APP下载

草甸草原区退耕地的牧草-水分-氮肥耦合机制

2020-07-31李达方华军王笛徐丽君唐雪娟辛晓平聂莹莹乌仁其其格

中国农业科学 2020年13期
关键词:混播表层牧草

李达,方华军,王笛,徐丽君,唐雪娟,辛晓平,聂莹莹,乌仁其其格

草甸草原区退耕地的牧草-水分-氮肥耦合机制

李达1,方华军2,王笛1,徐丽君3,唐雪娟3,辛晓平3,聂莹莹3,乌仁其其格4

(1白城市畜牧科学研究院/呼伦贝尔草原生态系统国家野外科学观测研究站/国家牧草产业技术体系白城站,吉林白城 137000;2中国科学院地理 科学与资源研究所生态系统观测与模拟重点实验室,北京 100101;3中国农业科学院农业资源与农业区划研究所/呼伦贝尔草原生态系统国家 野外科学观测研究站,北京 100081;4呼伦贝尔学院/内蒙古自治区草甸草原生态系统与全球变化重点实验室,内蒙古呼伦贝尔 021800)

【】通过在呼伦贝尔建植不同种植模式的人工草地,研究补水、施氮和牧草类型3个因素对人工草地群落生物量、植物营养成分和土壤质量的影响,旨在揭示呼伦贝尔地区退耕地人工草地的水肥耦合机制,筛选建植管理的最优模式。试验在呼伦贝尔草原生态系统国家野外科学观测研究站进行,2016年6月6日试验开始,设置3个因素试验,即牧草类型(Pasture)、施氮水平(Nitrogen)和补水处理(Irrigation)。牧草类型设紫花苜蓿单播(P1)、无芒雀麦单播(P2)、紫花苜蓿无芒雀麦1﹕1混播(P3)3个处理;施氮水平设不施氮(N0)、低氮(N1:75 kgN·hm-2·a-1)和高氮(N2:150 kgN·hm-2·a-1)3个水平,每年追施氮肥(化学纯尿素)两次分别于成苗(返青)期和分蘖期撒施;补水设不补水(I0)和补水(I1)两个水平,每年6、7、8月补水3次,补水20 mm·m-2。重复4次,共计72个试验小区,每个试验小区面积7 m×10 m,行距1 m。在2016、2017年测定草地生物量、营养成分(植物粗蛋白、中性洗涤纤维和酸性洗涤纤维)以及土壤养分(土壤全氮、有机碳和pH)。(1)播种当年(2016年)的产量对(N)、(I)、(P)和(P×I)等试验因素的响应均达到显著水平(<0.05),2017年两次测定的产量对(N)、(P)、(P×I)、(P×N)、(N×I×P)等试验因素的响应均达到显著水平(<0.05),并且混播(P3)在不补水(I0)条件下低氮(N1)处理的产量显著高于其余处理组(<0.05),平均达到17 801.19 kg·hm-2。(2)2016年和2017年的粗蛋白(CP)含量均表现为P1处理>P3处理>P2处理,2016年P1、P2和P3处理在补水条件相同时均表现为CP含量随着氮水平增加而增加,其中P1N2I0显著高于P1N0I0、P1N1I0、P1N1I1(<0.05),达到最大(19.08%);2017年P3在I0条件下N1水平的粗蛋白(CP)含量(15.12%)显著高于N0(<0.05)。(3)施氮和补水均倾向于促使土壤有机碳(SOC)含量负增长,全氮(TN)含量正增长,pH值负增长,其中表层土壤SOC增长量苜蓿和无芒雀麦显著高于混播(<0.05),表层土壤全氮(TN)增长量苜蓿显著高于无芒雀麦和混播(<0.05)。2016年表层和亚表层的土壤碳氮比(C/N)均高于2017年,表层平均高出17.39%,亚表层平均高出15.18%,表层土壤碳氮比的变化更为明显,其中表层土壤碳氮比2016年P1N0I1处理最高,为8.15,2017年P1N2I0处理最高,为5.67,亚表层土壤碳氮比2016年P1N2I1处理最高,为6.36,2017年P3N2I1处理最高,为5.67。在呼伦贝尔退耕人工草地在播种第二年,牧草-水分-氮肥的耦合作用对草地生物量具有显著影响,水氮耦合具有一定促进牧草的养分积累的协同效应,其中建植豆-禾混播草地最有利于提高牧草的生物量与营养品质。人工草地的建植会导致C/N降低,土壤品质下降,在不同牧草类型、补水及施氮水平下均会表现出0-20 cm土层SOC含量、pH值的降低以及土壤TN含量的上升,表明土壤出现酸化现象,豆-禾混播土壤pH值降低幅度小于单播,而高氮和补水会明显加剧土壤pH值的降低。

