片N、P、K均呈极显著负相关; SFW与TSS呈极显著负相关,与P、K呈极显著正相关,与Ca呈显著负相关。由上述结果分析可知:①随树龄增长,树体矿质营养元素平衡能力越强,越趋向最佳平衡状态的平均值原点,因而果实品质也越佳;②叶片N、P、K含量与TSS负相关,可解读为所采集分析样本群体为富N、P、K营养症群体,且样本群的BDRIS矿质营养非平衡贡献主要源于富N、P、K营养症;③富K、P与缺Ca养分不平衡是导致样本群体大果低固形物含量的主因,其中K、Ca为典型颉颃元素,见表4中相关矩阵,因而过量的K和P是主因。另外,另一项重要品质指标果实裂宽平均指数FCAI与BDRIS相关性不显著,而与叶片Ca、K呈极显著或显著相关,似乎高K与低Ca有利于减轻裂果,但根据对样本群体相对临界值分析,K、Ca的1%—99%、10%—90%分位数分别为K=-0.47—3.45、0.35—2.47,Ca=-1.61—0.79、-1.16— 0.35,样本处于K过量与Ca适量状态,与BDRIS对K、Ca的识别一致,因而K、Ca两颉颃元素对FCAI影响以K过量主导;再则,由FCAI、K、果皮厚RTTD三者间相关关系,以及柑橘富K“粗皮大果”典型症状(本研究样本K与果皮厚RTTD单相关=0.361、<0.0001),一般推理富K致果皮增厚而减轻裂果。然而,经相关法筛查K相对临界值≤2.5([K≥2.5]=0.0062)时,K与FCAI偏相关(=0.1136),即仅当K处于病态过量时才具备这样的可能,这也正是高、低FCAI分组分析未能发现富K对裂果的影响(表2),同时过量K对矫治裂果也无生产实际意义。关于FCAI与FSI、树龄的相关关系在相关研究中已阐述[19]。
表4 度尾文旦柚叶片矿质营养诊断临界标准与主要元素平衡指数的诊断参数
相对临界值诊断标准Diagnostic criteria of relative critical value =(X-mean)/Std
表5 叶片主要矿质元素及其平衡指数与果实品质偏相关分析
协变量:Rain789(7—9月果实生长期降水量) Co-factor: Rain789 (7-9 month fruit growth period rainfall);0.05=0.1865;0.01=0.2436
为满足建模第二项要求,获得稳定与可靠的颉颃相关矩阵,需有大范围的多点、多年大量优质丰产园样本数据支撑,而这往往是独立研究难以实现的。为此,假设2个样本群(1,1)~(1,1;1,1,1,1,1,1)、(2,2)~(2,2;2,2,2,2,2,2)元素均服从正态分布[(Normal)≥0.15],推演(1+2)=(1,2)、{(1,1)+(2,2)}=(1,2),则可方便地利用文献资料、、、参数持续优化BDRIS诊断系统,使研究成果得以共享。为此,本研究提供BDRIS诊断参数优化拓展算法(见附录)。
2.2.2 微量元素与S适宜值 研究依据高TSS与低FCAI样本群体。
铜(Cu):叶片80%置信区间5.7—24.8 mg∙kg-1,取整适宜值6—25 mg∙kg-1;2.5%、97.5%分位数分别为3.75 和35.38 mg∙kg-1,取整缺乏下限、过量上限分别为4和35 mg·kg-1;其适宜值与缺乏下限与其他柑橘品种等同或相近[16],而适宜值上限与闽西北中亚热带季风气候区、柑橘溃疡病高感区纽荷尔脐橙(‘Newhall’)的适宜值上限(25 mg·kg-1)等同,过量上限<<纽荷尔脐橙过量下限(60 mg∙kg-1)[18],且暂未见Cu毒症,可确保生产安全。相较近缘物种琯溪蜜柚适宜值范围(8—17 mg·kg-1)更为宽泛。
