纳米材料
2020-08-13
光对纳米机电系统品质因数的“冻结”变化被发现
据《俄罗斯科学》网报道,俄罗斯科学院新西伯利亚分院Rzhanova半导体物理研究所和新西伯利亚国立大学的科学家使用了一种纳米机械谐振器,该谐振器是一种非常薄(数百纳米)的振荡“悬浮”半导体膜。事实证明当暴露在光下时,谐振器的主要特性之一——品质因数发生了变化,并且在关闭光源后未恢复到先前的状态。
纳米机电系统(NEMS)使我们能够研究纳米世界中物理量的性质。例如,使用NEMS可以测量单个分子的质量。NEMS的研究和创造是现代物理学趋势之一。
纳米谐振器有其自己的振荡频率(谐振频率)。它在外力(例如分子质量)的影响下发生变化,并且可以进行测量。纳米谐振器还能够将振动能量转换为光信号,或“捕获”正在研究的介质中新分子的出现,因此可以用作识别极少量物质的传感器。“我们的团队长期从事基于砷化镓的半导体纳米结构的研究,其性质对我们来说是很熟悉的。而纳米机电系统对我们来说是一个相对较新的领域,它连接纳米结构的电气和机械特性,在2个方向的交界处。如我们的实验所示,这使我们能够从根本上发现新现象。”文章的共同作者、非平衡半导体系统实验室的首席研究员、西伯利亚国立大学通用物理系主任、物理数学博士亚瑟·格里戈里耶维奇·波哥索夫说。(科技部)
我国学者研制出一种综合性能强劲的“超级材料”
据报道,中国科学技术大学俞书宏院士团队研制的一种综合性能强劲的“超级材料”,在汽车、航空航天等领域具有应用前景,并有望替代工程塑料减少污染。密度仅为钢的1/6,轻盈但强度、韧性超过传统陶瓷与合金,可承受从-120~150℃的极端温度,且“吸能”耐撞。
纤维素是世界上蕴藏量最丰富的天然生物质材料,在树木、水稻、小麦、棉花中都大量存在。少有人知的是,纤维素在微观层面性能强大,直径小于头发丝万分之一的纳米纤维素,强度超过钢铁。但是,纤维素组成的宏观材料却变得“柔弱”。因此,在宏观层面再现纤维素的强大性能,成为国际材料科研的重大挑战。
近期,俞书宏团队运用创新工艺,在国际上首次将纳米纤维素加工成一种新材料。经检验,其密度仅为钢的1/6、航空铝合金的一半,轻盈得多,却“更强更韧”。研究人员发现,新材料的超强性能来自独特的复合结构,在纳米尺度下是一种三维网络结构,在更大的微米级层面则是一种“层叠”结构。
据介绍,这种新材料的尺度稳定性极高,热膨胀系数接近陶瓷。在-120℃~150℃范围内,当温度改变100℃,其尺寸变化不到5×10-4。它还很“耐撞”,受到时速100km的撞击,能瞬时将巨大的能量吸收耗散。受穿刺冲击时只有局部损伤,没有形变和裂纹,明显优于陶瓷、塑料和铝合金。(新华网)
我国研发成功仿生微型手术机器人
据报道,我国研发成功一种体积微小、载有溶栓剂药物的仿生手术机器人,在外加磁场的指挥下,聚集在血栓部位,产生热和力场,成为高效的微血管血栓清道夫。它由同济大学牵头建设的上海自主智能无人系统科学中心微纳无人系统团队经医工理深度融合、联合攻关研发而成,可用于医疗靶向微血管溶栓。该研究成果日前在线发表于《先进材料》。
同济大学医学专家介绍,随着医疗机器人趋于微型化,有望为微血管血栓清除提供新手段。微型机器人在人体中处于低雷诺数环境,需要提供连续的外部驱动力来实现驱动。因此,如何实现低雷诺数环境下微尺度机器人的高效驱动和运动控制,是科研中面临的难点。
