APP下载

白藜芦醇和锌离子心肌保护作用的联系与进展(连载一)

2020-04-20贺翼飞付宇赵杨

现代养生·下半月 2020年2期
关键词:心肌损伤白藜芦醇

贺翼飞 付宇 赵杨

【关键词】心肌损伤;白藜芦醇;锌离子;心肌保护

中图分类号  R54    文献标识码  B    文章编号  1671-0223(2020)02-017-05

白藜芦醇(resveratrol)是生物性很强的多酚类物质,天然抗氧化物,在多种中药材中存在[1]。它有很多药理、生理性效用,比如,阻止血小板凝聚[2]、抗氧化[3, 4]、抗炎症[3-5]、抗肿瘤[6]等,也对心脏疾病、癌症等发挥了很好的效用[7-9]。锌离子(Zn2+)属于微量元素,能维持人体正常结构与功能,参与体内多种酶的代谢与激活,在细胞信号转导机制中起着非常重要的作用。白藜芦醇和锌离子均能够减轻心肌损伤从而保护心肌[10, 11],但是对于心肌保护作用,白藜芦醇与锌离子两者之间是否存在某种联系以及它们的细胞信号机制是怎样的,目前相关研究较少。本文就白藜芦醇与锌离子心肌保护作用之间的联系与具体相关信号转导机制进展综述如下。

1 心肌损伤与保护

中国最新统计数据指出,心血管疾病的发病率、致死率数值逐年提高,死亡率居首位,远远高于肿瘤及其他类型的疾病,40%以上的人类死于心血管病,尤其是农村,死亡率一直比城市高[12]。中国心血管病一直以来都是公共卫生中的重点问题,对它的防治刻不容缓。

临床上最常见的心肌损伤是急性心肌梗塞(acute myocardial infarction, AMI),其他还有冠心病 (Coronary heart disease, CHD)、心律失常(arrhythmia)、心力衰竭((heart failure, HF)等,对患者的生命都带来极大的威胁。在科学研究方面,较常见的心肌损伤模型有心肌缺血损伤、缺血/再灌注(Ischemia/Reperfusion, I/R)[13]损伤、缺氧/复氧 ((hypoxia/reoxygenation, H/R)损伤、氧化应激(oxidative Stress, OS)损伤[14, 15]、内质网应激(endoplasmic reticulum stress, ERS)损伤[16-18]等。心肌损伤严重危及生命,因此亟需对其机制进行研究,为临床治疗提供理论基础[19]。

对于心肌保护作用机制研究,最初办法是缺血预处理(ischemic preconditioning, IPC)[20],就是在缺血发生之前,反复进行短暂的缺血/再灌循环处理,为心肌在随后的长时间缺血期提供预适应,降低心肌损伤。此后,又陆续出现药物预处理、远端的缺血预处理等措施。后续又验证了缺血后处理(ischemic postconditioning, IPO)机制[21],即在心肌缺血之后再灌注之前的时间段,反复进行短时间的缺血/再灌注,它同样具有减轻心肌损伤的效果。通过更多的研究证明,药物后处理、远距离缺血后处理、缺血预处理以及后处理同时使用等也都能够减轻心肌损伤。因为临床上都是缺血或梗死后才送医救治,对于后处理的研究具有更加突出的实际临床意义。

2 白藜芦醇与心肌保护

白藜芦醇属于多酚类物质,化学名为3,4',5- 三羟基- 二苯乙烯(3,4',5-trihydroxystlbene),相对分子量是228。它在有机溶剂(乙醇、丙酮等)中很快溶解,在水中很难溶解。广泛存在于多种植物中,如虎杖、花生和藜芦等。随着深入探究,发现它有多种作用,如抗癌症[8, 9]、抗炎症[3-5] 、抗氧化[3, 4]等[22]。

