光学相干断层扫描血管造影在眼底微血管定量分析中的研究进展
2020-07-04姜利刚童毓华
姜利刚 童毓华
[摘要] 光学相干断层扫描血管造影通过连续探测同一位置的血管内红细胞运动,生成三维血流信息,获取高分辨率的眼底血管图像。分频幅去相关血流成像演算技术,减少了因眼球轴向运动和组织运动产生的噪点及伪影,优化了信噪比,使得对毛细血管网的检测更具有连贯性。光学相干断层扫描血管造影目前已应用于糖尿病性视网膜病变、年龄相关性黄斑变性、视网膜血管阻塞、青光眼、中心性浆液性脉络膜病变等疾病的诊疗中,具有广阔的临床应用及科研前景。本文就光学相干断层扫描血管造影在眼底微血管定量分析中的应用作综合性论述。
[关键词] 光学相干断层扫描血管造影;糖尿病性视网膜病变;年龄相关性黄斑变性;视网膜血管阻塞;青光眼;中心性浆液性脉络膜病变
[中图分类号] R774.1 [文献标识码] A [文章编号] 1673-9701(2020)12-0184-09
[Abstract] Optical coherence tomography angiography generates three-dimensional blood flow information by continuously detecting the movement of red blood cells in the same location, and obtains high-resolution images of fundus vessels. The split-spectrum amplitude decorrelation angiography(SSADA) reduces the noise and artifacts caused by the axial movement of the eyeball and tissue movement, optimizes the signal-to-noise ratio, and makes the detection of the capillary network more consistent. Optical coherence tomography angiography has been applied to the diagnosis and treatment of diseases such as diabetic retinopathy, age-related macular degeneration, retinal vascular obstruction, glaucoma, and central serous choroidal disease. It has broad clinical application and scientific research prospects. This article makes a comprehensive discussion on the application of optical coherence tomography angiography in the quantitative analysis of fundus microvasculature.
[Key words] Optical coherence tomography angiography; Diabetic retinopathy; Age-related macular degeneration; Retinal vascular obstruction; Glaucoma; Central serous choroidal disease
光学相干断层扫描(optical coherence tomography,OCT)是一种非侵入性的成像方式,可以对视网膜进行详细地结构视觉化,最早的报道见于1991年Huang D博士[1]发表在Science的关于OCT的论文,其叙述了OCT的基本原理,与B型超声波很相似,区别在于它是探测光的反射而不是探测声的反射。OCT 有助于临床医生发现和监测视网膜血管疾病中液体的渗出,但無法直接发现毛细血管无灌注区和新生血管,临床上常用荧光素眼底血管造影(fundus fluorescein angiography,FFA)或吲哚箐绿血管造影检查(Indocyanine green angiography,ICGA)来检测这些变化,而这两项属于侵入性检查方式,需要注射造影剂,对身体造成不可避免的损伤。为克服传统OCT无法直接提供血流信息的弊端以及眼底微血管侵入性检查带来的副作用,光学相干断层扫描血管造影(optical coherence tomography angiography,OCTA)逐渐被开发,通过连续探测同一位置的血管内红细胞运动[2],生成三维血流信息,获取高分辨率的眼底微血管图像。分频幅去相关血流成像(split-spectrum amplitude-decorrelation angiography,SSADA)演算技术,在一定程度上减少了因眼球轴向运动和组织运动产生的噪点及伪影,优化了信噪比,使得对眼底微血管的检测更具有连贯性。OCTA可以对区域血流进行量化,血流指数(flow indices,FI)和血管密度(vessel density,VD)[3-5]可以从分层扫描(en-face)最大的投射血流图上确定。FI在选定的区域以平均去相关值计算,VD在选定的区域以血管和微血管系统所占的面积百分比来计算。目前OCTA已经成为一种非侵入性的策略,是OCT的功能扩展,可视化眼底微血管系统,而无需使用外源性静脉注射染料[6-7]。最重要的是能够量化VD、FI以及黄斑中心凹无血管区(foveal avascular zone,FAZ)的面积[8-14],具有广阔的临床应用及科研前景,下面就OCTA在眼底微血管定量分析中的应用进行综合性论述。
1 OCTA 在眼底微血管中的定量分析
1.1 糖尿病性视网膜病变(diabetic retinopathy,DR)