锌(Zn):由(表1、2)果实膨大期降水对叶片Zn影响显著,经筛查Zn<40.5 mg·kg-1与TSS偏果实膨大期降雨量=-0.143、=0.1452,同时参考琯溪蜜柚适宜上限(44 mg∙kg-1),建议Zn适宜值上限为40 mg∙kg-1;另外,根据仙游县土肥站度尾文旦柚主产区果园土壤普查(n=300):71%果园土壤有效Zn(<2.0 mg·kg-1)小于柑橘园土壤有效Zn适宜下限[26],及研究样本叶片Zn75%分位数25.2 mg∙kg-1,建议适宜值下限引用琯溪蜜柚标准(24 mg∙kg-1)。
硼(B):据2.2中样本B处于富B至B毒状态,推荐B过量上限为150 mg∙kg-1。据作者在度尾文旦柚缺B症果园采集的正常植株6月龄春梢叶片B平均值26.8 mg∙kg-1,建议适宜值下限为30 mg∙kg-1,相较近缘种琯溪蜜柚B适宜值(15—50 mg∙kg-1)[16],下限提高15 mg∙kg-1;同时鉴于果树品种间矿质营养存在稳定差异原理[20],适宜值上限同步提升至65 mg·kg-1,而B缺乏下限引用琯溪蜜柚的适宜值下限15 mg∙kg-1为宜。鉴于B与K、Ca具经典颉颃关系[16],本研究样本中B与K、Ca的=0.373、-0.156,<0.0001、0.0286,因而2.2中K过量、Ca缺乏对FCAI下降的影响也可能与B过量有关。
钼(Mo):鉴于样本存在缺Mo倾向,并据本研究2.2的结果推荐Mo缺乏下限0.05 mg∙kg-1与《美国甜橙类叶片营养诊断标准》吻合,建议适宜值引用同一标准。
硫(S):5%—95%分位数2.5%—4.0%,处于柑橘类适宜值0.2%—0.4%,建议引用。
铁(Fe)、锰(Mn):10%—90%分位数Fe 60.38—108.5 mg∙kg-1、Mn 24.60—92.23 mg∙kg-1,下限与琯溪蜜柚基本吻合。
3 讨论
鉴于以往文旦柚裂顶与矿质营养研究的相关报道,多基于缺乏验证的调查归纳与经验判识[6,27],或无法重演应用于生产[28-29],而本研究经FCAI差异分析与BDRIS营养平衡分析,均未发现果实裂顶与矿质元素之间有显著关联。1987年吴智仁首次报道这一现象后[30],许多研究者曾为攻克这一问题进行过不懈努力[11,29,31-32],但迄今无果。事实上从生产栽培角度,矿质营养需求相对属于低级门槛,由其引发的问题也通过矿质营养分析发现,然而历时30多年,历经众多栽培者无数施肥配方也未见效果。另外,在福建红壤山地、浙江海涂地、四川紫色土区、贵州喀斯特地貌石灰岩土区[15,33],栽培地域土壤均患家族遗传果实裂顶症,因而无籽真文旦柚的果实裂顶应属于品种群共性问题,建议后继研究者注意。
关于柑橘树龄与果实品质关系的报道并不鲜见,例温州蜜柑‘Satsuma’随着树龄(10—40年)增大,可溶性固形物含量显著提高[34]。由具体形态对老树最为直观的了解就是分枝级数多且生物营养体大,因而可能对矿质营养的贮存与平衡缓冲能力相对较强,其最为直观的表现为老树露骨更新复壮,生长势恢复的同时像幼树一样容易结出粗皮大果;另外,采用阶段发育成熟枝条或接穗繁育的高压苗、嫁接苗,也可复原再现幼树生长与结果状况。因而,庞大的骨干枝与根系,不仅起着吸收、运输养分功能,还有其他未知的矿质营养自我调节功能。另外,鉴于老树营养平衡能力与果实品质优于幼树事实,未来果树叶片矿质营养制标的研究样本选择以高龄树为优。