大量文献证明,白藜芦醇能够减轻心肌损伤。它可以通过药物预处理下调VDAC1[10],、调节NALP3炎性体[23]来减轻心肌缺血/再灌注损伤,能够保护缺氧/复氧心肌[24, 25];另外,它还能通过预处理机制来减轻其他方式导致的心肌损伤,如氧化应激[26]、凋亡和自噬[27]、内质网应激[28]等。白藜芦醇后处理也能减轻心肌损伤。白藜芦醇后处理能上调PI3K/Akt/Nfr 2活性,进而增加HO-1蛋白的活性和表达,从而发挥HO-1抗氧化作用,保护再灌注损伤的心肌 [29]。磷脂酰肌醇3激酶(phosphatidylinositol 3 Kinase, PI3K)、一氧化氮(NO)、腺苷受体(adenosine receptor)等信号转导通路均参与它的保护过程[10, 30-32]。课题组前期研究显示,白藜芦醇可以降低磷酸二酯酶的活性,通过环鸟苷单磷酸(cGMP)/蛋白激酶G(PKG)途径,使糖原合成酶激酶-3β (glycogen synthase kinase-3β, GSK-3β)发生磷酸化、从细胞质转移到线粒体,与亲环蛋白D共同调节线粒体通透性转换孔(mitochondrial permeability transition pore, mPTP),保护缺血/再灌注心脏[33];此外,它能够减轻氧化应激导致的内质网应激 [34],还可以抑制缺氧引起的ERS [35]。以上研究顯示,白藜芦醇拥有强大的作用,但其机制有待于进一步探讨。

3 锌离子与心肌保护

锌是人体必需微量元素,维持人体细胞结构与功能以及神经、组织等的生理信号转导,参与体内多种酶的代谢与活化。在细胞水平上,锌离子被认定为众多酶和转录因子的辅助因子,并在其中充当结构或催化离子;在分子水平上,锌离子结合蛋白在细胞内提供了一个稳定的离子库,但信号可能是由诸如金属硫蛋白(metallothionein, MT)等松散结合的蛋白释放的锌离子触发[36-38]。此外,锌离子转运蛋白介导锌离子跨膜运动,这些囊泡的释放或转运蛋白活性的上调可以诱导细胞质或细胞外锌离子的瞬时变化,进而触发细胞信号传导[37, 38]。

锌离子稳态对于细胞功能和存活十分重要。一旦锌离子失去稳定状态会引发很多疾病[39],如肝性脑病、肾功能衰竭、尿毒症、镰状细胞病等[40]。金属硫蛋白在维持锌稳态中扮演关键角色,金属反应元件(MRE)1-结合转录因子1(MTF-1)是必不可少的金属调控转录因子,可协调参与锌离子体内稳态基因的表达并防止金属毒性和氧化应激。这些包括但不限于金属硫蛋白、锌转运蛋白1和γ-谷氨酰半胱氨酸合成酶重链基因[41]。

大量研究表明,鋅离子具有心肌保护功能。锌离子通过减少氧超载及激活PKC通路而保护离体大鼠缺血/再灌注心脏[11, 42]。Jang等的研究证实,锌离子可以减轻心肌细胞线粒体氧化损伤[43]。外源性ZnCl2通过抑制caspase-3以剂量依赖的方式减少急性心脏异体移植排斥反应中发生的凋亡[44]。广泛的心脏保护信号通路的激活是与线粒体信号传导相关的GSK-3β磷酸化或抑制有关。因此,GSK-3β已经成为许多途径的整合点,在传递保护信号到下游或mPTP附近的靶点中起着关键作用[45, 46]。课题组前期研究显示,吗啡以及腺苷A2受体通过锌离子激活cGMP/PKG阻止mPTP开放保护心肌[47, 48];锌通过失活GSK-3β阻止氧化剂诱导的mPTP开放,从而防止再灌注损伤,PI3K/蛋白激酶B(Akt)、细胞外信号调节激酶(ERK)信号通路参与其中[49, 50];NO能够抑制复合物I调控再灌注引起的线粒体氧化应激,从而保护心脏,其机制可能是通过锌调控线粒体Src酪氨酸激酶[46, 51];锌离子能够抑制内质网应激保护离体大鼠再灌注心脏[52]。锌离子在保护心肌方面扮演了关键角色,对其深入研究将为心肌保护机制提供重要的论证。

参考文献

[1] 赵建萍, 陈倩, 曹俊东, 等. 柘木多酚和氧化白藜芦醇的制备与其抗氧化活性研究[J]. 中国现代中药, 2018, 20(10): 1288-1291.