人工草地;施氮;补水;豆-禾牧草混播;群落生物量;土壤养分;呼伦贝尔

0 引言

【研究意义】长期以来,我国由于受到社会生产水平和农业生产效率的双重制约,盲目进行毁林毁草开垦耕种,造成了严重的水土流失和草原沙化、荒漠化等生态安全问题。1999年退耕还林(草)工程开展,旨在将水土流失、沙化、盐碱化、石漠化严重的耕地以及粮食产量低而不稳的耕地,停止耕种,因地制宜地造林种草,达到保持水土、改善生态环境的目的[1]。但是退耕后不恰当的植被建设会影响植物群落演替及土壤性质[2]。研究表明[3],退耕种草是最佳生态方式,特别是在草原地区。同时随着天然草场的退化,加上人们对动物产品的需求迅速增长,天然牧场的压力加重[4]。因此为了畜牧业的健康发展,加强对天然草地的保护,解决优良牧草的短缺,退耕地建植人工草地应运而生[5-9]。水肥是牧草生长的主要限制因子[10-11],水分和养分对作物生长功能不同,影响机理也不同,两者之间不能互相取代[12]。但是通过水肥及作物管理,以肥调水,以水促肥,可以利用其间存在的协同效应,提高作物生产力和水肥利用效率[13],从而生产出高产、优质的产品。【前人研究进展】牧草混播能充分的利用土、肥、水、光等自然资源,提高草地的生产力和生态稳定性,从而延长草地利用年限[7]。目前我国生产上利用较多的饲用作物多为优质高产的豆科牧草和禾本科牧草[9]。利用豆-禾混播建立高效稳定的人工草地生态系统,再辅以高效的水分施肥等管理措施,已经成为退耕地重建人工草地研究的主要方向[14]。研究表明,混播豆科牧草,可以提高草地生态系统的可持续性和草地资源利用效率[15-16]。适当施用氮肥可以提高草地生物量和粗蛋白含量[8,17],但过多的施氮不利于植物生长,还会增加对环境的污染[18-20]。水分短缺是影响植物生长发育的重要因素,大量研究表明,补水可提高植物生物量,并影响土壤深层植株根系分布,从而提高植物利用较深土壤层养分的能力[14,21-23]。有学者致力于水肥耦合对作物生长发育影响的研究[24]。DOKOOHAKI等[25]、孙永健等[26]、侯俊等[27]、温超等[28]分别对玉米、籼稻、苜蓿、羊草的水肥耦合做了相关研究,但对牧草-水分-氮肥耦合机制鲜有报道。【本研究切入点】呼伦贝尔作为我国重要的畜牧业基地之一,位于我国高纬度地区[29-30]。本研究在呼伦贝尔地区退耕地通过对牧草-水分-氮肥的耦合机制进行研究分析,以期获得更高的牧草生物量和营养品质,同时减少对土壤养分的损耗。【拟解决的关键问题】通过在呼伦贝尔建植不同种植模式的人工草地,研究补水、施氮和牧草类型3个因素对人工草地生物量、植物营养成分和土壤养分的影响,旨在揭示呼伦贝尔地区退耕地人工草地的牧草-水分-氮肥耦合机制,筛选建植管理的最优模式,为呼伦贝尔地区人工草地适宜的种植模式以及优化管理的制定提供科学依据。

1 材料与方法

1.1 试验区概况

试验地选在地处N 47°05′—53°20′,E 115°32′—126°04′,呼伦贝尔草原生态系统国家野外试验站(内蒙古自治区呼伦贝尔市海拉尔市谢尔塔拉镇)栽培草地试验区,属于温带大陆季风性气候,2016—2017年气象条件见图1。呼伦贝尔位于内蒙古自治区东北部,研究区域内水热条件较好,海拉尔河与伊敏河交汇于此,自东南向西北递增,10℃以上活动积温1 700—2 300℃,无霜期85—155 d;年降水量250—400 mm,湿润度 0.5—0.7,降水量季节性分配不均,约80%集中在6—9月,自东北向西南递减,年蒸发量为降水的 2—7倍,夏季良好的水热条件为多年生、旱生草本植物创造了良好的生长条件[31]。

1.2 试验设计

2016年6月6日试验开始,设置3个因素试验,即牧草类型(Pasture)、施氮水平(Nitrogen)和补水处理(Irrigation)。牧草类型设紫花苜蓿单播(P1)、无芒雀麦单播(P2)、紫花苜蓿无芒雀麦1﹕1混播(P3)3个处理;施氮设不施氮(N0)、低氮(N1:75 kg N·hm-2·a-1)和高氮(N2:150 kg N·hm-2·a-1)3个水平,每年追施氮肥(化学纯尿素)两次,分别于成苗(返青)期和分蘖期撒施;补水设不补水(I0)和补水(I1)两个水平,每年6、7、8月补水3次,补水20 mm·m-2,见表1。重复4次,共计72个试验小区,每个试验小区面积7 m×10 m,行距1 m。

图1 2016—2017年气象条件温度和降雨变化趋势

表1 试验设计

1.3 测定项目与方法

1.3.1 牧草生物量 分别在2016年8月6日、2017年6月19日和2017年8月23日于每个小区内按蛇行法随机设置3个1 m×1 m的样方,利用称量法测定地上生物量,留茬5 cm,单播、混播小区均将样方内植株混合,放入75℃烘箱内烘至恒重,称重。

1.3.2 牧草营养成分 每次生物量称量后保留样品进行草地群落营养成分测定,粗蛋白(CP)采用凯氏定氮法,中性洗涤纤维(NDF)和酸性洗涤纤维(ADF)按Van Soest方法,相对饲喂价值(RFV)采用美国牧草草地理事会饲草分析小组委员会提出的粗饲料相对值来比较干草的饲用品质[12]。

RFV=DMI×DDM/1.29

式中,DMI(dry matter intake)为粗饲料干物质采食量;DDM(digestible dry matter)为可消化的干物质,DMI与DDM的预测模型分别为:

DMI =120/NDF

DDM = 88.9-0.779×ADF

1.3.3 土壤养分 在72个试验小区采集土壤样品,利用土钻(直径2 cm)分别于0—10 cm、10—20 cm土层深度采集土壤样品,每小区5点重复混为一份样品,采样频率为每次测产后。采集后所有样品立即利用2 mm筛网过筛,保留细质的土壤样品,利用凯氏定氮仪测定土壤全氮(TN),利用重铬酸钾容量法测定土壤有机碳(SOC),pH采用电位法。