本研究的度尾文旦柚叶片营养元素N、P适宜值,相较近缘琯溪蜜柚叶片适宜值(N 2.5%—3.1%、P 0.14%—0.18%)[16]显著偏低。分析认为琯溪蜜柚叶片矿质营养适宜值是基于高产群体[14],而本研究则在同等基础上,再设果实品质阈值TSS≥TSSMean、FCAI≤FCAIMean,对制标样本群体选择更严苛。一般在正常气候条件下,丰产是优质的必要条件,即优质属于丰产的子集,因而采用品质指标来倒推营养元素适宜范围相较丰产群体更为严苛。另外,本研究的叶片矿质元素适宜值适用范围虽仅限度尾文旦柚,但依据柑橘类亲缘关系[3,5,35],以及附录BDRIS诊断参数优化公式,建议本标准可与其他近缘品种的BDRIS诊断参数共同优化拓展应用范围,例如,度尾文旦柚与其他真文旦柚品种进行拓展为真文旦柚类诊断标准;真文旦柚类与普通柚类(类文旦柚)拓展为文旦柚品种群(酸柚类)诊断标准;文旦柚品种群(酸柚类)与沙田柚品种群(甜柚类)拓展为柚类诊断标准,以此类推。此法虽稍失精准,但若代表品种与样本足够,可有效拓展标准的适用范围。
据报道缺硼和硼过量均导致油菜花粉萌发率下降,花粉活力降低[36],因而B过量是否可导致度尾文旦柚花粉活力降低,内源激素诱导受阻,致使果实中心柱发育不良与低FSI扁果形成,本研究中样例B与FSI显著负相关,结果与否有待证实。另外,作者2014年曾在度尾文旦柚产区检测确认该品种B中毒症,依症状轻重:叶尖严重枯黄落叶(B 1 089 mg∙kg-1)、叶尖稍枯前半叶发黄(B 910 mg∙kg-1)、叶尖微黄(B 794 mg∙kg-1)、未显症状(B 518 mg∙kg-1);且需要特别指出受害叶背均未呈现B中毒典型症状“叶背具有褐色树脂状斑点或斑块,…,区别与硫酸盐、缩二脲、过氯酸盐中毒症”[16],而作者曾见类似典型症状于琯溪蜜柚、温州蜜柑、椪柑(‘Ponkan’)、雪柑(‘Xuegan’)、纽荷尔脐橙。因此,度尾文旦柚的B中毒症判断有别于其他柑橘品种,而其他亲缘相近的真文旦柚类,例如,浙江玉环柚(楚门文旦)‘Chumen-wendan’、四川通贤柚‘Tongxianyou’等品种的B中毒症状是否与度尾文旦柚相似,也有待证实。
4 结论
本研究依据丰产、优质群体样本,推荐度尾文旦柚叶片矿质元素临界值诊断标准“元素(<缺乏;适宜下限—适宜上限;>过量)”:N(<2.29%;2.41%— 2.87%;>2.99%)、P(<0.09%;0.10%—0.14%;>0.15%)、K(<1.17%;1.39%—2.24%;>2.46%)、Ca(<1.74%;2.26%—4.21%;>4.72%)、Mg(<0.20%;0.24%—0.41%;>0.46%)、Cu(<4 mg·kg-1;6—25 mg·kg-1;>30 mg·kg-1)、Zn(24—40 mg·kg-1)、Fe(60—140 mg·kg-1)、Mn(25—140 mg·kg-1)、B(<15 mg·kg-1;30—65 mg·kg-1;>150 mg·kg-1)、Mo(<0.05 mg·kg-1;0.1—1.0 mg·kg-1)、S(0.2%— 0.4%)。本研究未发现度尾文旦柚果实裂顶与植株叶片12种矿质营养间存在显著关联。度尾文旦柚随树龄增长,树体矿质营养越趋向营养均衡原点,果实品质也越佳。
[1] 吴海瑞.莆田统计年鉴[2020-01-03]. http://www.putian.gov.cn/tjnj/ pttjnj2019.htm.
WU H R. Putian Statistics Yearbook [2020-01-03]. http://www. putian.gov.cn/tjnj/pttjnj2019.htm. (in Chinese)
[2] 余惠文. 柚遗传多样性及叶片渐绿性状突变研究[D]. 武汉: 华中农业大学, 2018.