1.1.1 DR临床特点及OCTA的优势 DR是50岁以上人群主要致盲的眼病之一,早期可能无明显症状,随着疾病进展会导致严重的视力丧失。DR的主要病理学特点是微血管瘤、毛细血管无灌注区、新生血管、视网膜毛细血管迂曲扩张、FAZ扩大、旁中心凹毛细血管区域增加、脉络膜毛细血管层异常改变等。根据DR发展阶段和严重程度,可分为非增殖性糖尿病性视网膜病变(non-proliferative diabetic retinopathy,NPDR)和增殖性糖尿病性视网膜病变(proliferative diabetic retinopathy,PDR)。DR主要威胁视力的并发症是糖尿病性黄斑病变,包括糖尿病性黄斑水肿(diabetic macular edema,DME)和糖尿病性黄斑缺血(diabetic macular ischemia,DMI)以及PDR引起的并发症——玻璃体出血和视网膜脱离。临床上DR的诊断金标准是FFA,通过观察FFA图像上荧光造影剂的充盈和渗漏情况,了解眼底微血管形态结构的改变。数字视网膜眼底图像分析已被证明能够在常规DR筛查中检测早期DR和DME,尽管它具有很高的敏感性和特异性,但阴性预测值较低[15]。而随着OCTA技术不断地发展,其可提供无创、快捷、定量的检查,已广泛应用于临床,能够获得视网膜脉管系统的三维图像[16-17],显示视网膜不同层面的血流[18],观察视盘周围毛细血管网,最重要的是可以利用OCTA定量分析眼底微血管的改变。
1.1.2 OCTA定量评估眼底微血管及预测DR分级 Ting等[19]使用OCTA评估2型糖尿病患者的视网膜微血管系统,定量监测糖尿病患者视网膜微血管的变化,评估高血压、高脂血症、吸烟和肾功能不全等全身血管危险性因素对DR微脉管系统的影响,但是,这些发现与视力的相关性目前仍未知,需要在更多患者中开展进一步的研究加以证实。同年Durbin等[20]评估50只眼的视网膜血管,获取了VD以及与DR严重程度相关的毛细血管闭合的定量数据,并且不需要眼底图像就可以对DR进行诊断和监测,但其未对外部干扰因素进行分析,比如糖尿病病程长短、治疗、性别以及血糖控制情况,另外,同一个体的两只眼之间相关性也未做明确阐述。Johannesen等[21]对8项研究DR患者FAZ面积的变化进行了系统评价,其中7项研究发现,NPDR患者FAZ面积增大,6项关于DR的OCTA研究发现,与健康对照组相比,PDR患者FAZ面积增大,黄斑中心凹毛细血管灌注减少,而且DR的严重程度与FAZ面积呈正相关[22]。
OCTA可以更容易、更准确地测量FAZ面积,Takase等[23]发现,与传统手动测量相比,OCTA能够快速、准确地计算出FAZ面积,该研究不足之处是未对DR进行系统分级,而最近一项回顾性研究[24]在DR分级方面做了相关论述,74例糖尿病患者的98只眼通过OCTA测量VD来早期检测非增殖性DR毛细血管密度的变化,结果是可靠的。VD的定量评估对于预测分级、选择治疗方案和随访治疗效果至关重要,并可预测DR的进展[25]。
1.1.3 OCTA或许可以为早期诊断DR提供定量数据 Simonett等[26]对NPDR和健康对照组使用OCTA自动定量软件计算表层视网膜毛细血管丛(superficial retinal capillary plexus,SCP)和深层视网膜毛细血管丛(deep retinal capillary plexus,DCP)的黄斑VD和FAZ面积,分析得出DM1患者的DCP的黄斑VD明显降低,而SCP的黄斑VD、FAZ面积没有显著差异,提示DCP的灌注异常或许是DM1的早期表现,與健康对照组相比,糖尿病患者的SCP和DCP均降低,而DCP降低更大[27-28],我们认为DCP血管参数的测量存在一定的误差,浅表视网膜血管的投射伪影会干扰深部血流信号,手工校正存在一定的主观性,需要更大的样本量及相关研究进一步论证。OCTA对视网膜非灌注区的定量分析可能有助于早期发现和监测糖尿病和DR的进展[29-30],并且能够量化黄斑区血流灌注[31],便于我们对疾病进行分期分类,从而更好地了解DR的病理生理机制及有助于指导治疗[32]。
1.2 年龄相关性黄斑变性(age-related macular degeneration,AMD)
1.2.1 AMD病理学特点及分型 AMD是60岁以上老人不可逆性视力丧失的主要原因,为黄斑区结构的衰老性改变。主要表现为视网膜色素上皮细胞对视细胞外节盘膜吞噬消化能力下降,分为渗出性和非渗出性两种形式。非渗出性AMD的特征是黄斑区玻璃膜疣、色素紊乱及地图样萎缩,渗出性AMD是由于脉络膜新生血管膜(Choroidal neovascularization,CNV)的形成而发生的,导致视网膜色素上皮层(retinal pigment epithelium,RPE)下或感觉层视网膜下液体渗漏和出血,根据与RPE位置关系可分为3种类型,Ⅰ型CNV起源于脉络膜,主要在玻璃膜(Bruch's membrane)和视网膜色素上皮之间;Ⅱ型CNV位于视网膜色素上皮之上;而Ⅲ型CNV即视网膜内型,是Ⅰ型和Ⅱ型的混合型。严重的视力丧失主要归因于两个过程:非渗出性AMD晚期发生地图样萎缩和CNV的形成[33]。
1.2.2 OCTA定量分析渗出性AMD中CNV的血流量和面积 2014年Jia等[34]进行了一项观察性横断面研究,使用OCTA对5例渗出性AMD的眼睛和5例年龄匹配的正常对照组进行扫描,提供了CNV的详细图像和数据,获取有关CNV血流量和面积的定量信息,结果具有显著差异,其还对渗出性AMD的发病机制做了相关阐述,而该研究尚存在不足之处,比如缺乏足够的样本量,不同种族及个体之间具有差异。随后,多项研究扩大样本量[35-38]相继论证OCTA具有定量分析三种CNV的能力,敏感性从50%~100%不等。与FFA和ICGA相比,OCTA是一种无创的成像技术,是评估CNV的有价值工具之一,在检测渗出性AMD以及评估治疗效果方面迅速发展[39]。Coscas等[40]报道关于玻璃体腔内注射抗血管内皮生长因子(vascular endothelial growth factor,VEGF)前后,比较CNV面积的变化,抗VEGF治疗后CNV面积在一定程度上减少,大量研究[41-45]同样证实了上述观点,并且Ⅱ型CNV面积的减少大于Ⅰ型CNV,或许是由于抗VEGF药物不易渗透至RPE层下,导致对Ⅱ型CNV的疗效更好。由此可见,OCTA可以对脉络膜毛细血管微血管进行无创监测,尤其对于CNV的识别及评估抗VEGF治疗的疗效,目前抗VEGF治疗已广泛应用于临床,而不同抗VEGF药物的疗效也存在一定差异,通过OCTA可进一步定量分析各种抗VEGF药物的疗效。
