姜黄素药理作用及机制研究进展
2020-08-27宋莉平王宇
宋莉平 王宇
[摘要] 姜黄素是从中药姜黄中提取的一种植物多酚,也是姜黄发挥药理作用最重要的活性成分。现代药理学研究显示,姜黄素有抗肿瘤、抗炎、抗氧化、抗纤维化及心肌保护等药理作用。本文综合近些年文献,阐述姜黄素的抗肿瘤机制(包括抑制肿瘤细胞血管生成、抑制肿瘤细胞增殖、阻遏细胞周期、诱导细胞凋亡、抑制肿瘤细胞迁移和侵袭等)及姜黄素发挥抗炎、抗氧化、抗纤维化、心肌保护等作用治疗多种肿瘤、非肿瘤疾病,以期为姜黄素开发利用研究提供参考。
[关键词] 姜黄素;药理作用;机制;肿瘤
[中图分类号] R285.5 [文献标识码] A [文章编号] 1673-7210(2020)07(b)-0029-05
[Abstract] Curcumin is a plant polyphenol extracted from turmeric of traditional Chinese medicine, and it is also the most important active component of turmeric to play a pharmacological role. Modern pharmacological studies have shown that curcumin has anti-tumor, anti-inflammatory, anti-oxidation, anti-fibrosis and myocardial protection and other pharmacological effects. This paper synthesizes the literature of recent years to elaborate the anti-tumor mechanism of curcumin (including inhibiting tumor cell angiogenesis, inhibiting tumor cell proliferation, repressing cell cycle, inducing apoptosis, inhibiting tumor cell migration and invasion, etc.) and the treatment of various tumor, non-tumor diseases by curcumin by exerting its anti-inflammatory, anti-oxidation, anti-fibrotic, myocardial protection, etc., in order to provide reference for the development and utilization of curcumin.
[Key words] Curcumin; Pharmacological action; Mechanism; Tumor
中药姜黄最早记载于《唐本草》,其性辛味苦温,归肝脾经,有破血行气、通经止痛之效。而姜黄素(curcumin)是从姜黄根茎中提取出来的一种脂溶性多酚类化合物,是姜黄发挥药理作用的主要活性成分,为橙黄色结晶粉末,味稍苦,耐光耐热性差,毒性极小。同时也是一种容易渗透细胞膜的亲脂性分子,可溶于乙醇等有机溶剂,不溶于水,分子式为C21H20O6,相对分子质量368.38。本文拟就姜黄素的药理作用及其抗肿瘤、抗炎、抗氧化、抗纤维化及心肌保护作用机制研究进展进行综述,旨在为姜黄素基础研究和临床应用提供思路。
1 抗肿瘤作用及机制
姜黄素是中药姜黄的主要活性成分,以往研究显示[1],其对多种肿瘤细胞有毒性作用。姜黄素的抗肿瘤机制包括抑制肿瘤细胞生长增殖、血管生成、侵袭转移、阻遏细胞周期、诱导细胞凋亡、提高化疗敏感性等,提示姜黄素可通过多种分子机制来达到抗肿瘤的作用,具有很强的治疗潜力[2]。
1.1 抑制肿瘤细胞血管生成