1.4 数据处理与统计方法

不同指标利用SPSS 20.0进行方差分析,不同处理间显著性为0.05水平Duncan检验。用Origin Pro 2018及Excel 2016进行图表制作。

2 结果

2.1 不同处理对牧草生物量的影响

表2方差分析结果显示,播种当年(2016年)不同处理间,产量对3个因素及其交互作用的响应均未达到显著水平(>0.05);2017年两次测产的总产量对牧草类型(P)、牧草类型和补水(I)及牧草类型和施氮水平(N)间的交互作用的响应达到极显著水平(<0.01),对N和N×I×P交互作用的响应达到显著水平(<0.05)。

表2 方差分析评估氮水平、补水、牧草类型及其相互作用对牧草生物量的影响

方差分析结果中n.s.表示差异不显著,*表示显著性<0.05,**表示显著性<0.01

Results of ANOVA, n.s. not significant,*Significant at<0.05, **Significant at<0.01

表3中,2016年测产中苜蓿单播(P1)补水(I1)条件下不施氮(N0)和高氮(N2)产量高于不补水(I0),但差异不显著(>0.05);无芒雀麦单播(P2)的产量表现则与P1相反;苜蓿和无芒雀麦混播(P3)I1条件下产量对比I0条件下N0和N1处理的产量同样有所提高。2017年总产量P1在I1条件下随着N增加产量有增加的趋势但并不显著(>0.05),I1施氮的产量高于I0处理;P2表现出N2条件下抑制产量的情况,显著低于N0和N1(<0.05);P3在I0条件下N1的产量显著高于其余处理组(<0.05),平均达到17 801.19 kg·hm-2,除I1N2处理外P3的产量高于P1和P2。

2.2 不同处理对牧草营养成分的影响

不同牧草类型下牧草的营养成份有着较大差异,表4中2017年营养成分平均值中粗蛋白(CP)含量表现为苜蓿单播(P1)处理>苜蓿和无芒雀麦混播(P3)处理>无芒雀麦单播(P2)处理,但有不正常的偏低现象,2016年CP含量不同牧草类型间差距较小;2016 年NDF和ADF的含量低于2017年,因此2016年的RFV高于2017年RFV(表4)。

表3 各处理之间牧草生物量的比较

数据表示为每种牧草种植模式下的平均值±标准误差。同列不同小写字母表示同一时间、同一牧草类型下,不同播种管理模式之间差异显著,<0.05

Data are presented by M±SE. Different lowercase letters in the same column indicate that there are significant differences among different sowing management modes at the same time and under the same grassland type,<0.05

2016年,P1、P2和P3在补水(I)条件相同时均表现为CP含量随着氮水平增加而增加,其中P1N2I0显著高于P1N0I0、P1N1I0、P1N1I1(<0.05),达到最大(19.08%);2017年P3在I0条件下N1水平CP含量(15.12%)显著高于N0(<0.05)。

2.3 不同处理对草地土壤养分的影响

土壤SOC、TN及pH变化量如图2所示,施氮倾向于促使土壤SOC含量负增长,TN含量正增长,pH值负增长,而随着氮水平的增加,表层(0—10 cm)土壤SOC减少量逐渐缩减,亚表层(10—20 cm)土壤SOC减少量先升高后降低(图2-a)。表层土壤TN增长量逐渐降低,亚表层土壤TN增长量先降低后升高(图2-d)。表层土壤pH增长量逐渐降低,亚表层土壤pH增长量先升高后降低(图2-g)。牧草类型的改变导致土壤SOC、TN及pH的变化则与施氮效应并不完全一致,其中无芒雀麦单播时倾向于增加土壤SOC含量,增加pH值,表层土壤SOC增长量苜蓿和无芒雀麦单播显著高于混播(<0.05)(图2-b),表层土壤TN增长量苜蓿单播处理显著高于无芒雀麦单播和混播(<0.05)(图2-e);补水效应倾向于降低土壤SOC含量,提高TN含量,对于pH值表现为不补水时土壤表层增加,亚表层降低,补水时土壤表层的TN和pH值的变化量表层土壤显著高于亚表层土壤。

如图3所示,2016年表层和亚表层的土壤碳氮比(C/N)均高于2017年,表层平均高出17.39%,亚表层平均高出15.18%,表层土壤碳氮比的变化更为明显,其中表层土壤碳氮比2016年P1I1N0最高为8.15,2017年P1I0N2最高为5.67,亚表层土壤碳氮比2016年P1I1N2最高为6.36,2017年P3I1N2最高为5.67。

表4 不同处理对牧草营养成份的影响

数据表示为每种牧草种植模式下的平均值±标准误差。同列不同小写字母表示同一时间、同一牧草类型下,不同播种管理模式之间差异显著,<0.05

Data are presented by M±SE. Different lowercase letters in the same column indicate that there are significant differences among different sowing management modes at the same time and under the same grassland type,<0.05