1.2.3 OCTA在非渗出性AMD定量分析中的应用 OCTA在非渗出性AMD中也得到了进一步的发展。Shin等[46]使用OCTA评估83只干性AMD眼和83只年龄和性别相匹配的正常眼,定量分析了VD、FAZ和灌注密度(perfusion density,PD),结果显示了非渗出性AMD患者的黄斑中心凹微循环的改变,VD、PD较对照组减少,而FAZ面积增大,同时,年龄、最佳矫正视力(best corrected visual acuity,BCVA)、中央黄斑厚度(central macular thickness,CMT)和神经节细胞内丛状层(ganglion cell-Inner plexiform layer,GC-IPL)厚度与整个区域的VD和PD可能存在相关性,提示了在分析非渗出性AMD患者的OCTA数据时,应考虑年龄、BCVA、CMT和GC-IPL厚度的影响,尤其在非渗出性AMD患者的VD和PD临床评估期间,GC-IPL厚度特别重要。此观点与Waheed[47]一致。虽然非渗出性AMD引起的微血管变化使SCP灌注减少,从而缺血导致GC-IPL变薄,而由于是横断面研究,我们无法确定视网膜内侧变薄与黄斑中心凹微血管灌注减少之间的因果关系,因此应进行其他前瞻性纵向研究以进一步探讨这种相关性。
非渗出性AMD的另一个重要发现是检测到静止的、非渗出的CNV[48-51]。ICGA下可观察到这些病变的存在[52-53],但检出率较低,而OCTA可以迅速准确地识别,值得一提的是玻璃疣和RPE层脱离的投影伪影很容易被误解为CNV,因此必须对OCTA图像进行详细地分析,以避免出现假阳性图像,另外不要对其进行贸然处理,这些无症状的病灶可能给RPE和感光细胞提供营养,抗VEGF治疗可能诱发黄斑萎缩。OCTA可以提供新血管膜的结构、大小、位置和血流的详细可视化,在用常规成像进行检测之前,对识别非渗出性“亚临床CNV”病变具有重要意义。
1.3 视网膜血管阻塞
1.3.1 视网膜血管阻塞中OCTA的优势 视网膜结构精细,功能复杂,易受到自身血管疾病和全身血管性疾病的影响,最典型的就是视网膜动静脉阻塞。视网膜动脉阻塞(retinal artery occlusion,RAO)是损害视力的急性发作的严重眼病,而视网膜静脉阻塞(retinal vein occlusion,RVO)是继DR后引起视网膜血管疾病的第二常见原因,并且是视力丧失的常见原因。OCTA提供了视网膜毛细血管丛的详细图像和病理结构的定量数据,具有不同的血管模式,可对视网膜血管疾病进行鉴别[54],还可以显示几乎所有的FFA结果,例如急性和慢性RVO的特征,毛细血管灌注减少,黄斑水肿,血管扩张,FAZ面积扩大[55-56]。OCTA技术可作为RVO 诊断和随访的临床工具,提供以前FFA和ICGA无法观察到的血管细节以及定量的眼底微血管数据。
1.3.2 OCTA定量评估及分析抗VEGF药物的疗效 Winegarner[57]观察到视网膜中央静脉阻塞(central retinal vein occlusion,CRVO)眼玻璃体腔内注射阿柏西普后,SCP、DCP血流灌注增加,BCVA与SCP、DCP的VD相关,但其无法直接比较治疗前后的血流灌注参数,需要进一步的前瞻性研究来确定维持视网膜灌注所需的最佳抗VEGF治疗剂量。同年Sellam[58]进一步评估RVO合并黄斑水肿患者玻璃体腔内注射抗VEGF药物的疗效,通过OCTA定量监测抗VEGF治疗前后血管血流量的变化,结果显示抗VEGF治疗后患者的SCP和DCP血流灌注显著改善,FAZ面积也较前变小,改善了视网膜血流量,特别是在视网膜深层[59],但有一点值得注意的是,该项研究中的浅表视网膜血流会干扰OCTA识别深部血流信号,导致DCP血流密度参数存在一定误差,希望在未来的技术开发中,可以对分层定界识别算法进行充分完善,以提高精确度。
1.3.3 OCTA早期定量监测视网膜血管阻塞的进展 Wakabayashi等[60]通过OCTA定量分析证实了黄斑水肿患者的SCP和DCP的VD均降低。此外,VD及FAZ面积大小与视觉功能密切相关[61-63]。Chung等[64]通过比较RVO的OCTA和FFA成像特点,肯定了其在临床管理中的作用,虽然 FFA可以提供周边视网膜的血管成像,但OCTA在评估FAZ面积和毛细血管非灌注方面更为精确[65]。可见,OCTA具有精确检测眼底异常微血管的能力,以达到早期诊断和预防疾病的目的,在临床上完全可以应用OCTA检测记录视网膜VD、FAZ面积等指标来早期监测疾病的进展[66-68],对于监测视网膜动脉闭塞临床过程中血管流量的变化具有重要意义[69]。Bonini等[70]描述了RAO患者的视网膜微脉管系统,并认为OCTA可以准确识别不同层面的视网膜毛细血管,足够敏感地评估黄斑缺血的程度并监测RAO过程中的血管流量变化。而一项回顾性观察性研究[71]纳入19名RAO患者(發病7天内)和19名年龄和性别匹配的正常对照个体,对所有患者进行全面的眼科检查和OCTA检查。RAO患者SCP、DCP的PD显著低于对侧眼睛,CMT与视网膜中央动脉阻塞(entral retinal artery occlusion,CRAO)患者的BCVA相关,另外,还发现与健康对照个体相比,RAO正常眼SCP的PD降低。我们猜测在RAO发作之前可能存在慢性微血管变化,这些微血管变化可能导致RAO发作,甚至导致其他心脑血管事件的发生。因此,SCP中PD的降低可能是RAO的潜在预测因素。Seknazi等[72]通过OCTA对65只RVO眼的FAZ面积以及毛细血管血流密度与FFA周边无灌注区进行相关性分析,发现FAZ面积与FFA周边无灌注区呈正相关,DCP的PD与FFA周边无灌注区呈负相关,说明视网膜缺血状态与FAZ面积呈正相关,与DCP的PD呈负相关,但没有对FAZ面积与PD进行直接相关性比较分析。关于FAZ面积与VD及视力的相关性有待更进一步的前瞻性研究和足够的样本量来验证,而最近从FAZ导出了两个附加参数:非圆度指数(Acircularity Index,AI)和FAZ范围300 μm宽度内的血流密度(FD-300)。AI为FAZ的周长除以相等面积的标准圆形周长[73-75],用于评估FAZ的圆形性,AI比FAZ更为敏感,CRAO和BRAO患者的AI较高。FD-300代表FAZ周围300 μm宽度内的血流密度,CRAO和BRAO患者中的FD-300与健康对照组相比也有所降低[76],随着更多相关性研究的陆续报道[77-80],上述两个参数可提供更深入、更详细的血管信息,到达精确检测眼底微血管改变及早期诊断疾病的目的。
1.4 青光眼(Glaucoma)