血管生成是一个由原有血管网络形成新血管的过程,通常发生在许多生理过程中,如伤口愈合和胚胎发育,也发生在病理过程,包括关节炎、糖尿病、癌症等。恶性胶质瘤是人类肿瘤中血管化程度较高的肿瘤之一,其生长和存活依赖于足够的血液供应[3]。抑制肿瘤细胞血管生成是治疗胶质瘤的有效策略,而姜黄素具有抗血管生成活性[4]。Perry等[5]研究显示,姜黄素有抑制无胸腺小鼠胶质瘤细胞生长的作用,作用机制与其抑制神经胶质瘤诱导的血管生成有关。姜黄素能阻断体内外血管生成,提示姜黄素在脑癌化学预防和治疗方面具有潜在的应用价值。Zhang等[6]以0.01 mg/L姜黄素处理神经胶质瘤U87细胞系模型小鼠发现,姜黄素处理组肿瘤重量明显小于对照组(P < 0.05)。姜黄素显著抑制U87细胞血管密度、血管内皮生长因子(VEGF)及血管生成素-2(Ang-2)的表达,上调血小板反应蛋白1(TSP-1)表达,提示姜黄素可能通过抑制异种移植胶质瘤小鼠模型中VEGF/Ang-2/TSP-1介导的血管生成来发挥抗肿瘤作用。
1.2 抑制肿瘤细胞增殖、诱导细胞凋亡
细胞凋亡是一种基因调控过程,在细胞死亡中起重要作用。研究显示[7],姜黄素可直接或间接调节凋亡过程的不同节点,引起细胞周期阻滞和癌细胞凋亡。Guo等[8]报道姜黄素(0~20 mg/L)呈时间和浓度依赖性明显抑制人大肠癌LoVo细胞的生长增殖,并将细胞阻滞于S期,诱导细胞凋亡,作用机制可能与其激活Bax表达,抑制Bcl-2和Bcl-xL表達,从而激活半胱氨酸蛋白酶-3(Caspase-3)信号通路有关。Yang等[9]以姜黄素处理人前列腺癌细胞PC-3裸鼠皮下移植瘤模型,发现姜黄素组肿瘤体积和重量均明显低于对照组(P < 0.05),抑瘤率呈剂量依赖性。与对照组比较,姜黄素组Bcl-2表达降低,Bax蛋白表达增加(P < 0.05),细胞凋亡率明显升高(P < 0.05),提示姜黄素可能通过上调Bax和下调Bcl-2表达,抑制PC-3细胞生长,减少肿瘤体积和重量,诱导裸鼠皮下细胞凋亡。有研究证实PI3K是胃癌的癌基因[10],P53是胃癌的抑癌基因[11],姜黄素能激活P53信号通路并抑制PI3K信号通路,进而抑制胃癌细胞增殖并诱导自噬和凋亡[12]。脂肪酸合成酶(FAS)在除肝脏和脂肪以外的多数人体组织中低表达,但在多种癌细胞中的表达明显高于正常组织细胞[13-16]。姜黄素通过抑制人乳腺癌MDA-MB-231细胞内FAS活性,下调FAS表达和mRNA水平,诱导细胞凋亡[17]。
1.3 抑制肿瘤细胞迁移和侵袭
肿瘤侵袭和转移是指肿瘤细胞离开原发病灶,经淋巴道、血管、组织等,入侵邻近免疫功能相对较弱的正常组织,在多次分裂增殖后,迁移入侵更远处组织,形成继发肿瘤的过程。肿瘤转移过程受多种基因产物调控,上皮间质转换(EMT)参与胚胎发育和癌症进展过程,上皮细胞获得间充质表型,减少细胞间黏附,失去细胞极性,增强肿瘤细胞迁移和侵袭能力[18-19]。有研究报道[20],姜黄素能降低人乳腺癌MDA-MB-231细胞中EMT的表达,诱导细胞发生形态学变化,进而抑制该细胞迁移和侵袭。β-catenin在膀胱癌组织中的表达较癌周组织显著上调。Shi等[21]发现姜黄素(10~30 μmol/L)可通过调节β-catenin的表达和逆转EMT,降低人膀胱癌T24和5637细胞的迁移和侵袭能力。方园等[22]研究显示,姜黄素(5~40 μmol/L)干预人胶质瘤SHG44细胞后,其迁移距离、迁移率、侵袭能力明显降低(P < 0.05),SHG44细胞中的基质金属蛋白酶-2(MMP-2)和MMP-9表达水平显著下降(P < 0.05)。提示姜黄素可抑制人胶质瘤SHG44细胞迁移及侵袭,且呈时间及浓度依赖性,其机制可能与下调MMP-2和MMP-9蛋白表达有关。另外,姜黄素还可通过抑制人骨肉瘤MG-63细胞中P-JAK2/-STAT3通路,抗MG-63细胞的迁移和侵袭,提示姜黄素下调JAK/STAT信号通路可能是骨肉瘤治疗的新策略[23]。
2 抗炎作用