变化量=现有值-原有值,图中数据条表示平均值±标准误差。下同

3 讨论

3.1 水氮耦合对牧草生物量的影响

有研究表明,水氮添加对牧草生物量有显著促进作用[32-33],本研究结果与前人的结论相似。2017年牧草类型与水、氮的交互及水氮耦合的交互均有显著(<0.05)响应,表明不同牧草对水、氮及水氮耦合的响应不尽相同。表3显示,苜蓿和无芒雀麦混播的产量高于苜蓿、无芒雀麦单播,并且在不补水低氮达到最高,分析其原因为苜蓿单播产量在补水施氮时得到提高,无芒雀麦单播产量在高氮水平下会受到抑制,而当苜蓿和无芒雀麦混播时因无芒雀麦对土壤表面的覆盖减少了土壤水分的蒸发并且混播时豆科牧草会向禾本科牧草转移一部分的氮元素,从而促进禾本科牧草生长发育[34-35]表现为混播对水氮需求的降低;2016年水、氮的添加及其耦合作用对牧草生物量的增加不显著(>0.05),这与DOKOOHAKI等[25]、孙永健等[26]、侯俊等[27]、温超等[28]研究的水氮耦合能够显著提高作物产量的结果并不一致,其原因之一可能是当年种植时间较短,水、氮的添加没有充分发挥作用,随着时间的推移,2017年施氮和牧草类型均对产量有显著影响,说明牧草产量对水氮添加的响应可能要有一个积累的过程,尤其混播播种方式,受影响更为显著;原因之二可能是水氮添加对产量的影响同时要受到牧草对环境条件改变后所发生的生长策略调整作用[33],例如本试验可能存在天然降雨量和人工补水并未达到牧草本身所需数量的情况,牧草会利用根部获取水分来维持生长,降低地上生物量[36]。最终通过不同管理措施条件下对草地生产力影响的评估,结果显示不同生长年份,由于管理措施与气候因素的影响,牧草-水分-氮肥最佳组合年份间存在一定的差异性,后续还需要进一步系统研究,以期获得适宜于呼伦贝尔地区退耕地最佳牧草组合方式。

图3 2016—2017年不同处理组C/N比值变化图

3.2 水氮耦合对牧草品质的影响

建植人工草地时,选择合适的牧草品种加以适当的水肥调控管理措施,可以使干草产量品质得到极大的改善,从而提高粗蛋白含量,增加适口性[37-39]。本研究中2016年苜蓿CP含量随着氮水平增加而显著增加,说明提高土壤养分可以间接促进牧草的养分积累[40-42];2017年混播不补水的低氮处理的CP含量显著高于不补水不施氮处理,表明适当的施氮会显著提高植物蛋白质的积累,而过多的施氮反而会降低氮肥的利用效率[40],对牧草和土壤产生负担[8],可能出现拮抗作用[14];本试验中种植当年3种牧草类型的CP含量未出现显著差异,这是由于禾本科牧草苗期发育缓慢当苜蓿初花期时无芒雀麦正处于小花分化期至孕蕾期之间此时无芒雀麦CP含量较高[43],也致使种植当年幼嫩的植株个体NDF、ADF、RFV明显低于2017年[41];同时在豆科牧草作用下混播草地提高了禾本科牧草的CP含量,降低了NDF和ADF含量,提高了相对饲喂价值。

3.3 牧草类型、施氮及补水对土壤肥力的影响

土壤有机质和全氮是反应土壤肥力的重要指标,它们的关系可以用C/N来表示[44],本研究中2016年表层和亚表层的土壤C/N平均值6.2高于2017年平均值5.3,属肥力较为贫瘠地,而C/N的降低会加快微生物的分解和氮的矿化速率,并且3种植物类型下土壤pH值平均值均呈现负增长,特别在高氮或补水条件下土壤pH值的降低尤为明显,土壤出现酸化现象,这种现象一定程度上有利植物更好的吸收氮素,但也意味着经过一年种植后土壤肥力的降低。本研究中土壤的酸化可能来源于三个方面,一是作物生长时本身酸性物质的分泌,二是外源氮素的添加,三是水分添加导致的淋溶作用。有研究表明[45-46],氮肥大量的施用通常会引起农田土壤的酸化,从图2中可以看出施氮和补水会导致土壤SOC含量负增长,TN含量正增长,这一规律说明外源氮素和水分添加通过改变土壤SOC和TN导致土壤酸化,并且在高氮水平和补水条件下pH值降低更为明显,表明水氮耦合作用下土壤酸化速度加快,其作用机制可能是pH值随氮素的添加而降低,并在补水条件下有利于尿素的水解和转化,形成了土壤酸化发生机率最大的外界环境条件[47]。牧草类型的改变对pH值整体表现为苜蓿、无芒雀麦单播酸化现象大于混播,这可能是豆科牧草本身的固氮作用导致其对土壤TN消耗较小,导致TN累积,pH值下降,并且无芒雀麦的种植使土壤中SOC增长减缓了pH值的下降,而混播则表现出的土壤TN上升减缓,与利用豆科、禾本科牧草混播建立人工草地,可以使豆科牧草已固定的氮素通过土壤转移一部分到相邻禾本科[21-22]的结论基本相似,这也部分解释了混播土壤酸化减缓的原因。

4 结论

呼伦贝尔退耕人工草地在播种第二年,牧草-水分-氮肥的耦合作用对草地生物量具有显著影响,水氮耦合具有一定促进牧草的养分积累的协同效应,其中建植豆-禾混播草地最有利于提高牧草的生物量与营养品质。人工草地的建植会导致C/N降低,土壤肥力下降,在不同牧草类型、补水及施氮水平下均会表现出0—20 cm土层SOC含量、pH值的降低以及土壤TN含量的上升,表明土壤出现酸化现象,豆-禾混播土壤pH值降低幅度小于单播,而高氮和补水会明显加剧土壤pH值的降低。

[1] 汪疆玮, 蒙吉军. 基于DEA的乌审旗退耕政策实施效率的多尺度差异及影响因素分析. 中国水土保持科学, 2014, 12(4): 76-83.