1.4.1 青光眼发病机制及视乳头血流特点 青光眼是全世界不可逆性失明的主要原因,眼内压(intraocular pressure,IOP)升高被认为是青光眼发生和发病的主要危险因素,而且视乳头及其周围灌注减少、血管调节紊乱等其他血管因素在青光眼中也发挥着重要作用[81-84]。眼部血流功能障碍与青光眼发病机制相关的证据已有多年的研究[85-87],视乳头的血供除表层来自视网膜中央动脉外,其余筛板前区、筛板区和筛板后区主要来自睫状后短动脉。其中筛板前区血供,除直接来自睫状后短动脉的分支及少数脉络膜动脉分支外,还由Zinn环发出的脈络膜动脉分支供应,视网膜中央动脉与睫状后短动脉系统分别在筛板后区软膜血管网和眼外段视神经内吻合[88]。
1.4.2 传统检查方法的局限性及OCTA的优势 既往研究中已经尝试了多种技术来定量分析视乳头及其周围的血流量,FFA和ICGA均显示青光眼眼底微血管血流发生改变,但只是定性而非定量的评估,并且检查具有侵入性,具有严重不良反应的风险。此外,两种模式相对较低的分辨率和二维的定性评估限制定位异常血管的能力。磁共振血管造影理论上可以用于对视乳头进行三维定量评估,但在临床实用性方面存在明显局限性,并且难以达到所需检测视神经微循环缺陷的详细程度。激光流量计研究已经发现了青光眼和正常对照组之间的血流差异,但是该技术的临床应用受到变异性的限制。彩色多普勒超声检查在分辨率方面受到较大限制,只能用于检查眼睛的大血管。OCTA是一种新兴技术,可以提供详细的可量化参数,从而可以更客观地评估视乳头及其周围的微血管。
1.4.3 OCTA定量分析视乳头及其周围血流量 Jia等[89]于2012年首次在黄斑部和视乳头及其周围测试SSADA算法,发现与其他算法相比,它显著提高流量检测的信噪比。2014年,Jia等[90]又使用OCTA定量分析视乳头及其周围血流量,注意到青光眼与健康眼相比,视乳头周围视网膜血流量降低,青光眼患者视乳头周围血流量约减少25%。后来上述观点在一组83例青光眼患者和74例同龄健康对照组比较后得到了进一步论证[91],而该研究的局限性在于其没有评估糖尿病、系统性高血压、眼灌注压、抗青光眼药物与视乳头及其周围血管密度的相关性。因此不能排除全身性疾病、抗青光眼药物对视乳头及其周围血管密度测量的影响。Park等[92]比较正常眼压性青光眼和高眼压性青光眼患者的视乳头及其周围血管密度,发现高眼压性青光眼患者视乳头周围血管密度降低,而正常眼压性青光眼和健康对照组之间没有差异。而最近一项研究报道[93],与年龄和性别相匹配的正常人相比,正常眼压性青光眼和高眼压性青光眼患者的视乳头及其周围血管密度均降低,而正常眼压性青光眼组显著降低,造成两种研究结果不一致的原因尚不清楚,但是,这种不一致可能归因于各个研究参与者的种族、年龄、OCTA设备和青光眼严重程度的差异。
1.5 中心性浆液性脉络膜病变(central serous chorioretinopathy,CSC)
1.5.1 CSC发病机制 CSC是一种常见的获得性黄斑病变,本病发病机制过去有人认为是炎症刺激和血管痉挛等因素造成,目前公认的发病机制是由于RPE层细胞屏障功能的受损,而最近Shinojima等[94]的研究指出,CSC 的发病机制或许另有原因,OCTA 可为阐明CSC发病机制提供重要的信息,其特征为后极部视网膜下积液,形成黄斑部视网膜神经上皮浅脱离,因RPE层屏障破坏导致液体外流到视网膜下间隙。慢性CSC 患者中可观察到多种晚期并发症,如CNV、视网膜囊性改变、视网膜下纤维化等,都可导致永久性视力损害。
1.5.2 OCTA定量评估脉络膜毛细血管(Choroidal capillaries,CC)血流量 最近相关研究[95]对CSC患者的CC血流量进行定量评估,发现CSC患者中的血管异常,CC血流量灌注不足,提示原发性脉络膜病变中或许存在着缺血性过程,因此可以通过OCTA 定量分析CC血流量来评估HD-PDT 疗法对CSC的治疗效果。Fujita等[96]阐述通过观察6只患有慢性CSC患眼,在半量光动力疗法(half-dose verteporfin photodynamic therapy,HD-PDT)治疗之前、治疗1周后和治疗1个月后分别用OCTA自动定量分析,比较HD-PDT治疗前后CC血流量面积的差异。结果显示慢性 CSC在经过HD-PDT治疗后,异常血流量逐渐减少,在HD-PDT治疗1个月后不规则区域的脉络膜毛细血管血流量减少,与脉络膜厚度减少一致,该研究的局限性在于随访时间较短以及样本量尚有不足。随后,Xu等[97]便将28例CSC患者共33只眼纳入研究,通过OCTA计算HD-PDT治疗前后CC的血流量差异,观点一致,并指出PDT治疗后会导致短期CC灌注不足。同样,该研究HD-PDT治疗后的随访时间较短,缺乏高精确度的定量软件对异常血流进行系统分析。OCTA进行的纵向观察或许有助于确定CSC是否转变为息肉样脉络膜血管病变(polypoidal choroidal vasculopathy,PCV),但是需要进行更大样本量的研究,以加深我们对这种诊断方法的了解以及收集更多信息以验证此成像技术在临床实践中的应用。
2 OCTA目前的局限性与展望
OCTA是一种新兴的有前景的成像技术,可以显示眼底微血管和计算眼底微血管血流参数,作为目前眼科研究和临床实践的新型诊断工具,可以帮助弥补其他成像技术的不足,以建立诊断和监测疾病进展,最值得一提的就是其可以定量分析眼底微血管的VD和FI,相比FFA或ICGA的定性观察,OCTA实现了重大突破。
虽然OCTA具有快速图像采集、高重复性和无侵入性等优势,但这种新的成像方式仍然存在许多局限性:①当前可用的扫描范围有限,对周边部视网膜无法评估,也无法与标准和超广角的FFA和ICGA相提并论[98],扫描范围越小,采集速度越快,分辨率越高,但是,扫描范围越小,病变可能位于其外部且检出率越低。②屈光介质和低固视能力:玻璃体浑浊、玻璃体积血、白内障、眼球震颤等均能影响成像的质量和效率。③由于检测血流速度的范围有限,容易遗漏过快、过慢或者混浊的血流信号。④投射伪影,浅表或深部视网膜血管的投射伪影会干扰脉络膜脉管系统的血流信号,干扰了对更深组织的评估与测量[99]。⑤无法检测血管渗漏和功能性血管疾病。⑥由于仪器分辨率的限制,可能无法检测一些低流量的新生血管膜。