YU H W. Investigation on the genetic diversity and leaf slow- greening mutation of pummelo [D]. Wuhan: Huazhong Agricultural University, 2018. (in Chinese)
[3] 何天富. 中国柚类栽培. 北京: 中国农业出版社, 1999.
HE T F.. Beijing: China Agriculture Press, 1999. (in Chinese)
[4] 黄成就. 中国植物志第43卷第2分册. 北京: 科学出版社, 1997: 187-190.
HUANG C J.. Beijing: Science Press,1997:187-190. (in Chinese)
[5] 杨亚妮, 苏智先. 中国名柚资源与品种现状研究. 西华师范大学学报(自然科学版), 2002, 23(2): 163-169.
YANG Y N, SU Z X. Resources and actualities of breeds of famousin China., 2002, 23(2): 163-169. (in Chinese)
[6] 陈玳清, 章春泉, 周今华. 玉环柚的裂果机制与防治. 果树科学, 1995, 12(2): 139-140.
CHEN D Q, ZHANG C Q, ZHOU J H. Mechanism and control of fruit cracking in Yuhuan pomelo., 1995, 12(2):139-140. (in Chinese)
[7] 陈青英, 陈俊伟, 徐红霞, 李晓颖, 卢方良, 杨希宏. 大棚栽培玉环柚"果实发育与糖酸积累特性. 福建农业学报, 2015, 30(5): 492-497.
CHEN Q Y, CHEN J W, XU H X, LI X Y, LU F L, YANG X H. Fruit development and sugar/acids accumulation of “Yuhuanyou” pomelos cutivated in greenhouse., 2015, 30(5): 492-497. (in Chinese)
[8] 陈苑虹, 李三玉, 董继新. 玉环柚果实特性与裂果的关系. 浙江大学学报(农业与生命科学版), 1999, 25(4): 74-76.
CHEN Y H, LI S Y, DONG J X. The relationship between the characteristics of “Yuhuan” pomelo fruit and fruit cracking., 1999, 25(4): 74-76. (in Chinese)
[9] 沈志彬, 吴涛, 贾霭丽, 杨小菊. 柚类防裂剂在通贤柚上的应用试验. 中国南方果树, 2000, 29(2): 17.
SHEN Z B, WU T, JIA G L, YANG X J. Application test of pomelo anti-cracking agent on Tongxian pomelo., 2000, 29(2): 17. (in Chinese)
[10] 严纯珍. 思州柚裂果原因及综合防控措施浅议. 农技服务, 2015, 32(2): 27.
YAN C Z. Discussion on the causes of fruit cracking and comprehensive control measures of Sizhou pomelo., 2015, 32(2): 27. (in Chinese)
[11] 王贤达, 范国成, 李健. 度尾文旦柚鲜果分级与果顶开裂评价规范研究. 中国南方果树, 2018, 47(2): 27-31, 35.
WANG X D, FAN G C, LI J. Evaluation of standard of fruit grading and fruit cracking of Duweiwendan pomelo (cv. Duweiwendan)., 2018, 47(2): 27-31, 35. (in Chinese)
[12] 刘勇, 刘德春, 吴波, 孙中海. 柚类资源及其近缘种SSR标记的分子评价. 应用与环境生物学报, 2006, 12(5): 628-634.
LIU Y, LIU D C, WU B,SUN Z H. Molecular evaluation of pummelo germplasms and its relatives using SSR markers., 2006, 12(5): 628-634. (in Chinese)
[13] 钟凤林, 施维属, 潘东明. 福建柚类种质资源的ISSR分析. 热带作物学报, 2010, 31(11): 1964-1968.
ZHONG F L, SHI W S, PAN D M. ISSR analysis of Fujian pummelo germplasms., 2010, 31(11): 1964-1968. (in Chinese)
[14] 庄伊美, 王仁玑, 陈丽璇, 谢志南, 许文宝, 黄育宗, 周阵龙. 琯溪
蜜柚叶片营养元素适宜含量的研究. 福建省农科院学报, 1991, 6(2): 52-58.