WANG J W, MENG J J. Multi-scale differences and influencing factors of the implementation efficiency of the policy of returning farmland to Wushen Banner based on DEA., 2014, 12(4): 76-83 . (in Chinese)

[2] 张志华, 李小雁, 蒋志云, 桑玉强. 内蒙古典型草原区退耕方式对植物群落特征与土壤特性的影响. 中国水土保持科学, 2017(3): 74-80.

ZHANG Z H, LI X Y, JIANG Z Y, SANG Y Q. Effects of conversion methods on plant community characteristics and soil characteristics in typical grassland areas of Inner Mongolia., 2017(3): 74-80. (in Chinese)

[3] 白梅. 试论草原畜牧业档案在我区草原生态建设中的作用. 内蒙古草业, 2002(4): 15, 6.

BAI M. On the role of grassland animal husbandry archives in grassland ecological construction of Inner Mongolia Autonomous Region., 2002(4):15, 6. (in Chinese)

[4] MUIR J P, PITMAN W D, FOSTER J L, JAMIE L F, JOSÉ C D J. Sustainable intensification of cultivated pastures using multiple herbivore species., 2015, 32(2): 97-112.

[5] 牛书丽, 蒋高明. 人工草地在退化草地恢复中的作用及其研究现状. 应用生态学报, 2004, 15(9): 1662-1666.

NIU S L, JIANG G M. Function of artificial grassland in restoration of degraded natural grassland and its research advance., 2004, 15(9): 1662-1666. (in Chinese)

[6] XU K, WANG H, LI X B, XIAO B L, HONG H L, DENG K C, FENG Y. Identifying areas suitable for cultivation ofL. in a typical steppe of Inner Mongolia.2016, 75: 341.

[7] HAYES R C, LI G D, SANDRAL G A, SWAN T D, PRICE A, HILDEBRAND S, GOWARD L, FULLER C, PEOPLES M B. Enhancing composition and persistence of mixed pasture swards in southern new south wales through alternative spatial configurations and improved legume performance., 2017, 68(12): 1112-1130.

[8] GENC LERMI A, ERDOGDU İ, ALTINOK S. The effects of chemical and organic fertilizer applications on forage yield and quality of smooth brome (L.) under irrigated and non-irrigated conditions., 2018, 16(5): 6087-6094.

[9] 彭安琪, 李小梅, 王红. 8种一年生饲料作物生产性能及相对饲用价值. 草业科学, 2019, 36(2): 510-521.

PENG A Q, LI X M. WANG H, Production performance and relative feed value of eight annual forage crops., 2019, 36(2): 510-521. (in Chinese)

[10] 程帅. 不同种植区域紫花苜蓿人工草地土壤水肥分布规律研究[D]. 杨凌: 西北农林科技大学, 2018.

CHENG S. Study on soil water and nutrient distribution law of alfalfa artificial grassland in different planting areas[D]. Yangling: Northwest Agriculture & Forestry University, 2018. (in Chinese)

[11] 张子龙.高寒地区施肥和混播对燕麦草产量、水肥利用及经济效益的影响[D]. 兰州: 兰州大学, 2018.

ZHANG Z L. Effects of fertilization and mixed planting on forage oat DM yield, water and fertilizer use and economic benefits in alpine region[D]. Lanzhou: Lanzhou University, 2018. (in Chinese)

[12] 徐子婷. 地下滴灌条件下水肥耦合对紫花苜蓿(L.)生长、产量及品质的影响[D]. 北京: 北京林业大学, 2014.

XU Z T. Effects of water and fertilizer coupling on growth, yield and quality ofL.[D]. Beijing: Beijing Forestry University, 2014. (in Chinese)

[13] 杜建军, 阚玉景, 黄帮裕, 李永胜, 王新爱. 水肥调控技术及其功能性肥料研究进展. 植物营养与肥料学报, 2017, 23(6): 1631-1641.

DU J J, BIAN Y J, HUANG B Y, LI Y S, WANG X A. Advances in water and fertilizer regulation techniques and functional fertilizers., 2017, 23(6): 1631-1641. (in Chinese)

[14] 唐雪娟. 水氮管理对呼伦贝尔人工草地建植影响研究[D]. 北京:中国农业科学院, 2018.

TANG X J. Effects of water and nitrogen management on planting of Hulunbuir artificial grassland[D]. Beijing: Chinese Academy of Agricultural Sciences, 2018. (in Chinese)

[15] ZHANG Z, DUAN J, WANG S, LIU C Y, ZHU X X, XU B B Y, CHANG X F, CUI S J. Effects of seeding ratios and nitrogen fertilizer on ecosystem respiration of common vetch and oat on the Tibetan plateau., 2013, 362(1): 287-299.

[16] LI Q, YU P J, LI G D, ZHOU D W. Grass–legume ratio can change soil carbon and nitrogen storage in a temperate steppe grassland., 2016, 157: 23-31.

[17] KARAMANOS R E, STEVENSON F C. Nitrogen fertilizer product and timing alternatives exist for forage production in the Peace region of Alberta., 2017, 93(2): 151-160.

[18] LEMAIRE G, SALETTE J. The effects of temperature and fertilizer nitrogen on the spring growth of tall fescue and cocksfoot., 982, 37: 191-198.

[19] 车敦仁. 高寒牧区栽培禾草施氮的效应曲线及其变化. 草业学报, 1995, 4(4): 1-8.

CHE D R. Response of cultivated grasses to nitrogen applications under high altitude condition.1995, 4(4): 1-8. (in Chinese)

[20] 杨文亭, 王晓维, 王建武. 豆科-禾本科间作系统中作物和土壤氮素相关研究进展. 生态学杂志, 2013, 32(9): 238-242.