[14] Stana D,Potop V,Istrate SL,et al. Foveal avascular zone area measurements using OCT angiography in patients with type 2 diabetes mellitus associated with essential hypertension[J].Rom J Ophthalmol,2019,63(4):354-359.
[15] DAloisio R,Giglio R,Di Nicola M,et al. Diagnostic accuracy of digital retinal fundus image analysis in detecting diabetic maculopathy in type 2 diabetes mellitus[J].Ophthalmic Res,2019,61(2):100-106.
[16] Chua J,Chin CWL,Tan B,et al. Impact of systemic vascular risk factors on the choriocapillaris using optical coherence tomography angiography in patients with systemic hypertension[J].Scientific reports,2019,9(1):5819.
[17] Guo Y,Camino A,Zhang M,et al. Automated segmentation of retinal layer boundaries and capillary plexuses in wide-field optical coherence tomographic angiography[J].Biomed Opt Express,2018,9(9):4429-4442.
[18] Garrity ST,Iafe NA,Phasukkijwatana N,et al. Quantitative analysis of three distinct retinal capillary plexuses in healthy eyes using optical coherence tomography angiographyquantitative analysis using OCTA[J].Invest Ophthalmol Vis Sci,2017,58(12):5548-5555.
[19] Ting Daniel Shu Wei,Tan Gavin Siew Wei,Agrawal Rupesh,et al. Optical coherence tomographic angiography in type 2 diabetes and diabetic retinopathy[J]. JAMA Ophthalmol,2017,135(4):306-312.
[20] Durbin Mary K,An Lin,Shemonski Nathan D,et al.Quantification of retinal microvascular density in optical coherence tomographic angiography images in diabetic retinopathy[J].JAMA Ophthalmol,2017,135(4):370-376.
[21] Johannesen SK,Viken JN,Vergmann AS,et al. Optical coherence tomography angiography and microvascular changes in diabetic retinopathy:A systematic review[J].Acta Ophthalmol,2019,97(1):7-14.
[22] Salz DA,de Carlo TE,Adhi M,et al. Select features of diabetic retinopathy on swept-source optical coherence tomographic angiography compared with fluorescein angiography and normal eyes[J].JAMA Ophthalmol,2016, 134(6):644-650.
[23] Takase N,Nozaki M,Kato A,et al. Enlargement of foveal avascular zone in diabetic eyes evaluated by en face optical coherence tomography angiography[J]. Retina,2015, 35(11):2377-2383.
[24] Pedinielli A,Bonnin S,Sanharawi ME,et al. Three different optical coherence tomography angiography measurement methods for assessing capillary density changes in diabetic retinopathy[J].Ophthalmic Surg Lasers Imaging Retina,2017,48(5):378-384.
[25] Le D,Alam M,Miao BA,et al. Fully automated geometric feature analysis in optical coherence tomography angiography for objective classification of diabetic retinopathy[J].Biomed Opt Express,2019,10(5):2493-2503.
[26] Simonett JM,Scarinci F,Picconi F,et al. Early microvascular retinal changes in optical coherence tomography angiography in patients with type 1 diabetes mellitus[J]. Acta Ophthalmol,2017,95(8):751-755.