[2] C Bonechi, S Lamponi, A Donati, et al. Effect of resveratrol on platelet aggregation by fibrinogen protection[J]. Biophys Chem, 2017, 222: 41-48.

[3] B Wang, J Sun, X Li, et al. Resveratrol prevents suppression of regulatory T-cell production, oxidative stress, and inflammation of mice prone or resistant to high-fat diet-induced obesity[J]. Nutr Res, 2013, 33(11): 971-981.

[4] BA Rocha, CS Teixeira, JC Silva-Filho, et al. Structural basis of ConM binding with resveratrol, an anti-inflammatory and antioxidant polyphenol[J]. Int J Biol Macromol, 2015, 72: 1136-1142.

[5] CW Kimbrough, J Lakshmanan, PJ Matheson, et al. Resveratrol decreases nitric oxide production by hepatocytes during inflammation[J]. Surgery, 2015, 158(4): 1095-1101.

[6] W Zhou, S Wang, Y Ying, et al. miR-196b/miR-1290 participate in the antitumor effect of resveratrol via regulation of IGFBP3 expression in acute lymphoblastic leukemia[J]. Oncol Rep, 2017, 37(2): 1075-1083.

[7] BN Zordoky, IM Robertson and JR Dyck. Preclinical and clinical evidence for the role of resveratrol in the treatment of cardiovascular diseases[J]. Biochim Biophys Acta, 2015, 1852(6): 1155-1177.

[8] M Jang and JM Pezzuto. Effects of resveratrol on 12-O-tetradecanoylphorbol-13-acetate-induced oxidative events and gene expression in mouse skin[J]. Cancer Lett, 1998, 134(1): 81-89.

[9] L Tan, W Wang, G He, et al. Resveratrol inhibits ovarian tumor growth in an in vivo mouse model[J]. Cancer, 2016, 122(5): 722-729.

[10] Z Liao, D Liu, L Tang, et al. Long-term oral resveratrol intake provides nutritional preconditioning against myocardial ischemia/reperfusion injury: involvement of VDAC1 downregulation[J]. Mol Nutr Food Res, 2015, 59(3): 454-464.

[11] Z Xu and J Zhou. Zinc and myocardial ischemia/reperfusion injury[J]. Biometals, 2013, 26(6): 863-878.

[12]胡盛寿, 高润霖, 刘力生, 等 《中国心血管病报告2018》概要[J]. 中国循环杂志, 2019, 34(03): 209-220.

[13] S Hashmi and S Al-Salam. Acute myocardial infarction and myocardial ischemia-reperfusion injury: a comparison[J]. Int J Clin Exp Pathol, 2015, 8(8): 8786-8796.

[14] L Li, Y Zhou, Y Li, et al. Aqueous extract of Cortex Dictamni protects H9c2 cardiomyocytes from hypoxia/reoxygenation-induced oxidative stress and apoptosis by PI3K/Akt signaling pathway[J]. Biomed Pharmacother, 2017, 89: 233-244.

[15] H Chen, RS Huang, XX Yu, et al. Emodin protects against oxidative stress and apoptosis in HK-2 renal tubular epithelial cells after hypoxia/reoxygenation[J]. Exp Ther Med, 2017, 14(1): 447-452.

[16]郭云辉, 李志平, 南姝利. 内质网应激与心肌缺血再灌注损伤的关系[J]. 黑龙江医药科学, 2014, 37(04): 104.

[17] JG Xia, FF Xu, Y Qu, et al. Atorvastatin post-conditioning attenuates myocardial ischemia reperfusion injury via inhibiting endoplasmic reticulum stress-related apoptosis[J]. Shock, 2014, 42(4): 365-371.

[18] X Wang, D Jia, J Zhang, et al. Grape seed proanthocyanidins protect cardiomyocytes against hypoxia/reoxygenation injury by attenuating endoplasmic reticulum stress through PERK/eIF2alpha pathway[J]. Mol Med Rep, 2017, 16(6): 9189-9196.

[19] G Heusch. Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning[J]. Circ Res, 2015, 116(4): 674-699.

[20] CE Murry, RB Jennings and KA Reimer. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium[J]. Circulation, 1986, 74(5): 1124-1136.

[21] ZQ Zhao, JS Corvera, ME Halkos, et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning[J]. Am J Physiol Heart Circ Physiol, 2003, 285(2): H579- H588.