YANG W T, WANG X W, WANG J W. Crop-and soil nitrogen in legume-Gramineae intercropping system: research progress., 2013, 32(9): 238-242. (in Chinese)

[21] ZHANG R, GAO T. The research on how different irrigation amount affects the vegetation of degraded grassland., 2011, 3: 1658-1659.

[22] WU G L, HUANG Z, LIU Y F, CUI Z, LIU Y, CHANG X, TIAN F P, LóPEZ-VICENTE M, SHI Z H. Soil water response of plant functional groups along an artificial legume grassland succession under semi-arid conditions., 2019, 278: 107670.

[23] 刘文亭, 卫智军, 吕世杰, 孙世贤, 代景忠. 土地利用方式对荒漠草地生物量分配及碳密度的影响. 中国沙漠, 2016, 36(3): 666-673.

LIU W T, WEI Z J, LV S J, SUN S X, DAI J Z. Estimation of biomass stratose allocation and carbon density in different land-use types indesert grassland., 2016, 36(3): 666-673. (in Chinese)

[24] 成军花. 水肥耦合对作物的影响研究进展. 现代农业科技, 2014(5): 233-234.

CHENG J H. Research progress on the effects of water-fertilizer coupling on crops., 2014 (5): 233-234. (in Chinese)

[25] DOKOOHAKI H, GHEYSARI M, MOUSAVI S F, ZAND-PARSAC S, MIGUEZD F E., ARCHONTOULISD S V, HOOGENBOOM G. Coupling and testing a new soil water module in DSSAT CERES- Maize model for maize production under semi-arid condition., 2016, 163: 90-99.

[26] 孙永健, 马均, 孙园园, 徐徽, 严奉君, 代邹, 蒋明金, 李玥. 水氮管理模式对杂交籼稻冈优527群体质量和产量的影响. 中国农业科学, 2014, 47(10): 2047-2061.

SUN Y J, MA J, SUN Y Y, XU H, YAN F J, DAI Z, JIANG M J, LI Y. Effects of water and nitrogen management patterns on population quality and yield of hybrid rice Gangyou 527., 2014, 47(10): 2047-2061. (in Chinese)

[27] 侯俊, 王帅, 崔士通, 王会刚, 张卫峰. 沙土地有机肥替代化肥与灌溉优化在苜蓿上的耦合效应研究. 中国土壤与肥料, 2018(6): 104-111.

HOU J, WANG S, CUI S T, WANG H G, ZHANG W F. Coupling effect of organic fertilizer substitution for chemical fertilizer and irrigation optimization on alfalfa., 2018(6): 104-111. (in Chinese)

[28] 温超, 单玉梅, 贾伟星, 高丽娟, 杨晓松, 斯日古楞, 张军, 刘永志. 水肥耦合对科尔沁羊草割草场植物群落多样性和生产力的影响. 中国农学通报, 2017, 33(26): 100-106.

WEN C, SHAN Y M, JIA W X, GAO L J, YANG X S, SI RI G L, ZHANG J, LIU Y Z. Effect of water and fertilizer on plant community diversity and productivity inmowing meadow in Horqin., 2017, 33(26): 100-106. (in Chinese)

[29] 李雅璐. 35个苜蓿品种在呼伦贝尔地区生产力状况和营养成分分析[D]. 呼和浩特: 内蒙古农业大学, 2018.

LI Y L. Analysis on the productivity and nutritional components of 35 alfalfa varieties in Hulunbeier[D]. Inner Mongolia Agricultural University, 2018. (in Chinese)

[30] 苏力德, 杨勘, 万志强, 谷蕊, 闫玉龙, 高清竹. 内蒙古地区草地类型分布格局变化及气候原因分析. 中国农业气象, 2015, 36(2): 139-148.

SU L D, YANG Z, WAN Z Q, GU R, YAN Y L, GAO Q Z. Climate change and its impacts on distribution pattern of grassland types in Inner Mongolia., 2015, 36(2): 139-148. (in Chinese)

[31] 张戈丽, 徐兴良, 周才平, 张宏斌, 欧阳华. 近30年来呼伦贝尔地区草地植被变化对气候变化的响应. 地理学报, 2011, 66(1): 47-58.

ZHANG G L, XU X L, ZHOU C P, ZHANG H B, OUYANG H. Responses of vegetation changes to climatic variations in Hulunbuir grassland in past 30 years., 2011, 66(1): 47-58. (in Chinese)

[32] 高中超, 迟凤琴, 赵秋. 施肥对退化草原植物群落产量及土壤理化性质的影响. 草原与草坪, 2007(2): 60-62.

GAO Z C, CHI F Q, ZHAO Q. Effects of fertilization on plant community yield and soil physical and chemical properties in degraded steppe., 2007(2): 60-62. (in Chinese)

[33] JIA J Q, DONG Y S, QI Y C, PENG Q, LIU X C, SUN L J, GUO S F, HE Y L, GAO C C, YAN Z Q. Effects of water and nitrogen addition on vegetation carbon pools in a semi-arid temperate steppe., 2016, 27(3): 621-629. (in Chinese)

[34] 宝音陶格涛. 无芒雀麦与苜蓿混播试验. 草地学报, 2001, 9(1): 73-76.

BAO Y T G T. The experimental study of mix-sowing ofand., 2001, 9(1): 73-76. (in Chinese)

[35] 谢开云, 张英俊, 李向林, 何峰, 万里强, 王栋, 秦燕. 无芒雀麦和紫花苜蓿在(1:1)混播中的竞争与共存. 中国农业科学, 2015, 48(18): 3767-3778.