[27] Michalska-Ma?覥ecka K,Heinke KA. Optical coherence tomography angiography in patients with diabetic retinopathy treated with anti-VEGF intravitreal injections:Case report[J].Medicine(Baltimore),2017,96(45):8379.
[28] Bhardwaj S,Tsui E,Zahid S,et al. Value of fractal analysis of optical coherence tomography angiography in various stages of diabetic retinopathy[J].Retina,2018,38(9):1816-1823.
[29] AttaAllah HR,Mohamed AAM,Ali MA.Macular vessels density in diabetic retinopathy:Quantitative assessment using optical coherence tomography angiography[J]. Int Ophthalmol,2019,39(8) :1845-1859.
[30] Alibhai A Yasin,Moult Eric M,Shahzad Rida,et al.Quantifying microvascular changes using OCT angiography in diabetic eyes without clinical evidence of retinopathy[J].Ophthalmology Retina,2018,2(5):418-427.
[31] Atta Allah HR,Mohamed AAM,Ali MA. Macular vessels density in diabetic retinopathy:Quantitative assessment using optical coherence tomography angiography[J].Int Ophthalmol,2018,39(8):1845-1859.
[32] Pan J,Chen D,Yang X,et al. Characteristics of neovascularization in early stages of proliferative diabetic retinopathy by optical coherence tomography angiography[J].Am J Ophthalmol,2018,192:146-156.
[33] Christenbury JG,Phasukkijwatana N,Gilani F,et al. Progression of macular atrophy in eyes with type 1 neovascularization and age-related macular degeneration receiving long-term intravitreal anti-vascular endothelial growth factor therapy:An optical coherence tomographic angiography analysis[J].Retina,2018,38(7):1276-1288.
[34] Jia Y,Bailey ST,Wilson DJ,et al. Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration[J]. Ophthalmology,2014,121(7):1435-1444.
[35] Moult E,Choi W,Waheed NK,et al. Ultrahigh-speed swept-source OCT angiography in exudative AMD[J]. Ophthalmic Surgery Lasers & Imaging Retina,2014,45(6):496-505.
[36] Kuehlewein L,Dansingani KK,de Carlo TE,et al. Optical coherence tomography angiography of type 3 neovascularization secondary to age-related macular degeneration[J].Retina,2015,35(11):2229-2235.
[37] El Ameen A,Cohen SY,Semoun O,et al. Type 2 neovascularization secondary to age related macular degeneration imaged by optical coherence tomography angiography[J].Retina,2015,35(11):2212-2218.
[38] Miere A,Querques G,Semoun O,et al. Optical coherence tomography angiography in early type 3 neovascularization[J].Retina,2015,35(11):2236-2241.
[39] Chalam KV,Sambhav K. Optical coherence tomography angiography in retinal diseases[J]. J Ophthalmic Vis Res,2016,11(1):84-92.
[40] Coscas G,Lupidi M,Coscas F,et al. Optical coherence tomography angiography during follow-up:Qualitative and quantitative analysis of mixed type Ⅰ and Ⅱ choroidal neovascularization after vascular endothelial growth factor trap therapy[J]. Ophthalmic Res,2015,54(2):57-63.
[41] Muakkassa NW,Chin AT,de Carlo T,et al. Characterizing the effect of anti-vascular endothelial growth factor therapy on treatment-naive choroidal neovascularization using optical coherence tomography angiography[J]. Retina,2015,35(11):2252-2259.
[42] Kuehlewein L,Sadda SR,Sarraf D.OCT angiography and sequential quantitative analysis of type 2 neovascularization after ranibizumab therapy[J]. Eye,2015,29(7):932-935.
[43] Muakkassa NW,Chin AT,de Carlo T,et al. Characterizing the effect of anti-vascular endothe-lial growth factor therapy on treatment-naive choroidal neovascu-larization using optical coherence tomography angiography[J]. Retina,2015,35:2252-2259.
[44] Phasukkijwatana N,Tan AC,Chen X,et al.Optical coherence tomography angiography of type 3 neovascular-isation in age-related macular degeneration after antiangiogenic therapy[J]. Br J Ophthalmol,2017,101(5):597-602.
[45] Mastropasqua L,Toto L,Borrelli E,et al.Optical coherence tomography angiography assessment of vascular effects occurring after aflibercept intravitreal injections in treatment-naive patients with wet AMD[J]. Retina,2017, 37(2):247-256.
[46] Shin YI,Kim JM,Lee MW,et al.Characteristics of the foveal microvasculature in Asian patients with dry age-related macular degeneration:An optical coherence tomography angiography study[J].Ophthalmologica,2019,23:1-9.
[47] Waheed NK,Moult EM,Fujimoto JG,et al.Optical coherence tomography angiography of dry age-related macular degeneration[J].Dev Ophthalmol,2016,56:91-100.
[48] Roisman L,Zhang Q,Wang RK,et al. Optical coherence tomography angiography of asymptomatic neovascularization in intermediate age-related macular degeneration[J]. Ophthalmology,2016,123(6):1309-1319.
[49] Carnevali A,Cicinelli MV,Capuano V,et al. Optical coherence tomography angiography:A useful tool for diagnosis of treatment-naive quiescent choroidal neovascularization[J]. Am J Ophthalmol,2016,169:189-198.
[50] Nehemy MB,Brocchi DN,Veloso CE. Optical coherence tomography angiography imaging of quiescent choroidal neovasculariza-tion in age-related macular degeneration[J].Ophthalmic Surgery,Lasers & Imaging Retina,2015,46(10):1056-1057.