ZHUANG Y M, WANG R J, CHEN L X, XIE Z N, XU W B, HUANG Y Z, ZHOU Z L. Optimum range of mineral element contents in the leaves of guanxi honey pomelo ()., 1991, 6(2): 52-58. (in Chinese)
[15] 周开隆, 叶荫民. 中国果树志∙柑橘卷. 北京: 中国林业出版社, 2009: 218, 232.
ZHOU K L, YE Y M.. Beijing: China Forestry Publishing House, 2009: 218, 232. (in Chinese)
[16] 庄伊美. 柑橘营养与施肥. 北京: 中国农业出版社, 1994: 61-71.
ZHUANG Y M.. Beijing: China Agriculture Press, 1994: 61-71. (in Chinese)
[17] 邓秀新, 彭抒昂. 柑橘学. 北京: 中国农业出版社, 2013: 321-326.
DENG X X, PENG S A.. Beijing: China Agriculture Press, 2013: 321-326. (in Chinese)
[18] 谢文龙, 李健, 施清, 李美桂, 谢钟琛. 纽荷尔脐橙叶片矿质元素含量适宜值的研究. 园艺学报, 2014, 41(6): 1069-1079.
XIE W L, LI J, SHI Q, LI M G, XIE Z C. Studies on the optimum parameters for mineral nutrition in Newhall navel orange leaves., 2014, 41(6): 1069-1079. (in Chinese)
[19] 王贤达, 范国成, 李健. 文旦柚果顶裂宽指数优化算法暨受果园环境影响评价. 中国南方果树, 2020, 49(3): 12-16, 20.
WANG X D, FAN G C, LI J. Optimization algorithm of fruit top crack width index of Wentan pomelo and its environmental impact assessment on orchards., 2020, 49(3): 12-16, 20. (in Chinese)
[20] 李健, 施清, 张长和, 谢文龙, 谢钟琛, 李美桂. 砂梨多品种矿质营养适宜值的高接比对法研究. 果树学报, 2010, 27(5): 838-842.
LI J, SHI Q, ZHANG C H, XIE W L, XIE Z C, LI M G. Study on mineral nutrition optimum paremeters of sand pear cultivars by top grafting contrast experiment., 2010, 27(5): 838-842. (in Chinese)
[21] 李健, 李美桂. DRIS理论缺陷与方法重建. 中国农业科学, 2004, 37(7): 1000-1007.
LI J, LI M G. The theoretical defects in DRIS and the restruction of a new approach., 2004, 37(7): 1000-1007. (in Chinese)
[22] 李美桂, 谢文龙, 谢钟琛, 施清, 李健. 早熟砂梨矿质营养适宜值研究. 果树学报, 2008, 25(4): 473-477.
LI M G, XIE W L, XIE Z C, SHI Q, LI J. Study on the optimum parameters of mineral nutrition in orchard for early season pear cultivars., 2008, 25(4): 473-477. (in Chinese)
[23] REUTHER W, BATCHELOR L D, WEBBER H J.. Berkeley: Division of Agricultural Sciences, University of California, 1968: 174-177.
[24] 林景亮. 福建土壤. 福州: 福建科技出版社, 1991: 242-244.
LIN J L.. Fuzhou: Fujian Science & Technology Publishing House, 1991: 242-244. (in Chinese)
[25] 谢志南, 庄伊美, 王仁玑, 许文宝. 福建亚热带果园土壤pH值与有效态养分含量的相关性. 园艺学报, 1997, 24(3): 209-214.
XIE Z N, ZHUANG Y M, WANG R J, XU W B. Correlation between soil pH and the contents of available nutrients in selected soils from three kinds of orchards at subtropical zone in Fujian., 1997, 24(3): 209-214. (in Chinese)
[26] 庄伊美, 王仁玑. 柑桔, 龙眼, 荔枝营养诊断标准研究. 东南园艺. 1995(1): 6-9.