姜黄素有抗炎活性,能诱导多种炎性细胞因子、干扰素和某些趋化因子下调。蒋兵等[24]以致炎药完全弗氏佐剂(CFA)建立类风湿性关节炎(RA)大鼠模型,致炎后第7~28天分别连续给予姜黄素高(80 mg/kg)、中(40 mg/kg)、低(20 mg/kg)剂量灌胃,发现姜黄素处理可显著缓解RA大鼠炎症症状(P < 0.05或P < 0.01),高剂量组症状改善更明显,提示姜黄素呈剂量依赖方式改善RA大鼠的炎性症状。Wang等[25]发现姜黄素对牛Ⅱ型胶原诱导的关节炎大鼠有治疗作用,且在减少巨噬细胞炎性反应方面具有强烈的药理活性,其机制可能与抑制核因子(NF)-κB信号通路和促进巨噬细胞凋亡有关。多囊卵巢综合征(PCOS)患者体内炎症相关因子C-反应蛋白(CRP)[26]、肿瘤坏死因子-α(TNF-α)[27]、白细胞介素-6(IL-6)[28]水平显著升高。Mohammadi等[29]给Wistar大鼠注射戊酸雌二醇(2 mg/kg)诱导建立PCOS大鼠模型,并连续两周腹腔注射姜黄素(100、200、300、400 mg/kg),检测显示大鼠体内IL-6、CRP、TNF-α等炎症指标明显下降,提示姜黄素对PCOS的抗炎作用可能是通过其抑制IL-6、CRP、TNF-α的表达水平来实现的。促炎细胞因子IL-6与许多妊娠疾病(包括早产)有关,而子宫蜕膜细胞是IL-6的主要来源。研究姜黄素对子宫蜕膜细胞HuF和UⅢ的作用发现[30],姜黄素处理降低了這两种细胞中IL-1β诱导的IL-6的表达,还明显抑制IL-6信号中的关键分子gp130的表达及IL-6信号的下游介质STAT3的磷酸化和核定位。而IL-6R和sIL-6R的表达不受影响,提示姜黄素对炎症介导的早产及其他妊娠疾病有治疗潜力。
3 抗氧化作用
ROS产生过多并超过内源性抗氧化防御系统对其消除能力时,会形成氧化生物大分子,诱发基因突变,蛋白质变性以及脂质过氧化,损伤溶酶体、线粒体等,最终导致细胞损伤。姜黄素是一种自由基清除剂、还原剂和DNA损伤抑制剂,可与铁、锰、铜离子结合,调节其抗氧化性能和自由基清除效应[31-32]。Lin等[33]报道姜黄素(5、10 μmol/L)可通过提高超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、谷胱甘肽过氧化物酶(GSH-PX)活性,或提高Nrf2蛋白水平,协助Nrf2向细胞核迁移,调控血红素加氧酶-1(HO-1)和谷氨酸-半胱氨酸连接酶(GCLC)的表达,从而消除ROS,增强细胞对氧化应激的抵抗,减少细胞凋亡,提高存活率。适量的H2O2能够促进胰腺癌细胞侵袭,Cao等[34]将人胰腺癌BxPC-3和PANc-1细胞暴露于含有姜黄素的H2O2中,经Transwell基质凝胶侵袭实验、qRT-PCR等对其检测分析发现姜黄素能抑制H2O2诱导的ROS产生,减少细胞迁移和侵袭,降低MMP-2和MMP-9在胰腺癌细胞中的表达。此外,姜黄素还抑制BxPC-3和PANc-1细胞中p-ERK和p-NF-κB的升高,提示姜黄素通过抑制ROS/ERK/NF-κB信号通路抑制胰腺癌细胞的迁移和侵袭。
4 抗纤维化作用
纤维化可发生于多种器官,主要病理改变为器官组织内纤维结缔组织增多,实质细胞减少,持续进展可致器官结构破坏及功能衰退乃至衰竭,是许多疾病致残致死的主因。腹膜纤维化(PF)是长期腹膜透析(PD)引起的腹膜形态和功能的改变,PF可导致腹膜超滤能力的丧失。Zhao等[35]发现姜黄素对与PD相关的PF有明显的保护作用,姜黄素可减轻炎性反应和转化生长因子-β1(TGF-β1)的表达,保护间皮细胞单层,改善腹膜功能,提示姜黄素对PF有潜在的治疗作用。Chen等[36]报道姜黄素上调APPL1蛋白表达,抑制Akt磷酸化,进而降低细胞外基质蛋白表达水平,在缺血再灌注诱导的迟发性纤维化疾病中发挥作用。Xiao等[37]研究显示,姜黄素通过调节胶原沉积、细胞外基质降解和心脏成纤维细胞的增殖和迁移,减轻心梗后的心肌纤维化。Huang等[38]经腹腔注射四氯化碳(CCl4)诱导建立肝硬化小鼠模型,并给予姜黄素治疗发现Gr1hi单核细胞的肝内浸润减弱,TNF-α和TGF-β1的表达显著降低,这与肝内Gr1hi单核细胞数量减少相符。由此姜黄素的抗炎和抗纤维化作用可能是通过抑制单核细胞趋化蛋白-1(MCP-1)来减弱Gr1hi单核细胞募集,使肝脏免受CCl4诱导的纤维化。鼻内给予姜黄素可显著抑制气道炎症和肺纤维化,其机制可能是通过降低MMP-9活性和α-平滑肌肌动蛋白(α-SMA)、MMP-9、金属蛋白酶组织抑制因子-1(TIMP-1)及嗜酸性粒细胞趋化因子的表达[39]。