[51] Palejwala NV,Jia Y,Gao SS,et al. Detection of Nonexudative choroidal neovascularization in age-related macular degeneration with optical coherence tomography angiography[J]. Retina,2015,35(11):2204-2211.
[52] Green WR,McDonnell PJ,Yeo JH. Pathologic features of senile macular degeneration[J]. Ophthalmology,1985,92(5):615-627.
[53] Hanutsaha P,Guyer DR,Yannuzzi LA,et al. Indocyanine-green videoangiography of drusen as a possible predictive indicator of exudative maculopathy[J]. Ophthalmology,1998,105(9):1632-1636.
[54] Faes L,Bodmer NS,Locher S,et al.Test performance of optical coherence tomography angiography in detecting retinal diseases:A systematic review and meta-analysis[J].Eye (Lond),2019,33(8):1327-1338.
[55] Novais EA,Waheed NK.Optical coherence tomography angiography of retinal vein occlusion[J].Dev Ophthalmol,2016,56:132-138.
[56] Wons Juliana,Pfau Maximilian,Wirth Magdalena A,et al. Optical coherence tomography angiography of the foveal avascular zone in retinal vein occlusion[J]. Ophthalmologica,2016,235(4):195-202.
[57] Winegarner Andrew,Wakabayashi Taku,Hara-Ueno Chikako,et al.Retinalmicrovasculature and visual acuity after intravitreal aflibercept in eyes with central retinal vein occlusion:An optical coherence tomography angiography study[J].Retina,2018,38(10):2067-2072.
[58] Sellam Alexandre,Glacet-Bernard Agnes,Coscas Florence,et al.Qualitative and quantitative follow-up using optical coherence tomography angiography of retinal vein occlusion treated with anti-VEGF:Optical coherence tomography angiography follow-up of retinal vein occlusion[J].Retina,2017,37(6):1176-1184.
[59] Suzuki Norihiro,Hirano Yoshio,Tomiyasu Taneto,et al. Retinal hemodynamics seen on optical coherence tomography angiography before and after treatment of retinal vein occlusion[J].Invest Ophthalmol Vis Sci,2016,57(13):5681-5687.
[60] Wakabayashi Taku,Sato Tatsuhiko,Hara-Ueno Chikako,et al. Retinal microvasculature and visual acuity in eyes with branch retinal vein occlusion:Imaging analysis by optical coherence tomography angiography[J].Invest Ophthalmol Vis Sci,2017,58(4):2087-2094.
[61] Samara Wasim A,Shahlaee Abtin,Sridhar Jayanth,et al. Quantitative optical coherence tomography angiography features and visual function in eyes with branch retinal vein occlusion[J].Am J Ophthalmol,2016,166:76-83.
[62] Seknazi Daniel,Coscas Florence,Sellam Alexandre,et al. Optical coherence tomography angiography in retinal vein occlusion:Correlations between macular vascular density,visual acuity,and peripheral nonperfusion areaon fluoresce in angiography[J].Retina,2018,38(8):1562-1570.
[63] Kang Joon-Won,Yoo Romi,Jo Youn Hye,et al. Correlation of microvascular structures on optical coherence tomography angiography with visual acuity in retinal vein occlusion[J].Retina,2017,37(9):1700-1709.
[64] Chung Chung Yee,Tang Heather Hoi Yau,Li Siu Hung,et al.Differential microvascular assessment of retinal vein occlusion with coherence tomography angiography and fluorescein angiography:A blinded comparative study[J].Int Ophthalmol,2018,38(3):1119-1128.
[65] De Castro-Abeger,Alexander H,de Carlo,et al. Optical coherence tomography angiography compared to fluorescein angiography in branch retinal artery occlusion[J].Ophthalmic Surg Lasers Imaging Retina,2015,46(10):1052-1054.
[66] Bonini Filho,Marco A,Adhi,et al. Optical coherence tomography angiography in retinal artery occlusion[J].Retina,2015,35(11):2339-2346.
[67] Sambhav K,Grover S,Chalam KV.The application of optical coherence tomography angiography in retinal diseases[J].Surv Ophthalmol,2017,62(6):838-866.
[68] Choi Ji Hyung,Yang Hee Kyung,Lee Ji Eun. Incidental branch retinal artery occlusion on optical coherence tomography angiography presenting as segmental optic atrophy in a child:A case report[J].BMC Ophthalmol,2017, 17(1):256.
[69] Baumal Caroline R. Optical Coherence Tomography angiography of retinal artery occlusion[J].Dev Ophthalmol,2016,56:122-131.
[70] Bonini Filho MA,Adhi M,de Carlo TE,et al. Optical coherence tomography angiography in retinal artery occlusion[J]. Retina,2015,35(11):2339-2346.
[71] Yang S ,Liu X,Li H,et al.Optical coherence tomography angiography characteristics of acute retinal arterial occlusion[J].BMC Ophthalmol,2019,19(1):147.
[72] Seknazi D,Coscas F,Sellam A,et al. Optical coherence tomography angiography in retinal vein occlusion:Correlations between macular vascular density,visual acuity,and peripheral nonperfusion area on fluorescein angiography[J]. Retina,2018,38(8):1562-1570.
[73] Deng Y,Cai X,Zhang S,et al. Quantitative analysis of retinal microvascular changes after conbercept therapy in branch retinal vein occlusion using optical coherence tomography angiography[J].Ophthalmologica,2019,242(2):69-80.
[74] Krawitz BD,Mo S,Geyman LS,et al. Acircularity index and axis ratio of the foveal avascular zone in diabetic eyes and healthy controls measured by optical coherence tomography angiography[J].Vis Res,2017,139:177-186.
[75] Li Z,Alzogool M,Xiao J,et al.Optical coherence tomography angiography findings of neurovascular changes in type 2 diabetes mellitus patients without clinical diabetic retinopathy[J].Acta Diabetol,2018,55(10):1075-1082.