[22] JM Wu and TC Hsieh. Resveratrol: a cardioprotective substance[J]. Ann N Y Acad Sci, 2011, 1215: 16-21.

[23] W Dong, R Yang, J Yang, et al. Resveratrol pretreatment protects rat hearts from ischemia/reperfusion injury partly via a NALP3 inflammasome pathway[J]. Int J Clin Exp Pathol, 2015, 8(8): 8731-8741.

[24] SH Jeong, TM Hanh, HK Kim, et al. HS-1793, a recently developed resveratrol analogue protects rat heart against hypoxia/reoxygenation injury via attenuating mitochondrial damage[J]. Bioorg Med Chem Lett, 2013, 23(14): 4225-4229.

[25]左惠榮, 廖东初, 林龙, 等. 白藜芦醇通过PI3K/Akt/SVV信号通路改善大鼠心肌微血管内皮细胞缺血再灌注损伤[J]. 中华心血管病杂志, 2014, 42(8): 670-674.

[26] E Akbel, D Arslan-Acaroz, HH Demirel, et al. The subchronic exposure to malathion, an organophosphate pesticide, causes lipid peroxidation, oxidative stress, and tissue damage in rats: the protective role of resveratrol[J]. Toxicol Res (Camb), 2018, 7(3): 503-512.

[27] K Xu, XF Liu, ZQ Ke, et al. Resveratrol Modulates Apoptosis and Autophagy Induced by High Glucose and Palmitate in Cardiac Cells[J]. Cell Physiol Biochem, 2018, 46(5): 2031-2040.

[28] Y Lou, Z Wang, Y Xu, et al. Resveratrol prevents doxorubicin-induced cardiotoxicity in H9c2 cells through the inhibition of endoplasmic reticulum stress and the activation of the Sirt1 pathway[J]. Int J Mol Med, 2015, 36(3): 873-880.

[29]鄧颖, 张雄, 胡红. 白藜芦醇后处理通过PI3K/Akt/Nfr2上调HO-1对大鼠心肌I/R的保护研究[J]. 重庆医学, 2018, 47(09): 1176-1178+1182.

[30] S Das, GA Cordis, N Maulik, et al. Pharmacological preconditioning with resveratrol: role of CREB-dependent Bcl-2 signaling via adenosine A3 receptor activation[J]. Am J Physiol Heart Circ Physiol, 2005, 288(1): H328- H335.

[31] LM Hung, MJ Su and JK Chen. Resveratrol protects myocardial ischemia-reperfusion injury through both NO-dependent and NO-independent mechanisms[J]. Free Radic Biol Med, 2004, 36(6): 774-781.

[32] S Das, CG Fraga and DK Das. Cardioprotective effect of resveratrol via HO-1 expression involves p38 map kinase and PI-3-kinase signaling, but does not involve NFkappaB[J]. Free Radic Res, 2006, 40(10): 1066-1075.

[33] J Xi, H Wang, RA Mueller, et al. Mechanism for resveratrol-induced cardioprotection against reperfusion injury involves glycogen synthase kinase 3beta and mitochondrial permeability transition pore[J]. Eur J Pharmacol, 2009, 604(1-3): 111-116.

[34] 沈志嘉, 郑桓, 费硕, 等. 白藜芦醇对H9c2心肌细胞抗氧化应激损伤的内质网应激机制研究[J]. 中国新药杂志, 2015, 24(01): 74-78.

[35] 贺翼飞, 李璐, 蔡志亮, 等. 白藜芦醇对缺氧心肌细胞的保护作用及机制研究[J]. 中国新药杂志, 2017, 26(10): 1163-1168.

[36] A Kr??el, W Maret. The Functions of Metamorphic Metallothioneins in Zinc and Copper Metabolism[J]. Int J Mol Sci, 2017, 18(6): E1237.

[37] L Sirianant, J Ousingsawat, Y Tian, et al. TMC8 (EVER2) attenuates intracellular signaling by Zn2+ and Ca2+ and suppresses activation of Cl- currents[J]. Cell Signal, 2014, 26(12): 2826-2833.

[38] N Levaot and M Hershfinkel. How cellular Zn(2+) signaling drives physiological functions[J]. Cell Calcium, 2018, 75: 53-63.