5 心肌保護作用
大量心血管疾病研究显示,姜黄素有抗心肌损伤作用。冠状动脉微栓塞(CME)诱导的局部心肌炎和心肌细胞凋亡是进行性心脏功能障碍的主要原因。Liu等[40]报道姜黄素可抗CME诱导的心肌损伤,作用机制可能与TLR4/MyD88/NF-κB信号通路介导的心肌细胞凋亡减少和心肌炎性反应抑制有关,这为姜黄素预防和治疗CME所致心肌损伤提供了理论依据。姜黄素对心肌缺血再灌注大鼠的心功能有保护作用。给予SD大鼠姜黄素[10、20、30 mg/(kg·d)]灌胃20 d后,结扎左前降支冠状动脉1 h使大鼠心肌损伤,后释放结扎重新灌注心脏3 h。评估脂质谱,脂质过氧化产物,抗氧化酶和基因表达发现姜黄素可能通过减少氧化损伤和抑制心肌细胞凋亡来改善心肌功能,减轻心脏损伤,其机制可能是通过刺激JAK2/STAT3信号通路,上调心肌Bcl-2/Bax表达,使Caspase-3失活[41]。Li等[42]发现姜黄素能有效改善机械创伤(MT)诱导的大鼠继发性心功能障碍,并显著降低创伤心肌细胞的凋亡指数。此外,姜黄素还可抑制单核细胞产生TNF-α并降低循环TNF-α水平。经姜黄素预处理,当该细胞与创伤性血浆共孵育时,心肌细胞H9c2中ROS产生和Ca2+超载减弱,提示姜黄素可通过抑制全身炎性反应和减弱心肌细胞中的氧化应激反应及Ca2+超载来有效改善MT诱导的心功能障碍。
6 小结
姜黄素是从中药姜黄根茎中提取出来的重要的多酚类化合物,具有抗肿瘤、抗炎、抗氧化、抗纤维化、抗心肌损伤等多种药理作用,临床用于治疗骨关节炎、肿瘤、心血管疾病、脊髓损伤等效果明显,表现出良好的应用和开发前景。另外,针对姜黄素口服吸收率差,生物利用度低等缺点,医学研究工作者研制出多种给药系统来解决该问题,如纳米粒、脂质体、胶束、固体分散体、磷脂体等,但这些成果多停留在细胞和动物实验水平,在人体内的过程有待进一步研究。本文在分子水平上对姜黄素的药理机制进行总结,以期为基础研究和临床提供有益参考。
[参考文献]
[1] Alexandru O,Georgescu AM,Ene L,et al. The effect of curcumin on low-passage glioblastoma cells in vitro [J]. J Cancer Res Ther,2016,12(2):1025-1032.
[2] Zhou S,Zhang S,Shen H,et al. Curcumin inhibits cancer progression through regulating expression of microRNAs [J]. Tumour Biol,2017,39(2):1010428317691680.
[3] Kesari S,Ramakrishna N,Sauvageot C,et al. Targeted molecular therapy of malignant gliomas [J]. Curr Neurol Neurosci Rep,2005,5(3):186-197.
[4] Arbiser JL,Klauber N,Rohan R,et al. Curcumin is an in vivo inhibitor of angiogenesis [J]. Mol Med,1998,4(6):376-383.
[5] Perry MC,Demeule M,Régina A,et al. Curcumin inhibits tumor growth and angiogenesis in glioblastoma xenografts [J]. Mol Nutr Food Res,2010,54(8):1192-1201.