ZHUANG Y M, WANG R J. Study on the nutritional diagnostic criteria of citrus, longan and litchi., 1995(1): 6-9. (in Chinese)
[27] 谌金吾, 王正文, 黄胜先, 何洪祥, 刘寿军, 李星. 4种施肥管理对思州柚果实品质的影响. 耕作与栽培, 2016(5): 7-10.
CHEN J W, WANG Z W, HUANG S X, HE H X, LIU S J, LI X. Effets of 4 fertilization managements on fruit quality of Sizhouwendan-pomelo., 2016(5): 7-10. (in Chinese)
[28] 黄品湖, 郭秀珠, 陈巍. 钙肥在早香柚上的应用效果研究. 现代农业科技, 2014(12): 67- 68.
HUANG P H, GUO X Z, CHEN W. Study on the application effect of calcium fertilizer on Zaoxiang pomelo., 2014(12): 67-68. (in Chinese)
[29] 彭建平, 郑玉亮, 李伟明, 陈文山. 不同肥水处理对度尾文旦柚裂果及产量品质的影响. 福建农业学报, 2014, 29(11): 1074-1078.
PENG J P, ZHENG Y L, LI W M, CHEN W S. Effect of fertilization and water treatment on fruit cracking, yield and quality of Duweiwendan pomelo., 2014, 29(11): 1074-1078. (in Chinese)
[30] 吴智仁, 陈金椿, 陈文山. 度尾蜜柚裂果原因及克服措施. 中国柑桔, 1987(2): 33.
WU Z R, CHEN J C, CHEN W S. Causes and overcoming measures of fruit crack of Duweiwendan pomelo (cv. Duweiwendan)., 1987(2): 33. (in Chinese)
[31] 陈清西, 李小初, 彭建平, 郑玉亮, 陈文山. 度尾文旦柚裂果发生过程中裂原的发生与消长. 果树学报, 2008, 25(1): 69-72.
CHEN Q X, LI X C, PENG J P, ZHENG Y L, CHEN W S. Occurrence, development and decline of original cracking cells in Duweiwendan pomelo cultivar., 2008, 25(1): 69-72. (in Chinese)
[32] 李淑一. 不同授粉的度尾文旦柚裂果相关差异蛋白的研究[D]. 福州: 福建农林大学, 2009.
LI S Y. Study on the differential proteins of fruit dehiscent in different pollinated Duweiwendan pomelo[D]. Fuzhou: Fujian Agriculture and Forestry University, 2009. (in Chinese)
[33] 陈恩凤. 中国土壤地理. 北京: 商务印书馆, 1954.
CHEN E F.. Beijing: The Commercial Press, 1954. (in Chinese)
[34] 林大盛, 吴少华, 陈志红, 陈子敏, 余良富. 温州蜜柑树龄、着果状态与果实品质的关系. 中国南方果树, 1989(1): 30-31.
LIN D S, WU S H, CHEN Z H, CHEN Z M, YU L F. The relationship between the age, fruit bearing state and fruit quality of Satsuma., 1989(1): 30-31. (in Chinese)
[35] WU G A, TEROL J, IBANEZ V, LOPEZ-GARCIA A, PEREZ- ROMAN E, BORREDA C, DOMINGO C, TADEO F R, CARBONELL- CABALLERO J, ALONSO R, CURK F, DU D L, OLLITRAULT P, ROOSE M L, DOPAZO J, GMITTER JR F G, ROKHSAR D S, TALON M. Genomics of the origin and evolution of., 2018, 554(7692): 311-316.
[36] 沈振国, 张秀省, 王震宇, 沈康. 硼素营养对油菜花粉萌发的影响. 中国农业科学, 1994, 27(1): 51-56.