[39] AS Prasad. Discovery of human zinc deficiency: its impact on human health and disease[J]. Adv Nutr, 2013, 4(2): 176-190.

[40] PJ Little, R Bhattacharya, AE Moreyra, et al. Zinc and cardiovascular disease[J]. Nutrition, 2010, 26(11-12): 1050-1057.

[41] H Jiang, PJ Daniels and GK Andrews. Putative zinc-sensing zinc fingers of metal-response element-binding transcription factor-1 stabilize a metal-dependent chromatin complex on the endogenous metallothionein-I promoter[J]. J Biol Chem, 2003, 278(32): 30394-30402.

[42] G Karagulova, Y Yue, A Moreyra, et al. Protective role of intracellular zinc in myocardial ischemia/reperfusion is associated with preservation of protein kinase C isoforms[J]. J Pharmacol Exp Ther, 2007, 321(2): 517-525.

[43] Y Jang, H Wang, J Xi, et al. NO mobilizes intracellular Zn2+ via cGMP/PKG signaling pathway and prevents mitochondrial oxidant damage in cardiomyocytes[J]. Cardiovasc Res, 2007, 75(2): 426-433

[44] MH Kown, T Van der Steenhoven, FG Blankenberg, et al. Zinc-mediated reduction of apoptosis in cardiac allografts[J]. Circulation, 2000, 102(19 Suppl 3): Iii228- Iii232.

[45] AP Halestrap, SJ Clarke and SA Javadov. Mitochondrial permeability transition pore opening during myocardial reperfusion--a target for cardioprotection[J]. Cardiovasc Res, 2004, 61(3): 372-385.

[46] M Juhaszova, DB Zorov, Y Yaniv, et al. Role of glycogen synthase kinase-3beta in cardioprotection[J]. Circ Res, 2009, 104(11): 1240-1252.

[47] J Xi, W Tian, L Zhang, et al. Morphine prevents the mitochondrial permeability transition pore opening through NO/cGMP/PKG/Zn2+/GSK-3beta signal pathway in cardiomyocytes[J]. Am J Physiol Heart Circ Physiol, 2010, 298(2): H601- H607.

[48] R McIntosh, S Lee, AJ Ghio, et al. The critical role of intracellular zinc in adenosine A(2) receptor activation induced cardioprotection against reperfusion injury[J]. J Mol Cell Cardiol, 2010, 49(1): 41-47.

[49] G Chanoit, S Lee, J Xi, et al. Exogenous zinc protects cardiac cells from reperfusion injury by targeting mitochondrial permeability transition pore through inactivation of glycogen synthase kinase-3beta[J]. Am J Physiol Heart Circ Physiol, 2008, 295(3): H1227-H1233.

[50] Z Xu, S Kim and J Huh. Zinc plays a critical role in the cardioprotective effect of postconditioning by enhancing the activation of the RISK pathway in rat hearts[J]. J Mol Cell Cardiol, 2014, 66:12-17.

[51] Y Zhang, F Xing, H Zheng, et al. Roles of mitochondrial Src tyrosine kinase and zinc in nitric oxide-induced cardioprotection against ischemia/reperfusion injury[J]. Free Radic Res, 2013, 47(6-7): 517-525.

[52] G Wang, H Huang, H Zheng, et al. Zn(2+) and mPTP Mediate Endoplasmic Reticulum Stress Inhibition-Induced Cardioprotection Against Myocardial Ischemia/Reperfusion Injury[J]. Biol Trace Elem Res, 2016, 174(1): 189-197.

[2020-01-02收稿]

(未完待續)

猜你喜欢

心肌损伤白藜芦醇
白藜芦醇,真的有那么神奇吗
白藜芦醇的真面目
远端缺血预处理对血清miRNA表达水平的影响及对心肌保护作用的研究
白藜芦醇不是贪杯的借口
糖尿病心肌病患者血清差异表达microRNA及作用的研究
白藜芦醇,到底是何方神圣?
病毒性肝炎合并心肌损伤的临床研究
不同类型心肌损伤生化标志物的临床对比分析
白藜芦醇对酒精性氧化损伤修复作用研究
红酒有传说的那么健康吗?