[6] Zhang Z,Li C,Tan Q,et al. Curcumin Suppresses Tumor Growth and Angiogenesis in Human Glioma Cells Through Modulation of Vascular Endothelial Growth Factor/Angiopoietin-2/Thrombospondin-1 Signaling [J]. CNS Neurol Disord Drug Targets,2017,16(3):346-350.
[7] Mortezaee K,Salehi E,Mirtavoos-Mahyari H,et al. Mechanisms of apoptosis modulation by curcumin:Implications for cancer therapy [J]. J Cell Physiol,2019,234(8):12537-12550.
[8] Guo LD,Jiao ZX,Song Y,et al. Study on functions and mechanism of curcumin in inducing colorectal carcinoma cells LoVo apoptosis [J]. Zhongguo Zhong Yao Za Zhi,2013,38(13):2191-2196.
[9] Yang J,Ning J,Peng L,et al. Effect of curcumin on Bcl-2 and Bax expression in nude mice prostate cancer [J]. Int J Clin Exp Pathol,2015,8(8):9272-9278.
[10] Du XY,Liu X,Wang ZJ,et al. SLPI promotes the gastric cancer growth and metastasis by regulating the expression of P53,Bcl-2 and Caspase-8 [J]. Eur Rev Med Pharmacol Sci,2017,21(7):1495-1501.
[11] Li C,Zhang J,Wu H,et al. Lectin-like oxidized low-density lipoprotein receptor-1 facilitates metastasis of gastric cancer through driving epithelial-mesenchymal transition and PI3K/Akt/GSK3β activation [J]. Sci Rep,2017,7:45275.
[12] Fu H,Wang C,Yang D,et al. Curcumin regulates proliferation,autophagy,and apoptosis in gastric cancer cells by affecting PI3K and P53 signaling [J]. J Cell Physiol,2018,233(6):4634-4642.
[13] Alò PL,Visca P,Trombetta G,et al. Fatty acid synthase(FAS)predictive strength in poorly differentiated early breast carcinomas [J]. Tumori,1999,85(1):35-40.
[14] Shurbaji MS,Kalbfleisch JH,Thurmond TS. Immunohistochemical detection of a fatty acid synthase(OA-519)as a predictor of progression of prostate cancer [J]. Hum Pathol,1996,27(9):917-921.
[15] Gansler TS,Hardman W,Hunt DA,et al. Increased expression of fatty acid synthase(OA-519)in ovarian neoplasms predicts shorter survival [J]. Hum Pathol,1997, 28(6):686-692.
[16] Visca P,Sebastiani V,Botti C,et al. Fatty acid synthase(FAS)is a marker of increased risk of recurrence in lung carcinoma [J]. Anticancer Res,2004,24(6):4169-4173.
[17] Fan H,Liang Y,Jiang B,et al. Curcumin inhibits intracellular fatty acid synthase and induces apoptosis in human breast cancer MDA-MB-231 cells [J]. Oncol Rep,2016,35(5):2651-2656.
[18] Tiwari N,Gheldof A,Tatari M,et al. EMT as the ultimate survival mechanism of cancer cells [J]. Semin Cancer Biol,2012,22(3):194-207.
[19] Cowin P,Welch DR. Breast cancer progression:controversies and consensus in the molecular mechanisms of metastasis and EMT [J]. J Mammary Gland Biol Neoplasia,2007,12(2/3):99-102.
[20] Gallardo M,Calaf GM. Curcumin inhibits invasive capabilities through epithelial mesenchymal transition in breast cancer cell lines [J]. Inter J Oncol,2016,49(3):1019-1027.
[21] Shi J,Wang Y,Jia Z,et al. Curcumin inhibits bladder cancer progression via regulation of β-catenin expression [J]. Tumour Biol,2017,39(7):1010428317702548.
[22] 方園,樊欣鑫,张世荣,等.姜黄素对人胶质瘤SHG44细胞侵袭、迁移的影响[J].中国临床神经外科杂志,2018, 23(6):416-418.
[23] Sun Y,Liu L,Wang Y,et al. Curcumin inhibits the proliferation and invasion of MG-63 cells through inactivation of the p-JAK2/p-STAT3 pathway [J]. Onco Targets Ther,2019,12:2011-2021.
[24] 蔣兵,张伯森,张刚.中药姜黄素对类风湿性关节炎大鼠的抗炎作用[J].新疆中医药,2017,35(3):64-67.