SHEN Z G, ZHANG X S, WANG Z Y, SHEN K. On the relationship between boron nutrion and development of anther (Pollen) in rapeseed plant., 1994, 27(1): 51-56. (in Chinese)
Optimum Content of Mineral Elements in the Leaves of Duweiwendan Pomelo ((L.) Osbeck. cv. Duweiwendan)
WANG XianDa, FAN GuoCheng, LI Jian
(Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013)
【】The aim of this study was to research and construct a diagnosis system for mineral nutrients in the leaves of Duweiwendan Pomelo ((L.) Osbeck. cv. Duweiwendan), so as to deduce a shared optimization method for the mineral nutrition balance diagnosis and recommendation integrated system (BDRIS).】From 2016 to 2018, 20 representative orchards with different managers were selected in the production area of Xianyou county in Fujian Province. 200 individual leaf samples and 8 660 single fruit samples were collected, and 48 pairs of heteromorphic fruits (H-FSI normal fruit and L-FSI cracking fruit) with the same axillary growth were collected, and the contents of N, P, K, CA, Mg, Cu, Zn, Fe, Mn, B, Mo and S elements in leaves and pericarps were measured. The internal and external quality of fruits and the width of top crack were also measured. Based on the difference between the total soluble solids (TSS) and the crack average index (FCAI) of the fruit, a BDRIS diagnosis system for major mineral elements and a diagnostic criterion for critical values of trace elements were constructed.【】According to the difference analysis of TSS, rich N, P, K and lack of Mo significantly reduced TSS. According to the FCAI12 difference analysis, except that the suspected B toxicity excess (>177 mg·kg-1) significantly increased the fruit cracking, no significant causal relationship was found between other mineral elements and the fruit cracking, but no evidence of fruit cracking caused by B toxin was found; in addition, no significant difference was found in the paired comparative analysis of the elements in pericarp of twin shaped fruit. The distribution of N, P, K, CA, and Mg elements in the selected samples met the requirements of BDRIS modeling,(normal) ≥0.12. According to BDRIS construction, it was found that the tree age was significantly negatively correlated with BDRIS index, and significantly positively correlated with TSS, that is to say, with the growth of tree age, the mineral nutrition of tree body tended to the origin of nutrition balance, and the fruit quality was also better, which gave a new explanation of the common sense of fruit tree cultivation that “the older the tree is, the sweeter the fruit will be”. BDRIS had no significant correlation with FCAI12; by correlation method, only when k was in morbid excess could thicken the peel, so as to reduce the cracking, which had no practical significance in correcting fruit cracking in production. It was suggested that the diagnostic standard of critical value of mineral elements in leaves should be “elements (<lack; minimum-maximum; >over)”: N (<2.29%; 2.41%- 2.87%; >2.99%), P (<0.09%; 0.10%-0.14%; >0.15%), K(<1.17%; 1.39%-2.24%; >2.46%), Ca (<1.74%; 2.26%-4.21%; >4.72%), Mg (<0.20%; 0.24%-0.41%; >0.46%), Cu (<4 mg·kg-1; 6-25 mg·kg-1; >30 mg·kg-1), Zn (24-40 mg·kg-1), Fe (60-140 mg·kg-1), Mn (25-140 mg·kg-1), B (<15 mg·kg-1; 30-65 mg·kg-1; >150 mg·kg-1), Mo (<0.05 mg·kg-1; 0.1-1.0 mg·kg-1), and S (0.2%-0.4%). The shared optimization algorithm of BDRIS diagnosis parameters,andwas provided to effectively expand the application scope of BDRIS.【】In this study, the BDRIS diagnosis system for major mineral elements and the diagnostic criterion for critical values of trace elements were established based on the high-yield and high-quality population. In addition, there was no significant correlation between fruit cracking and the plant mineral nutrition.
Duweiwendan pomelo; mineral nutrients; appropriate standard; BDRIS
10.3864/j.issn.0578-1752.2020.17.014
2020-01-23;
2020-05-20
国家重点研发计划(2017YFD0202000)、莆田市科技计划区域重点项目(2020NJQ001)、福建省公益类科研院所专项(2017R1013-6)、福建省农业科学院科技示范基地项目(sfjd1707)、仙游县度尾文旦柚品质提升项目
王贤达,Tel:15860808786;E-mail:564944260@qq.com。通信作者李健,Tel:18259005799;E-mail:Fujianlijian@126.com
(责任编辑 赵伶俐)