XIE K Y, ZHANG Y J, LI X L, HE F, WAN L Q, WANG D, QIN Y. Competition and coexistence of alfalfa (L.) and smooth brome (Layss.) in mixture., 2015, 48(18): 3767-3778. (in Chinese)

[36] 潘庆民, 白永飞, 韩兴国, 杨景成. 氮素对内蒙古典型草原羊草种群的影响. 植物生态学报, 2005, 29(2): 311-317.

PAN Q M, BAI Y F, HAN X G, YANG J C. Effects of nitrogen additions on apopulation in typical steppe of inner Mongolia., 2005, 29(2): 311-317. (in Chinese)

[37] 李海, 安沙舟, 王高峰, 贠静, 邓海峰, 马江飞. 不同改良措施对草甸草原群落结构和效益影响的研究. 新疆农业科学, 2012, 49(2): 304-309.

LI H, AN S Z, WANG G F, YUAN J, DENG H F, MA J F. Study on the effects of different improvement measures on community structure and benefits of meadow steppe., 2012, 49(2): 304-309. (in Chinese)

[38] 刘敏, 龚吉蕊, 王忆慧, 张梓榆, 徐沙, 罗亲普. 豆禾混播建植人工草地对牧草产量和草质的影响.干旱区研究, 2016, 33(1): 179-185.

LIU M, GONG J R, WANG Y H, ZHANG Z Y, XU S, LUO Q P. Effects of planting artificial grassland with soybean-grass mixture on forage yield and quality., 2016, 33(1): 179-185. (in Chinese)

[39] 徐丽君, 杨桂霞, 辛晓平, 乌恩奇, 青格勒, 朱树声, 董民. 不同混播模式下草地营养成分综合评价. 草业科学, 2014, 31(2): 278-283.

XU L J, YANG G X, XIN X P, WU E Q, QING G L, ZHU S S, DONG M. Comprehensive evaluation of nutrition of grassland under different mixed sowing patterns., 2014, 31(2): 278-283. (in Chinese)

[40] 干珠扎布, 段敏杰, 郭亚奇, 张伟娜, 梁艳, 高清竹, 旦久罗布, 白玛玉珍, 西绕卓玛.喷灌对藏北高寒草地生产力和物种多样性的影响. 生态学报, 2015, 35(22): 7485-7493.

GAN Z Z B, DUAN M J, GUO Y Q, ZHANG W N, LIANG Y, GAO Q Z, DAN J L B, BAIMA Y Z, XI R Z M. Effects of sprinkling irrigation on productivity and species diversity of alpine grassland in northern Tibet., 2015, 35(22): 7485-7493. (in Chinese)

[41] 王平, 周道玮, 姜世成. 半干旱地区禾–豆混播草地生物固氮作用研究. 草业学报, 2010, 19(6): 276-280.

WANG P, ZHOU D W, JIANG S C. Research on biological nitrogen fixation of grass-legume mixtures in a semi-arid area of China., 2010, 19(6): 276-280. (in Chinese)

[42] WANG C T, WANG G X , LIU W, WANG Y, HU L, MA L. Effects of establishing an artificial grassland on vegetation characteristics and soil quality in a degraded meadow., 2013, 59(3): 141-153. (in Chinese)

[43] 车敦仁, 王大明, 晋德馨. 无芒雀麦草地营养物质生产量季节动态的研究. 青海畜牧兽医杂志, 1996(6): 1-3

CHE D R, WANG D M, JIN D X. Seasonal dynamics of nutrient content and production of smooth bromegrass grassland., 1996(6): 1-3. (in Chinese)

[44] 张春华, 王宗明, 居为民, 任春颖. 松嫩平原玉米带土壤碳氮比的时空变异特征. 环境科学, 2011, 32(5): 1407-1414.

ZHANG C H, WANG Z M, JU W M, REN C Y. Spatial and temporal variability of soil C/N ratio in Songnen Plain maize belt., 2011, 32(5): 1407-1414. (in Chinese)

[45] 郑海霞, 齐莎, 赵小蓉, 李贵桐, Kölbl Angelika, 林启美. 连续5年施用氮肥和羊粪的内蒙古羊草() 草原土壤颗粒状有机质特征.中国农业科学, 2008, 41(4):1083-1088.

ZHENG H X, QI S, ZHAO X R, LI G T, KÖLBL A, LIN Q M. Characters of soil particulate organic matter under five-year application of n fertilizer and sheep manure ingrassland of Inner Mongolia., 2008, 41(4):1083-1088. (in Chinese)

[46] 魏金明, 姜勇, 符明明, 张玉革, 徐柱文. 水、肥添加对内蒙古典型草原土壤碳、氮、磷及pH的影响. 生态学杂志, 2011, 30(8): 1642-1646.

WEI J M, JIANG Y, FU M M, ZHANG Y G, XU Z W. Effects of adding water and fertilizer on soil carbon, nitrogen, phosphorus and pH of typical grassland in Inner Mongolia., 2011, 30(8): 1642-1646. (in Chinese)

[47] 沈月, 依艳丽. 不同水氮耦合条件下土壤氮素转化特征[EB/OL].北京: 中国科技论文在线 [2014-03-13]. http://www.paper.edu.cn/ releasepaper/content/201403-436.