[25] Wang Q,Ye C,Sun S,et al. Curcumin attenuates collagen-induced rat arthritis via anti-inflammatory and apoptotic effects [J]. Int Immunopharmacol,2019,72:292-300.
[26] Jatzko B,Ott J. Circulating inflammatory markers in polycystic ovary syndrome:a systematic review and meta-analysis [J]. Fertil Steril,2011,96(4):e158.
[27] McGrath KC,McRobb LS,Heather AK. Androgen therapy and atherosclerotic cardiovascular disease [J]. Vasc Health Risk Manag,2008,4(1):11-21.
[28] Diamanti-Kandarakis E,Paterakis T,Alexandraki K,et al. Indices of low-grade chronic inflammation in polycystic ovary syndrome and the beneficial effect of metformin [J]. Hum Reprod,2006,21(6):1426-1431.
[29] Mohammadi S,Kayedpoor P,Karimzadeh-Bardei L,et al. The Effect of Curcumin on TNF-α,IL-6 and CRP Expression in a Model of Polycystic Ovary Syndrome as an Inflammation State [J]. J Reprod Infertil,2017,18(4):352-360.
[30] Devi YS,DeVine M,DeKuiper J,et al. Inhibition of IL-6 signaling pathway by curcumin in uterine decidual cells [J]. PLoS One,2015,10(5):e0125627.
[31] Vajragupta O,Boonchoong P,Berliner LJ. Manganese complexes of curcumin analogues:Evaluation of hydroxyl radical scavenging ability,superoxide dismutase activity and stability towards hydrolysis [J]. Free Radic Res,2004,38(3):303-314.
[32] Barik A,Mishra B,Kunwar A,et al. Comparative study of copper(Ⅱ)-curcumin complexes as superoxide dismutase mimics and free radical scavengers [J]. Eur J Med Chem,2007,42(4):431-439.
[33] Lin X,Bai D,Wei Z,et al. Curcumin attenuates oxidative stress in RAW264.7 cells by increasing the activity of antioxidant enzymes and activating the Nrf2-Keap1 pathway [J]. PLoS One,2019,14(5):e0216711.
[34] Cao L,Liu J,Zhang L,et al. Curcumin inhibits H2O2-induced invasion and migration of human pancreatic cancer via suppression of the ERK/NF-κB pathway [J]. Oncol Rep,2016,36(4):2245-2251.
[35] Zhao JL,Zhang T,Shao X,et al. Curcumin ameliorates peritoneal fibrosis via inhibition of transforming growth factor-activated kinase 1(TAK1)pathway in a rat model of peritoneal dialysis [J]. BMC Complement Altern Med,2019,19(1):280.
[36] Chen HT,Fan YL,Huang F,et al. Curcumin alleviates ischemia reperfusion-induced late kidney fibrosis through the APPL1/Akt signaling pathway [J]. J Cell Physiol,2018,233(11):8588-8596.
[37] Xiao J,Sheng X,Zhang X,et al. Curcumin protects against myocardial infarction-induced cardiac fibrosis via SIRT1 activation in vivo and in vitro [J]. Drug Des Devel Ther,2016,10:1267-1277.
[38] Huang R,Liu Y,Xiong Y,et al. Curcumin protects against liver fibrosis by attenuatinginfiltration of Gr1hi monocytes through inhibition of monocyte chemoattractant protein-1 [J]. Discov Med,2016,21(118):447-457.
[39] Chauhan PS,Dash D,Singh R. Intranasal Curcumin Inhibits Pulmonary Fibrosis by Modulating Matrix Metalloproteinase-9(MMP-9)in Ovalbumin-Induced Chronic Asthma [J]. Inflammation,2017,40(1):248-258.
[40] Liu Y,Liu Y,Huang X,et al. Protective effects and mechanism of curcumin on myocardial injury induced by coronary microembolization [J]. J Cell Biochem,2019, 120(4):5695-5703.
[41] Liu H,Wang C,Qiao Z,et al. Protective effect of curcumin against myocardium injury in ischemia reperfusion rats [J]. Pharm Biol,2017,55(1):1144-1148.
[42] Li X,Cao T,Ma S,et al. Curcumin ameliorates cardiac dysfunction induced by mechanical trauma [J]. Eur J Pharmacol,2017,814:73-80.
(收稿日期:2020-01-09)