[76] Yang S,Liu X,Li H,et al. Optical coherence tomography angiography characteristics of acute retinal arterial occlusion[J].BMC Ophthalmol,2019,19(1):147.
[77] Deng Y,Zhong QW,Zhang AQ,et al. Microvascular changes after conbercept therapy in central retinal vein occlusion analyzed by optical coherence tomography angiography[J].Int J Ophthalmol,2019,12(5):802-808.
[78] Deng Y,Cai X,Zhang S,et al. Quantitative analysis of retinal microvascular changes after conbercept therapy in branch retinal vein occlusion using optical coherence tomography angiography[J].Ophthalmologica,2019,242(2):69-80.
[79] 王林妮,于榮国,杨锦,等.视网膜分支静脉阻塞黄斑水肿程度对黄斑中心凹无血管区量化分析的影响[J].中华眼底病杂志,2019,35(1):20-24.
[80] Inanc M,Tekin K,Kiziltoprak H,et al. Changes in retinal microcirculation precede the clinical onset of diabetic retinopathy in children with type 1 diabetes mellitus[J].Am J Ophthalmol,2019,207(11):37-44.
[81] Tobe LA,Harris A,Hussain RM,et al. The role of retrobulbar and retinal circulation on optic nerve head and retinal nerve fibre layer structure in patients with open-angle glaucoma over an 18-month period[J].Br J Ophthalmol,2015,99(5):609-612 .
[82] Leske MC,Connell AM,Wu SY,et al. Risk factors for open-angle glaucoma. The barbados eye study[J]. Arch Ophthalmol,2015,113(7):918-924.
[83] De Moraes CG,Liebmann JM,Greenfield DS,et al.Low-pressure glaucoma treatment study. Risk factors for visual fieldprogression in the low-pressure glaucoma treatment study[J]. Am J Ophthalmol,2012,154(4):702-711.
[84] Harris A,Rechtman E,Siesky B,et al.The role of optic nerve blood flow in the pathogenesis of glaucoma[J].Ophthalmol Clin North Am,2005,18(3):345-353.
[85] Tiwari US,Singh M,Aishwarya A,et al. Comparison of flow velocity in ophthalmic artery between glaucomatous and normal subjects[J].Rom J Ophthalmol,2019,63(4):346-353.
[86] Cull G,Burgoyne CF,Fortune B,et al. Longitudinal hemodynamic changes within the optic nerve head in experimental glaucoma[J].Invest Ophthalmol Vis Sci,2013, 54(6):4271-4277.
[87] Hwang JC,Konduru R,Zhang X,et al. Relationship among visual field,blood flow,and neuralstructure measurements in glaucoma[J]. Invest Ophthalmol Vis Sci,2012, 53(6):3020-3026.
[88] Onda E,Cioffi GA,Bacon DR,et al. Microvasculature of the human optic nerve[J]. Am J Ophthalmol,1995,120(1):92-102.
[89] Jia Y,Tan O,Tokayer J,et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography[J].Opt Express,2012,20(4):4710-4725.
[90] Jia Y,Wei E,Wang X,et al. Optical coherence tomography angiography of optic disc perfusion in glaucoma[J].Ophthalmology,2014,121(7):1322-1332.
[91] Mansoori T,Gamalapati J,Sivaswamy J,et al.Optical coherence tomography angiography measured capillary density in the normal and glaucoma eyes[J].Saudi J Ophthalmol,2018,32(4):295-302.
[92] Park JH,Yoo C,Kim YY. Peripapillary vessel density in young patients with open-angle glaucoma:Comparison between high-tension and normal-tension glaucoma[J].Scientific Reports,2019,9(1):19160.
[93] Xu H, Zhai R,Zong Y,et al. Comparison of retinal microvascular changes in eyes with high-tension glaucoma or normal-tension glaucoma:A quantitative optic coherence tomography angiographic study[J].Graefes Arch Clin Exp Ophthalmol,2018,256(6):1179-1186.
[94] Shinojima Ari,Kawamura Akiyuki,Mori Ryusaburo,et al. Findings of optical coherence tomographic angiography at the choriocapillaris level in central serous chorioretinopathy[J].Ophthalmologica,2016,236(2):108-113.
[95] Rochepeau C,Kodjikian L,Garcia MA,et al.Optical coherence tomography angiography quantitative assessment of choriocapillaris blood flow in central serous chorioretinopathy[J].Am J Ophthalmol,2018,194:26-34.
[96] Fujita Kyoko,Kawamura Akiyuki,Yuzawa Mitsuko,et al. Choriocapillaris Changes Imaged by OCT angiography after half-dose photodynamic therapy for chronic central serous chorioretinopathy[J]. Ophthalmic Surg Lasers Imaging Retina,2017,48(4):302-310.
[97] Xu Yishuang,Su Yu,Li Lu,et al. Effect of photodynamic therapy on optical coherence tomography angiography in eyes with chronic central serous chorioretinopathy[J].Ophthalmologica,2017,237(3):167-172.
[98] Sawada O,Ichiyama Y,Obata S,et al. Comparison between wide-angle OCT angiography and ultra-wide field fluorescein angiography for detecting non-perfusion areas and retinal neovascularization in eyes with diabetic retinopathy[J].Graefes Arch Clin Exp Ophthalmol,2018, 256(7):1275-1280.
[99] Told R,Sacu S,Hecht A,et al. Comparison of sd-optical coherence tomography angiography and indocyanine green angiography in type 1 and 2 neovascular age-related macular degeneration[J]. Invest Ophthalmol Vis Sci,2018,59(6):2393-2400.
(收稿日期:2019-12-09)