自然界中的趋磁细菌是一类受磁场控制的具有集群行为的天然微机器人,其内部含有磁小体作为驱动和控制单元,能以高度有序的集群方式进行聚集和迁移。受此启发,研究团队研发了一类具有集群行为、模仿趋磁菌内部磁小体有序结构的微型机器人,其材料成份、接触界面和控制方式都具有良好的生物相容性。通过实验方式和数值模拟解析了机器人内部驱动结构、磁场强度及频率对其运动能力的影响,结果显示,其最高运动速度可达161.7μm/s。在接收到磁场群体性控制命令后,负载溶栓剂的微型机器人可聚集在血栓部位,在高频磁场控制下释放溶栓药物,进行微血管溶栓。
研究团队负责人表示,仿生微型手术机器人安全性好,运动控制精准,为超微创血栓清除提供了一种新型医疗手段,将引领新一代精准治療智能医疗设备的研发热潮。未来研究团队将积极推进这一成果转化应用。(中国科学报)
北大高密度半导体碳纳米管取得重要进展
据报道,北京大学信息科学技术学院电子学系/北京大学碳基电子学研究中心、纳米器件物理与化学教育部重点实验室张志勇教授-彭练矛教授课题组发展全新的提纯和自组装方法,制备高密度高纯半导体阵列碳纳米管材料,并在此基础上首次实现了性能超越同等栅长硅基CMOS技术的晶体管和电路,展现出碳管电子学的优势。
该项工作突破了长期以来阻碍碳管电子学发展的瓶颈,首次在实验上显示出碳管器件和集成电路较传统技术的性能优势,为推进碳基集成电路的实用化发展奠定了基础。
上述研究得到国家重点研发计划“纳米科技”重点专项、北京市科技计划、国家自然科学基金等资助。湘潭大学湖南省先进传感与信息技术创新研究院、浙江大学、北京大学纳光电子前沿科学中心等单位研究人员参与合作。(北京大学信息科学技术学院)
我国在可溶性有机纳米聚合物研究获突破
据报道,近日西北工业大学柔性电子研究院黄维院士和南京邮电大学信息材料与纳米技术研究院教授解令海团队在有机纳米聚合物领域取得突破,研究成果在《自然·通讯》在线发表。
可溶性有机纳米聚合物甚至潜在影响新一代有机宽带隙半导体材料、柔性/印刷电子器件、信息存储与神经形态计算等相关科技领域。在这样的背景下,黄维和解令海带领团队开创了聚格类有机纳米聚合物这一新的研究方向。
经研究表明,他们所合成的内消旋选择性的聚手画手格(长度达20~30nm)的主链结构具有1.651的Mark-Houwink指数与流体力学半径Rh~M1.13的依赖关系,证明该聚格呈现出刚性棒状的骨架结构,具有预期的纳米聚合物特征,成为该领域的重要里程碑。
此外,通过分子动力学模拟显示,内消旋构型的聚格主链即使在塌陷状态下仍然具有高度各向异性的棒状骨架,而且表现出比外消旋构型的聚格主链更强的抗塌陷能力。(中国科学报)
新型飞秒激光等离子激元光刻技术可加工石墨烯
据报道,从中科院长春光学精密机械与物理研究所获悉,来自该所等单位的研究人员,开发了一种新型飞秒激光等离子激元光刻技术(FPL)。利用该技术,研究人员在百纳米厚的硅基氧化石墨烯薄膜表面实现了高质量微纳周期结构的快速制备。飞秒激光加工技术凭借着超高峰值功率和超短脉冲持续时间的独特优势,被广泛应用于多种材料的超精细微纳加工领域。然而,以激光直写为例,虽然其精度很高,但在超精细微纳制备上,效率仍有待提高。同时保证加工精度和加工效率是该技术需要解决的主要问题之一。“如何利用灵活简便的加工手段解决加工精度和加工效率问题是拓展飞秒激光实用化的关键所在。”中科院长春光学精密机械与物理研究所研究员杨建军说。
研究首次证明了FPL技术在二维薄膜材料上能够实现大面积高质量亚微米周期结构的快速制备。得益于飞秒激光的非线性光学特点,FPL技术加工过程不易受材料表面缺陷、杂质等因素的影响,加工基底也不易受到材料种类的限制。加工材料表现出了优异的机械性能,可以利用传统的湿转移法进行完整转移。这为相关材料周期性微纳结构的灵活制备奠定了基础。(科技日报)