SHEN Y, YAN L L. Characteristics of soil nitrogen transformation under different water-nitrogen coupling conditions [EB/OL]. Beijing:[2014-03-13]. http:// www.paper.edu.cn/releasepaper/content/201403-436. (in Chinese)

Coupling Mechanism of Herbage-Water-Nitrogen Fertilizer in Abandoned Farmland in Meadow Steppe

LI Da1, FANG HuaJun2, WANG Di1, XU LiJun3, TANG XueJuan3, XIN XiaoPing3, NIE YingYing3, Wurenqiqige4

(1Institute of Animal Husbandry Science of Baicheng/Hulunber Grassland Ecosystem Observation and Research Station/National Forage Industry Technology System Baicheng Station, Baicheng 137000, Jilin;2Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101;3Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Hulunber Grassland Ecosystem Observation and Research Station, Beijing 100081;4Hulunber University/Key Laboratory of Meadow Grassland Ecosystem and Global Change in Inner Mongolia Autonomous Region, Hulunber 021800, Inner Mongolia)

【】The study was to investigate the effects of three factors, including water replenishment, nitrogen application, and pasture type, on the biomass, plant nutrient composition and soil quality of artificial grassland communities by planting artificial grassland with different planting patterns of Hulunber, and to reveal the retreat of Hulunbuir area and the water-fertilizer coupling mechanisms of cultivated land artificial grassland, so as to optimize the mode of planting management. 【】 The experiment was carried out at the Hulunber Grassland Ecosystem Observation and Research Station. On June 6, 2016, the experiment began with four blocks, each of which included three test factors pasture types (P) and nitrogen application level (N) and Irrigation (I); forage types included three treatments: alfalfa (P1), awnless brome (P2), and alfalfa and awnless brome 1:1 mixed sowing (P3); nitrogen application levels included no nitrogen (N0), low nitrogen (N1: 75 kgN·hm-2·a-1) and high nitrogen (N2: 150 kgN·hm-2·a-1). The hydration included two levels (I0: no water, I1: hydration). There were 72 test plots, each of which was 7 m×10 m, and the row spacing was 1 m; it replenished the water 3 times every year in June, July and August, and the water per unit area was 20 mm. The nitrogen application (chemical pure urea) was twice in the seedling (returning) and tillering stages, respectively. Grassland biomass, nutrients (plant crude protein, neutral detergent fiber and acid detergent fiber) and soil nutrients (soil total nitrogen, soil organic carbon and soil pH) were measured in 2016 and 2017. 【】(1) The response of (N), (I), (P) and (P×I) to yield in the year of planting (2016) reached a significant level (<0.05), and two measurements in 2017. The total yield of the production reached a significant level (<0.05) in response to test factors such as (N), (P), (P×I), (P×N), (N×I×P), and mixed (P3). Under low water (I0) conditions, the yield of low nitrogen (N1) was significantly higher than that of the other treatment groups (<0.05), with an average of 17 801.19 kg·hm-2. (2) The crude protein content in 2016 and 2017 were P1treatment>P3treatment>P2treatment, in 2016. P1, P2and P3treatment showed that the CP content increased with the increase of nitrogen level when the hydration (I) conditions were the same, and P1was not replenished under water (I0) conditions. The crude protein content under P1N2I0was significantly higher than that under P1N0I0, P1N1I0, and P1N1I1(<0.05), reaching a maximum value of 19.08%; in 2017, under P3at I0conditions, the CP content of the lower N1level (15.12%) was significantly higher than that of N0(<0.05). (3) Both nitrogen application and water addition promoted the negative growth of soil SOC content, positive TN content, and negative pH growth. The SOC growth of the topsoil and the bromegrass were significantly higher than that of the mixed seeding (<0.05), and the TN growth of the topsoil was significantly higher than that of the bromegrass and mixed seeding (<0.05); under the surface and subsurface of 2016, the ratio of soil carbon to nitrogen (C/N) was higher than that of 2017, the average surface layer was 17.39% higher, and the subsurface layer was 15.18% higher. The carbon and nitrogen ratio of surface soil was more obvious. The surface soil carbon and nitrogen ratio was P1N0I1in2016, with the highest value of 8.15; in 2017, the highest value under P1N2I0was 5.67. The carbon and nitrogen in the subsurface soil was 6.36 higher than that under P1N2I1in 2016, and the highest under P3N2I1in 2017 was 5.67. 【】 In the second year of planting in Hulunber, the coupling effect of herbage, water and nitrogen fertilizer had a significant effect on the biomass of the grass. The coupling effect of water and nitrogen fertilizer had a synergistic effect on the nutrient accumulation of the grass. The construction of artificial grassland plant could reduce a C/N and soil quality to drop, and adding in different kinds of grass, and water and nitrogen levels all showed the 0-20 cm soil SOC content and pH value were lower and soil TN content increased, indicating that soil acidification occurs, bean-grain mixed soil pH lower amplitude was less than unicast, and high nitrogen and filling water could be reduced to a significantly increased the soil pH value.

artificial grassland; nitrogen application; adding water; mixed sowing of bean-grass; community biomass; soil nutrients; Hulunber

10.3864/j.issn.0578-1752.2020.13.017

2019-09-22;

2019-12-26

国家重点研发计划(2016YFC0500603,2018YFF0213405)、国家自然科学基金项目(417018)、国家现代农业产业技术体系建设专项(Cars-34)

李达,E-mail:547273612@qq.com。通信作者徐丽君,E-mail:xulijun@caas.cn

(责任编辑 林鉴非,李云霞)

猜你喜欢

混播表层牧草
冀西北坝上地区豆禾混播草地建植第三年草地生产力变化研究
混播比例及播种方式对老芒麦与紫花苜蓿混播系统生产力及种间关系的影响
苜蓿与3种多年生禾草混播效应研究
牧草病虫害及牧草保护工作探析
混播草坪的研究现状和未来展望
养兔牧草品种咋选择
路基基床表层级配碎石施工技术
牧草的种植管理与利用
关于莫高窟第130窟“谒诚□化功臣”的身份问题——兼及表层壁画年代再讨论
表层